1
|
Lin Y, Sun N, Liu D, Yang X, Dong Y, Jiang C. COX-2/PTGS2-targeted herbal-derived oligonucleotide drug HQi-sRNA-2 was effective in spontaneous mouse lung cancer model. IUBMB Life 2024; 76:937-950. [PMID: 39051847 DOI: 10.1002/iub.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/13/2024] [Indexed: 07/27/2024]
Abstract
In 2020, the number of deaths caused by lung cancer worldwide reached 1,796,144, making it the leading cause of cancer-related deaths. Cyclooxygenase-2/prostaglandin endoperoxide synthase 2 (COX-2/PTGS2) is overexpressed in lung cancer, which promotes tumor proliferation, invasion, angiogenesis, and resistance to apoptosis. Here, we report that the oligonucleotide drug HQi-sRNA-2 from Traditional Chinese Medicine Huangqin targeting COX-2/PTGS2 significantly inhibited proliferation, migration, and invasion and induced apoptosis in the human lung cancer cell line NCI-H460. Oral delivery of HQi-sRNA-2 bencaosomes prolonged survival, reduced tumor burden, and maintained weight in a spontaneous mouse lung cancer model. Compared with paclitaxel, HQi-sRNA-2 may be less toxic and have approximately equal efficacy in reducing tumor burden. Our previous studies reported that herbal small RNAs (sRNAs) are functional medical components. Our data suggest that sphingosine (d18:1)-HQi-sRNA-2 bencaosomes, targeting COX-2/PTGS2 and downregulating the PI3K and AKT signaling pathways, may provide novel therapeutics for lung cancer.
Collapse
Affiliation(s)
- Yexuan Lin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dengyuan Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmeng Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Dong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengyu Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Shang Y, Yang H, Cui J, Wang L, Wang L, Wang Y, Zhao M, Yu P, Qiao H, Yang W. Transcriptomics analysis of LINC02202/XBP1 axis in melanoma: Implications for drug targeting and PD-1 monoclonal antibody efficacy. J Cell Mol Med 2024; 28:e18247. [PMID: 38520212 PMCID: PMC10960173 DOI: 10.1111/jcmm.18247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
Malignant melanoma (MM) is a highly aggressive and deadly form of skin cancer, primarily caused by recurrence and metastasis. Therefore, it is crucial to investigate the regulatory mechanisms underlying melanoma recurrence and metastasis. Our study has identified a potential targeted regulatory relationship between LINC02202, miR-526b-3p and XBP1 in malignant melanoma. Through the regulation of the miR-526b-3p/XBP1 signalling pathway, LINC02202 may play a role in tumour progression and immune infiltration and inhibiting the expression of LINC02202 can increase the efficacy of immunotherapy for melanoma. Our findings shed light on the impact of LINC02202/XBP1 on the phenotype and function of malignant melanoma cells. Furthermore, this study provides a theoretical foundation for the development of novel immunotherapy strategies for malignant melanoma.
Collapse
Affiliation(s)
- Yuanyuan Shang
- School of Public HealthNingxia Medical UniversityYinchuanChina
| | | | - Jian Cui
- Department of AnesthesiaGeneral Hospital of NingXia Medical UniversityYinchuanChina
| | - Lipeng Wang
- Department of DermatologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Le Wang
- Department of DermatologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Yuan Wang
- Department of DermatologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | | | - Pei‐Yao Yu
- Department of AnesthesiaGeneral Hospital of NingXia Medical UniversityYinchuanChina
| | - Hui Qiao
- School of Public HealthNingxia Medical UniversityYinchuanChina
| | - Wen‐Jun Yang
- Pathology DepartmentThe First Affiliated Hospital, Hainan Medical UniversityHaikouChina
- Cancer InstituteThe General Hospital of Ningxia Medical UniversityYinchuanChina
| |
Collapse
|
3
|
Sanchez-Cabrero D, Garcia-Guede Á, Burdiel M, Pernía O, Colmenarejo-Fernandez J, Gutierrez L, Higuera O, Rodriguez IE, Rosas-Alonso R, Rodriguez-Antolín C, Losantos-García I, Vera O, De Castro-Carpeño J, Ibanez de Caceres I. miR-124 as a Liquid Biopsy Prognostic Biomarker in Small Extracellular Vesicles from NSCLC Patients. Int J Mol Sci 2023; 24:11464. [PMID: 37511221 PMCID: PMC10380700 DOI: 10.3390/ijms241411464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Despite advances in non-small cell lung cancer (NSCLC) research, this is still the most common cancer type that has been diagnosed up to date. microRNAs have emerged as useful clinical biomarkers in both tissue and liquid biopsy. However, there are no reliable predictive biomarkers for clinical use. We evaluated the preclinical use of seven candidate miRNAs previously identified by our group. We collected a total of 120 prospective samples from 88 NSCLC patients. miRNA levels were analyzed via qRT-PCR from tissue and blood samples. miR-124 gene target prediction was performed using RNA sequencing data from our group and interrogating data from 2952 NSCLC patients from two public databases. We found higher levels of all seven miRNAs in tissue compared to plasma samples, except for miR-124. Our findings indicate that levels of miR-124, both free-circulating and within exosomes, are increased throughout the progression of the disease, suggesting its potential as a marker of disease progression in both advanced and early stages. Our bioinformatics approach identified KPNA4 and SPOCK1 as potential miR-124 targets in NSCLC. miR-124 levels can be used to identify early-stage NSCLC patients at higher risk of relapse.
Collapse
Affiliation(s)
- Darío Sanchez-Cabrero
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Álvaro Garcia-Guede
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Miranda Burdiel
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Olga Pernía
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Julián Colmenarejo-Fernandez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Laura Gutierrez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Oliver Higuera
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Isabel Esteban Rodriguez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Pathology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Rocío Rosas-Alonso
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos Rodriguez-Antolín
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Olga Vera
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Javier De Castro-Carpeño
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Inmaculada Ibanez de Caceres
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| |
Collapse
|
4
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
5
|
Insights into the Mechanisms of Action of Proanthocyanidins and Anthocyanins in the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23147905. [PMID: 35887251 PMCID: PMC9316101 DOI: 10.3390/ijms23147905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
In traditional medicine, different parts of plants, including fruits, have been used for their anti-inflammatory and anti-oxidative properties. Plant-based foods, such as fruits, seeds and vegetables, are used for therapeutic purposes due to the presence of flavonoid compounds. Proanthocyanidins (PCs) and anthocyanins (ACNs) are the major distributed flavonoid pigments in plants, which have therapeutic potential against certain chronic diseases. PCs and ACNs derived from plant-based foods and/or medicinal plants at different nontoxic concentrations have shown anti-non-small cell lung cancer (NSCLC) activity in vitro/in vivo models through inhibiting proliferation, invasion/migration, metastasis and angiogenesis and by activating apoptosis/autophagy-related mechanisms. However, the potential mechanisms by which these compounds exert efficacy against nicotine-induced NSCLC are not fully understood. Thus, this review aims to gain insights into the mechanisms of action and therapeutic potential of PCs and ACNs in nicotine-induced NSCLC.
Collapse
|
6
|
Zhou J, Jiang G, Xu E, Zhou J, Liu L, Yang Q. Identification of SRXN1 and KRT6A as Key Genes in Smoking-Related Non-Small-Cell Lung Cancer Through Bioinformatics and Functional Analyses. Front Oncol 2022; 11:810301. [PMID: 35071014 PMCID: PMC8767109 DOI: 10.3389/fonc.2021.810301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related mortality worldwide. Although cigarette smoking is an established risk factor for lung cancer, few reliable smoking-related biomarkers for non-small-cell lung cancer (NSCLC) are available. An improved understanding of these biomarkers would further the development of new biomarker-targeted therapies and lead to improvements in overall patient survival. Methods We performed bioinformatic analysis to screened potential target genes, then quantitative PCR, western, siRNA, CCK-8, flow cytometry, tumorigenicity assays in nude mice were performed to validated the function. Results In this study, we identified 83 smoking-related genes (SRGs) based on an integration analysis of two Gene Expression Omnibus (GEO) datasets, and 27 hub SRGs with potential carcinogenic effects by analyzing a dataset of smokers with NSCLC in The Cancer Genome Atlas (TCGA) database. A survival analysis revealed three genes with potential prognostic value, namely SRXN1, KRT6A and JAKMIP3. A univariate Cox analysis revealed significant associations of elevated SRXN1 and KRT6A expression with prognosis. A receiver operating characteristic (ROC) curve analysis indicated the high diagnostic value of SRXN1 and KRT6A for smoking and cancer. Quantitative PCR and western blotting validated the increased expression of SRXN1 and KRT6A mRNA and protein, respectively, in lung cancer cell lines and NSCLC tissues. In patients with NSCLC, SRXN1 and KRT6A expression was associated with the tumor–node–metastasis (TNM) stage, presence of metastasis, history of smoking and daily smoking consumption. Furthermore, inhibition of SRXN1 or KRT6A suppressed viability and enhanced apoptosis in the A549 human lung carcinoma cell line. Tumorigenicity assays in nude mice confirmed that the siRNA-mediated downregulation of SRXN1 and KRT6A expression inhibited tumor growth in vivo. Conclusions In summary, SRXN1 and KRT6A act as oncogenes in NSCLC and might be potential biomarkers of smoking exposure and the early diagnosis and prognosis of NSCLC in smokers, which is vital for lung cancer therapy.
Collapse
Affiliation(s)
- Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Guanqing Jiang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, People's Liberation Army (PLA), Guangzhou, China
| | - Jiaxin Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Interplay between SOX9 transcription factor and microRNAs in cancer. Int J Biol Macromol 2021; 183:681-694. [PMID: 33957202 DOI: 10.1016/j.ijbiomac.2021.04.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
SOX transcription factors are critical regulators of development, homeostasis and disease progression and their dysregulation is a common finding in various cancers. SOX9 belongs to SOXE family located on chromosome 17. MicroRNAs (miRNAs) possess the capacity of regulating different transcription factors in cancer cells by binding to 3'-UTR. Since miRNAs can affect differentiation, migration, proliferation and other physiological mechanisms, disturbances in their expression have been associated with cancer development. In this review, we evaluate the relationship between miRNAs and SOX9 in different cancers to reveal how this interaction can affect proliferation, metastasis and therapy response of cancer cells. The tumor-suppressor miRNAs can decrease the expression of SOX9 by binding to the 3'-UTR of mRNAs. Furthermore, the expression of downstream targets of SOX9, such as c-Myc, Wnt, PI3K/Akt can be affected by miRNAs. It is noteworthy that other non-coding RNAs including lncRNAs and circRNAs regulate miRNA/SOX9 expression to promote/inhibit cancer progression and malignancy. The pre-clinical findings can be applied as biomarkers for diagnosis and prognosis of cancer patients.
Collapse
|
8
|
Cui Y, Hunt A, Li Z, Birkin E, Lane J, Ruge F, Jiang WG. Lead DEAD/H box helicase biomarkers with the therapeutic potential identified by integrated bioinformatic approaches in lung cancer. Comput Struct Biotechnol J 2020; 19:261-278. [PMID: 33425256 PMCID: PMC7779375 DOI: 10.1016/j.csbj.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
DEAD/H box helicases are implicated in lung cancer but have not been systematically investigated for their clinical significance and function. In this study, we aimed to evaluate the potential of DEAD/H box helicases as prognostic biomarkers and therapeutic targets in lung cancer by integrated bioinformatic analysis of multivariate large-scale databases. Survival and differential expression analysis of these helicases enabled us to identify four biomarkers with the most significant alterations. These were found to be the negative prognostic factors DDX11, DDX55 and DDX56, and positive prognostic factor DDX5. Pathway enrichment analysis indicates that MYC signalling is negatively associated with expression levels of the DDX5 gene while positively associated with that of DDX11, DDX55 and DDX56. High expression levels of the DDX5 gene is associated with low mutation levels of TP53 and MUC16, the two most frequently mutated genes in lung cancer. In contrast, high expression levels of DDX11, DDX55 and DDX56 genes are associated with high levels of TP53 and MUC16 mutation. The tumour-infiltrated CD8 + T and B cells positively correlate with levels of DDX5 gene expression, while negatively correlate with that of the other three DEAD box helicases, respectively. Moreover, the DDX5-associated miRNA profile is distinguished from the miRNA profiles of DDX11, DDX55 and DDX56, although each DDX has a different miRNA signature. The identification of these four DDX helicases as biomarkers will be valuable for prognostic prediction and targeted therapeutic development in lung cancer.
Collapse
Affiliation(s)
- Yuxin Cui
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Adam Hunt
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Zhilei Li
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, PR China
| | - Emily Birkin
- Cardiff & Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Jane Lane
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
9
|
Yi S, Liu YP, Li XY, Yuan XY, Wang Y, Cai Y, Lei YD, Huang L, Zhang ZH. The expression profile and bioinformatics analysis of microRNAs in human bronchial epithelial cells treated by beryllium sulfate. J Appl Toxicol 2020; 41:1275-1285. [PMID: 33197057 DOI: 10.1002/jat.4116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022]
Abstract
Beryllium and its compounds are systemic toxicants that mainly accumulate in the lungs. As a regulator of gene expression, microRNAs (miRNAs) were involved in some lung diseases. This study aimed to analyze the levels of some inflammatory cytokine and the differential expressions of miRNAs in human bronchial epithelial cells (16HBE) induced by beryllium sulfate (BeSO4 ) and to further explore the biological functions of differentially expressed miRNAs. The profile of miRNAs in 16HBE cells was detected using the high-throughput sequencing between the control groups (n = 3) and the 150 μmol/L of BeSO4 -treated groups (n = 3). Bioinformatics analysis of differentially expressed miRNAs was performed, including the prediction of target genes, Gene Ontology (GO) analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify some damage-related miRNAs. We found that BeSO4 can increase the levels of some inflammatory cytokine such as interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). And BeSO4 altered miRNAs expression of 16HBE cells and a total of 179 differentially expressed miRNAs were identified, including 88 upregulated miRNAs and 91 downregulated miRNAs. The target genes predicted by 28 dysregulated miRNAs were mainly involved in the transcription regulation, signal transduction, MAPK, and VEGF signaling pathway. The qRT-PCR verification results were consistent with the sequencing results. miRNA expression profiling in 16HBE cells exposed to BeSO4 provides new insights into the toxicity mechanism of beryllium exposure.
Collapse
Affiliation(s)
- Shan Yi
- School of Public Health, University of South China, Hengyang, China
| | - Yan-Ping Liu
- School of Public Health, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of Public Health, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of Public Health, University of South China, Hengyang, China
| | - Ye Wang
- School of Public Health, University of South China, Hengyang, China
| | - Ying Cai
- School of Public Health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of Public Health, University of South China, Hengyang, China
| | - Lian Huang
- School of Public Health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
10
|
AKT2 drives cancer progression and is negatively modulated by miR-124 in human lung adenocarcinoma. Respir Res 2020; 21:227. [PMID: 32873299 PMCID: PMC7466426 DOI: 10.1186/s12931-020-01491-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AKT2 is highly expressed in many human cancers, including non-small cell lung cancer (NSCLC). Accumulating evidence has also revealed that AKT2 can promote NSCLC cell proliferation and metastasis. However, the involved mechanism remains unclear. Herein, our study mainly explored the function of AKT2 during cancer progression and uncovered a new post-transcriptional mechanism of AKT2 expression in lung adenocarcinoma (LUAD). METHODS Quantitative real-time (qRT-PCR), western blot and immunohistochemistry (IHC) assays were performed to detect the expression of AKT2 and other proteins. Cell counting kit-8 (CCK-8), colony formation and EdU assays were performed to assess cell proliferation. Flow cytometry analysis was used to detect changes in the cell cycle and apoptosis. Transwell assays were used to evaluate cell migration and invasion. Additionally, a luciferase reporter assay and western blotting were employed to assess miR-124 targeting of AKT2. Xenograft mouse model was used to observe the role of miR-124/AKT2 axis on the occurrence and development of LUAD. RESULTS We showed that AKT2 was highly expressed in NSCLC tissues and closely related to the poor prognosis of LUAD patients. Moreover, AKT2 affected LUAD cell proliferation, migration and invasion by regulating the cell cycle and promoting the occurrence of epithelial-mesenchymal transition (EMT) and the expression of matrix metalloproteinases (MMPs). In addition, we demonstrated that miR-124 overexpression downregulated AKT2 expression by binding to the 3'-untranslated region (3'- UTR) of AKT2 and thus inhibited the occurrence and development of LUAD in vivo and in vitro. CONCLUSIONS Our results suggest that miR-124 overexpression can negatively regulate AKT2 and thus inhibit the progression of LUAD. Therefore, the miR-124/AKT2 axis may serve as a potential target for novel therapies for LUAD.
Collapse
|
11
|
Romano G, Nigita G, Calore F, Saviana M, Le P, Croce CM, Acunzo M, Nana-Sinkam P. MiR-124a Regulates Extracellular Vesicle Release by Targeting GTPase Rabs in Lung Cancer. Front Oncol 2020; 10:1454. [PMID: 32974168 PMCID: PMC7469878 DOI: 10.3389/fonc.2020.01454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Increased understanding of the molecular mechanisms of the disease has led to the development of novel therapies and improving outcomes. Recently, extracellular vesicles (EVs) have emerged as vehicles for the transfer of genetic information between tumors and their microenvironment and have been implicated in lung cancer initiation, progression, and response to therapy. However, the mechanisms that drive the biogenesis and selective packaging of EVs remain poorly understood. Rab family guanosine triphosphates (GTPases) and their regulators are important membrane trafficking organizers. In this study, we investigated the role of select Rab GTPases on the regulation of EV release. We found that microRNAs target Rab GTPases to regulate EV release from lung cancer cell lines. In particular, Rab32 is a target of miR-124a, and siRNA and miRNA mediated inhibition of Rab32 leads to impaired EV secretion. The downstream implications for microRNA-based regulation of EV release are currently under investigation.
Collapse
Affiliation(s)
- Giulia Romano
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Giovanni Nigita
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, United States
| | - Michela Saviana
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Patricia Le
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, United States
| | - Mario Acunzo
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Patrick Nana-Sinkam
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Xu Y, Lai Y, Weng H, Tan L, Li Y, Chen G, Luo X, Ye Y. MiR-124 sensitizes cisplatin-induced cytotoxicity against CD133 + hepatocellular carcinoma cells by targeting SIRT1/ROS/JNK pathway. Aging (Albany NY) 2020; 11:2551-2564. [PMID: 31056532 PMCID: PMC6535064 DOI: 10.18632/aging.101876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/06/2019] [Indexed: 01/31/2023]
Abstract
Drug resistance is still a major obstacle for efficient treatment of hepatocellular carcinoma (HCC) during the cisplatin-based chemotherapy. Recent studies have demonstrated that CD133 positive population of cancer cells are responsible for multiple drug resistance. We are supposed to take strategies to sensitize CD133+ HCC cells to cisplatin treatment. In the present study, CD133+ HCC cells showed significant cisplatin-resistance compared to the CD133- HCC cells. Downregulation of miR-124 was observed in CD133+ HCC cells. However, enforced expression of miR-124 can increase the sensitivity of CD133+ HCC cells to cisplatin treatment in vitro and in vivo. Mechanically, overexpression of miR-124 was found to inhibit the expression of SIRT1 and thus promoted the generation of ROS and phosphorylation of JNK. As the results, overexpression of miR-124 expanded the apoptosis in cisplatin-treated CD133+ HCC cells. We then demonstrated that overexpression of miR-124 sensitized cisplatin-induced cytotoxicity against CD133+ hepatocellular carcinoma cells by targeting SIRT1/ROS/JNK pathway.
Collapse
Affiliation(s)
- Yunxiuxiu Xu
- Department of Hepato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yu Lai
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hanqin Weng
- Department of Hepato-Billiary Surgery, Dongguan people's Hospital, Southern Medical University, Guangdong 523905, China
| | - Lanping Tan
- Department of Thyroid Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanshan Li
- Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guangcheng Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xingxi Luo
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yibiao Ye
- Department of Hepato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
13
|
Role of MicroRNA-124 as a Prognostic Factor in Multiple Neoplasms: A Meta-Analysis. DISEASE MARKERS 2019; 2019:1654780. [PMID: 31885731 PMCID: PMC6893269 DOI: 10.1155/2019/1654780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Objective MicroRNA-124 (miR-124) was revealed to be an attractive prognostic tumour biomarker in recent studies. However, the results remain inconclusive. Hence, this meta-analysis was carried out to clarify the precise predictive value of miR-124. Materials and Methods Relevant studies were searched in PubMed, EMBASE, Web of Science, and the Cochrane Library up to October 2018. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were extracted from the selected studies. Results A total of 29 articles investigating the correlation between miR-124 expression and prognosis were initially identified. The pooled HR for overall survival (OS) of high miR-124 expression in multiple cancers was 0.55 (95%CI = 0.50–0.61). Disease-free survival (DFS)/progression-free survival (HR = 0.48, 95%CI = 0.38–0.61) revealed a protective role of increased miR-124 expression. Epigenetic hypermethylation of miR-124 mediated the silencing of its expression, which is correlated significantly with unfavourable survival (OS: HR = 2.06, 95%CI = 1.68–2.53; DFS/recurrence-free survival: HR = 2.77, 95%CI = 1.85–4.16). Conclusions Taken together, our results suggest that miR-124 plays an antioncogenic role in various tumors, such as lung cancer and colorectal cancer. If methylation of miR-124 could be prevented, progression and metastasis would be improved; thus, miR-124 may be a promising biomarker and novel therapeutic target. Further large-scale studies are needed to confirm this possible effect.
Collapse
|
14
|
Shu K, Zhang Y. Protodioscin protects PC12 cells against oxygen and glucose deprivation-induced injury through miR-124/AKT/Nrf2 pathway. Cell Stress Chaperones 2019; 24:1091-1099. [PMID: 31446555 PMCID: PMC6882996 DOI: 10.1007/s12192-019-01031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
The purpose of the current study was to demonstrate the neuroprotective effect of protodioscin (Prot) in an in vitro model of ischemia/reperfusion (I/R) and investigate the underlying molecular mechanism. After PC12 cells were exposed to oxygen and glucose deprivation (OGD) reperfusion, PI staining by flow cytometry was used to quantify the rate of apoptosis. The levels of hypoxia-inducible factor 1-alpha (HIF-1α), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were determined using commercially available kits. Intracellular reactive oxygen species (ROS) level was detected using the 20,70-dichlorodihy-drofluorescein diacetate (DCFH-DA) fluorescence assay. The expression levels of heat-shock proteins (HSP), PI3K, AKT, Nrf2, and miR-124 were tested by western blot or quantitative PCR. Prot significantly attenuated oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptotic death. Prot also reduced the oxidative stress as revealed by increasing the activities of SOD and GSH-Px, decreasing the levels of ROS and MDA. Moreover, mechanism investigations suggested that Prot prevented the decrease of HSP70, HSP32 (hemeoxygenase-1, HO-1), and PI3K protein expression, phosphorylation of AKT, and the accumulation of nuclear Nrf2. The level of miR-124 was decreased in PC12 cells, which was also effectively reversed by Prot treatment. Prot protected PC12 cells against OGD/R-induced injury through inhibiting oxidative stress and apoptosis, which could be associated with increasing HSP proteins expression via activating PI3K/AKT/Nrf2 pathway and miR-124 modulation.
Collapse
Affiliation(s)
- Kun Shu
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yuelin Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Xi'an Jiaotong University, 277, Yanta Road., Xi'an City, 710061, Shanxi Province, China.
| |
Collapse
|
15
|
Wei DM, Jiang MT, Lin P, Yang H, Dang YW, Yu Q, Liao DY, Luo DZ, Chen G. Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: A study based on differentially‑expressed circRNAs, lncRNAs, miRNAs and mRNAs. Int J Oncol 2019; 54:600-626. [PMID: 30570107 PMCID: PMC6317664 DOI: 10.3892/ijo.2018.4660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy has been reported to be involved in the occurrence and development of pancreatic cancer. However, the mechanism of autophagy‑associated non‑coding RNAs (ncRNAs) in pancreatic cancer remains largely unknown. In the present study, microarrays were used to detect differential expression of mRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs) post autophagy suppression by chloroquine diphosphate in PANC‑1 cells. Collectively, 3,966 mRNAs, 3,184 lncRNAs and 9,420 circRNAs were differentially expressed. Additionally, only two miRNAs (hsa‑miR‑663a‑5p and hsa‑miR‑154‑3p) were underexpressed in the PANC‑1 cells in the autophagy‑suppression group. Furthermore, miR‑663a‑5p with 9 circRNAs, 8 lncRNAs and 46 genes could form a prospective ceRNA network associated with autophagy in pancreatic cancer cells. In addition, another ceRNA network containing miR‑154‑3p, 5 circRNAs, 2 lncRNAs and 11 genes was also constructed. The potential multiple ceRNA, miRNA and mRNA associations may serve pivotal roles in the autophagy of pancreatic cancer cells, which lays the theoretical foundation for subsequent investigations on pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | |
Collapse
|
16
|
Li Y, Zhang T, Qin S, Wang R, Li Y, Zhou Z, Chen Y, Wu Q, Su F. Effects of UPF1 expression on EMT process by targeting E‑cadherin, N‑cadherin, Vimentin and Twist in a hepatocellular carcinoma cell line. Mol Med Rep 2019; 19:2137-2143. [PMID: 30628676 PMCID: PMC6390072 DOI: 10.3892/mmr.2019.9838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. It has been reported that HCC has a poor prognosis. In the majority of cases, once metastatic, HCC is incurable. To identify an effective treatment for HCC, it is important to understand the underlying molecular mechanisms of HCC-associated occurrence, proliferation, metastasis and carcinogenesis. In the present study, the role of Up-frameshift 1 (UPF1), a potential tumor suppressor, was investigated in the HCC cell lines. The expression levels of UPF1 in an HCC cell line were examined by reverse transcription-quantitative polymerase chain reaction. The expression levels of 19 key proteins in numerous signaling pathways were detected via protein array analysis in the presence of UPF1 overexpression. The present study further investigated the effects of UPF1 expression levels on the epithelial-mesenchymal transition (EMT) process by targeting E-cadherin, N-cadherin, Vimentin and Twist-related protein 1 (Twist). The results of the present study revealed that UPF1 was significantly downregulated in an HCC cell line. The majority of the proteins exhibited upregulated expression levels in the presence of UPF1 overexpression in the HCC cell line, Huh-7. Key proteins, including cluster of differentiation (CD)31 (platelet endothelial cell adhesion molecule-1), Vimentin, CD44, PCNA, Ki-67, N-Cadherin, Survivin, P53, Met and retinoblastoma exhibited a significant association with UPF1. Furthermore, western blotting indicated that the expression levels of N-cadherin, Vimentin and Twist were notably upregulated while UPF1 was overexpressed; however, E-cadherin was downregulated and opposing observations were reported with protein array analysis. In summary, E-cadherin expression levels were regulated by the manifold, and UPF1, a potential tumor suppressor, may promote the EMT process in Huh-7 HCC cells. The findings of the present study suggested that UPF1 expression levels affected the EMT process by targeting E-cadherin, N-cadherin, Vimentin and Twist.
Collapse
Affiliation(s)
- Yawei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Tiantian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Shukui Qin
- Department of Medical Oncology, PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Rui Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yumei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Zhengguang Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yufo Chen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
17
|
MicroRNA-124-3p inhibits collagen synthesis in atherosclerotic plaques by targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) in vascular smooth muscle cells. Atherosclerosis 2018; 277:98-107. [PMID: 30193190 DOI: 10.1016/j.atherosclerosis.2018.08.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/30/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Collagen synthesis in vascular smooth muscle cells (VSMCs) is very important in atherosclerosis, as it affects plaque stability. In this study, we aim to assess whether miR-124-3p is involved in the collagen synthesis process in VSMCs and the role it might play in atherosclerotic development. METHODS We modulated the miR-124-3p expression in the aortic root plaques of high-fat-diet fed ApoE-/- mice by lentivirus injection. To determine plaque size and the content of plaque-stability-related cells or molecules, stainings, including hematoxylin and eosin, Oil red O, Sirius Red and immunohistochemical staining, were performed. Fluorescence in situ hybridization (FISH) was used to locate miR-124-3p in atherosclerotic plaques. Western blotting and RT-qPCR were carried out to determine the level of P4HA1 as well as type I and type III collagen protein and mRNA expression. RESULTS Results showed that collagen and VSMC content of plaques was inversely correlated with miR-124-3p levels. By FISH, we identified that miR-124-3p was primarily expressed by VSMCs. We also found that protein levels of type I and type III collagen in aortas and atherosclerotic plaques were decreased by miR-124-3p. We modulated miR-124-3p level in vitro and found it could inhibit collagen expression in HASMCs. This might be caused by the downregulation of P4HA1. P4HA1 was predicted as miR-124-3p's direct target, which was verified with a dual luciferase reporter assay and RIP test. CONCLUSIONS The results presented here provide evidence that miR-124-3p inhibits VSMC collagen synthesis by directly targeting P4HA1, which might decrease atherosclerotic plaque stability.
Collapse
|
18
|
Moazeni-Roodi A, Hashemi M. Association between miR-124-1 rs531564 polymorphism and risk of cancer: An updated meta-analysis of case-control studies. EXCLI JOURNAL 2018; 17:608-619. [PMID: 30108465 PMCID: PMC6088220 DOI: 10.17179/excli2018-1419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022]
Abstract
Many studies examined the association between miR-124-1 rs531564 polymorphism and the risk of some human cancers, but the findings remain controversial. This update meta-analysis aimed to validate the association between rs531564 polymorphism of miR-124-1 and cancer risk. Eligible studies including 6,502 cancer cases and 7,213 controls were documented by searching Web of Science, PubMed, Scopus, and Google scholar databases. Pooled odds ratios (ORs) with 95 % confidence intervals (CIs) were estimated to quantitatively evaluate the association between rs531564 variant and cancer risk. The results indicated that rs531564 variant significantly decreased the risk of cancer in homozygous codominant (OR=0.54, 95 % CI=0.43-0.69, p<0.00001, GG vs CC), dominant (OR=0.84, 95 % CI=0.72-0.99, p=0.03, CG+GG vs CC), recessive (OR=0.65, 95 % CI=0.54-0.78, p<0.00001, GG vs CG+CC), and allele (OR=0.84, 95 % CI=0.73-0.96, p=0.008, G vs C) genetic model. Stratified analysis by cancer type revealed that rs531564 variant was associated with gastric cancer, cervical cancer, esophageal squamous cell carcinoma and colorectal cancer risk. In summary, the findings of this meta-analysis support an association between miR-124-1 rs531564 polymorphism and cancer risk. Larger and well-designed studies are required to estimate this association in detail.
Collapse
Affiliation(s)
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
19
|
Inflammatory-Related P62 Triggers Malignant Transformation of Mesenchymal Stem Cells through the Cascade of CUDR-CTCF-IGFII-RAS Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:367-381. [PMID: 29858072 PMCID: PMC5992448 DOI: 10.1016/j.omtn.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/24/2018] [Accepted: 03/04/2018] [Indexed: 12/27/2022]
Abstract
Inflammatory and autophagy-related gene P62 is highly expressed in most human tumor tissues. Herein, we demonstrate that P62 promotes human mesenchymal stem cells' malignant transformation via the cascade of P62-tumor necrosis factor alpha (TNF-α)-CUDR-CTCF-insulin growth factor II (IGFII)-H-Ras signaling. Mechanistically, we reveal P62 enhances IGFII transcriptional activity through forming IGFII promoter-enhancer chromatin loop and increasing METTL3 occupancy on IGFII 3' UTR and enhances H-Ras overexpression by harboring inflammation-related factors, e.g., TNFR1, CLYD, EGR1, NFκB, TLR4, and PPARγ. Furthermore, the P62 cooperates with TNF-α to promote malignant transformation of mesenchymal stem cells. These findings, for the first time, provide insight into the positive role that P62 plays in malignant transformation of mesenchymal stem cells and reveal a novel link between P62 and the inflammation factors in mesenchymal stem cells.
Collapse
|