1
|
Patange S, Maragh S. Fire Burn and Cauldron Bubble: What Is in Your Genome Editing Brew? Biochemistry 2023; 62:3500-3511. [PMID: 36306429 PMCID: PMC10734218 DOI: 10.1021/acs.biochem.2c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Indexed: 11/28/2022]
Abstract
Genome editing is a rapidly evolving biotechnology with the potential to transform many sectors of industry such as agriculture, biomanufacturing, and medicine. This technology is enabled by an ever-growing portfolio of biomolecular reagents that span the central dogma, from DNA to RNA to protein. In this paper, we draw from our unique perspective as the National Metrology Institute of the United States to bring attention to the importance of understanding and reporting genome editing formulations accurately and promoting concepts to verify successful delivery into cells. Achieving the correct understanding may be hindered by the way units, quantities, and stoichiometries are reported in the field. We highlight the variability in how editing formulations are reported in the literature and examine how a reference molecule could be used to verify the delivery of a reagent into cells. We provide recommendations on how more accurate reporting of editing formulations and more careful verification of the steps in an editing experiment can help set baseline expectations of reagent performance, toward the aim of enabling genome editing studies to be more reproducible. We conclude with a future outlook on technologies that can further our control and enable our understanding of genome editing outcomes at the single-cell level.
Collapse
Affiliation(s)
- Simona Patange
- Biosystems and Biomaterials
Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Samantha Maragh
- Biosystems and Biomaterials
Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
3
|
Tamura R, Kamiyama D. CRISPR-Cas9-Mediated Knock-In Approach to Insert the GFP 11 Tag into the Genome of a Human Cell Line. Methods Mol Biol 2023; 2564:185-201. [PMID: 36107342 PMCID: PMC11552087 DOI: 10.1007/978-1-0716-2667-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The protocol in this chapter describes a method to label endogenous proteins using a self-complementing split green fluorescent protein (split GFP1-10/11) in a human cell line. By directly delivering Cas9/sgRNA ribonucleoprotein (RNP) complexes through nucleofection, this protocol allows for the efficient integration of GFP11 into a specific genomic locus via CRISPR-Cas9-mediated homology-directed repair (HDR). We use the GFP11 sequence in the form of a single-stranded DNA (ssDNA) as an HDR template. Because the ssDNA with less than 200 nucleotides used here is commercially synthesized, this approach remains cloning-free. The integration of GFP11 is performed in cells stably expressing GFP1-10, thereby inducing fluorescence reconstitution. Subsequently, such a reconstituted signal is analyzed using fluorescence flow cytometry for estimating knock-in efficiencies and enriching the GFP-positive cell population. Finally, the enriched cells can be visualized using fluorescence microscopy.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
5
|
Heath NG, O’Geen H, Halmai NB, Corn JE, Segal DJ. Imaging Unique DNA Sequences in Individual Cells Using a CRISPR-Cas9-Based, Split Luciferase Biosensor. Front Genome Ed 2022; 4:867390. [PMID: 35403097 PMCID: PMC8990833 DOI: 10.3389/fgeed.2022.867390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
An extensive arsenal of biosensing tools has been developed based on the clustered regularly interspaced short palindromic repeat (CRISPR) platform, including those that detect specific DNA sequences both in vitro and in live cells. To date, DNA imaging approaches have traditionally used full fluorescent reporter-based fusion probes. Such “always-on” probes differentiate poorly between bound and unbound probe and are unable to sensitively detect unique copies of a target sequence in individual cells. Herein we describe a DNA biosensor that provides a sensitive readout for such low-copy DNA sequences through proximity-mediated reassembly of two independently optimized fragments of NanoLuc luciferase (NLuc), a small, bright luminescent reporter. Applying this “turn-on” probe in live cells, we demonstrate an application not easily achieved by fluorescent reporter-based probes, detection of individual endogenous genomic loci using standard epifluorescence microscopy. This approach could enable detection of gene edits during ex vivo editing procedures and should be a useful platform for many other live cell DNA biosensing applications.
Collapse
Affiliation(s)
- Nicholas G. Heath
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Integrative Genetics and Genomics, University of California, Davis, Davis, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Henriette O’Geen
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Nicole B. Halmai
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Jacob E. Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Biology, ETH, Zürich, Switzerland
| | - David J. Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Integrative Genetics and Genomics, University of California, Davis, Davis, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: David J. Segal,
| |
Collapse
|
6
|
Tyumentseva MA, Tyumentsev AI, Akimkin VG. Protocol for assessment of the efficiency of CRISPR/Cas RNP delivery to different types of target cells. PLoS One 2021; 16:e0259812. [PMID: 34752487 PMCID: PMC8577758 DOI: 10.1371/journal.pone.0259812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Delivery of CRISPR/Cas RNPs to target cells still remains the biggest bottleneck to genome editing. Many efforts are made to develop efficient CRISPR/Cas RNP delivery methods that will not affect viability of target cell dramatically. Popular current methods and protocols of CRISPR/Cas RNP delivery include lipofection and electroporation, transduction by osmocytosis and reversible permeabilization and erythrocyte-based methods. METHODS In this study we will assess the efficiency and optimize current CRISPR/Cas RNP delivery protocols to target cells. We will conduct our work using molecular cloning, protein expression and purification, cell culture, flow cytometry (immunocytochemistry) and cellular imaging techniques. DISCUSSION This will be the first extensive comparative study of popular current methods and protocols of CRISPR/Cas RNP delivery to human cell lines and primary cells. All protocols will be optimized and characterized using the following criteria i) protein delivery and genome editing efficacy; ii) viability of target cells after delivery (post-transduction recovery); iii) scalability of delivery process; iv) cost-effectiveness of the delivery process and v) intellectual property rights. Some methods will be considered 'research-use only', others will be recommended for scaling and application in the development of cell-based therapies.
Collapse
|
7
|
Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021; 11:614-648. [PMID: 33391496 PMCID: PMC7738854 DOI: 10.7150/thno.47007] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 genome editing has gained rapidly increasing attentions in recent years, however, the translation of this biotechnology into therapy has been hindered by efficient delivery of CRISPR/Cas9 materials into target cells. Direct delivery of CRISPR/Cas9 system as a ribonucleoprotein (RNP) complex consisting of Cas9 protein and single guide RNA (sgRNA) has emerged as a powerful and widespread method for genome editing due to its advantages of transient genome editing and reduced off-target effects. In this review, we summarized the current Cas9 RNP delivery systems including physical approaches and synthetic carriers. The mechanisms and beneficial roles of these strategies in intracellular Cas9 RNP delivery were reviewed. Examples in the development of stimuli-responsive and targeted carriers for RNP delivery are highlighted. Finally, the challenges of current Cas9 RNP delivery systems and perspectives in rational design of next generation materials for this promising field will be discussed.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiangtao Shen
- The Second People's Hospital of Taizhou affiliated to Yangzhou University, Taizhou, 225500, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Cruz LJ, van Dijk T, Vepris O, Li TMWY, Schomann T, Baldazzi F, Kurita R, Nakamura Y, Grosveld F, Philipsen S, Eich C. PLGA-Nanoparticles for Intracellular Delivery of the CRISPR-Complex to Elevate Fetal Globin Expression in Erythroid Cells. Biomaterials 2020; 268:120580. [PMID: 33321292 DOI: 10.1016/j.biomaterials.2020.120580] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Ex vivo gene editing of CD34+ hematopoietic stem and progenitor cells (HSPCs) offers great opportunities to develop new treatments for a number of malignant and non-malignant diseases. Efficient gene-editing in HSPCs has been achieved using electroporation and/or viral transduction to deliver the CRISPR-complex, but cellular toxicity is a drawback of currently used methods. Nanoparticle (NP)-based gene-editing strategies can further enhance the gene-editing potential of HSPCs and provide a delivery system for in vivo application. Here, we developed CRISPR/Cas9-PLGA-NPs efficiently encapsulating Cas9 protein, single gRNA and a fluorescent probe. The initial 'burst' of Cas9 and gRNA release was followed by a sustained release pattern. CRISPR/Cas9-PLGA-NPs were taken up and processed by human HSPCs, without inducing cellular cytotoxicity. Upon escape from the lysosomal compartment, CRISPR/Cas9-PLGA-NPs-mediated gene editing of the γ-globin gene locus resulted in elevated expression of fetal hemoglobin (HbF) in primary erythroid cells. The development of CRISPR/Cas9-PLGA-NPs provides an attractive tool for the delivery of the CRISPR components to target HSPCs, and could provide the basis for in vivo treatment of hemoglobinopathies and other genetic diseases.
Collapse
Affiliation(s)
- Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Thamar van Dijk
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, the Netherlands
| | - Olena Vepris
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Tracy M W Y Li
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands; Percuros B.V, Leiden, the Netherlands
| | - Fabio Baldazzi
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Ryo Kurita
- Central Blood Institute, Research and Development Department, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Cell Engineering Division, National Research and Development Corporation, Tsukuba, Japan
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, the Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, the Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
9
|
Precise and error-prone CRISPR-directed gene editing activity in human CD34+ cells varies widely among patient samples. Gene Ther 2020; 28:105-113. [PMID: 32873924 PMCID: PMC7902267 DOI: 10.1038/s41434-020-00192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated CRISPR-associated nucleases (Cas) are among the most promising technologies for the treatment of hemoglobinopathies including Sickle Cell Disease (SCD). We are only beginning to identify the molecular variables that influence the specificity and the efficiency of CRISPR- directed gene editing, including the position of the cleavage site and the inherent variability among patient samples selected for CRISPR-directed gene editing. Here, we target the beta globin gene in human CD34+ cells to assess the impact of these two variables and find that both contribute to the global diversity of genetic outcomes. Our study demonstrates a unique genetic profile of indels that is generated based on where along the beta globin gene attempts are made to correct the SCD single base mutation. Interestingly, even within the same patient sample, the location of where along the beta globin gene the DNA is cut, HDR activity varies widely. Our data establish a framework upon which realistic protocols inform strategies for gene editing for SCD overcoming the practical hurdles that often impede clinical success.
Collapse
|
10
|
Mangeot PE, Risson V, Fusil F, Marnef A, Laurent E, Blin J, Mournetas V, Massouridès E, Sohier TJM, Corbin A, Aubé F, Teixeira M, Pinset C, Schaeffer L, Legube G, Cosset FL, Verhoeyen E, Ohlmann T, Ricci EP. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat Commun 2019; 10:45. [PMID: 30604748 PMCID: PMC6318322 DOI: 10.1038/s41467-018-07845-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades are also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for "all-in-one" homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.
Collapse
Affiliation(s)
- Philippe E Mangeot
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Valérie Risson
- Institut NeuroMyoGène, CNRS 5310, INSERM U121, Université Lyon 1, Faculté de Médecine Lyon Est, Lyon, 69008, France
| | - Floriane Fusil
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, 118 Route de Narbonne, 31062, Toulouse, France
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Juliana Blin
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Virginie Mournetas
- I-STEM/CECS, Inserm, UMR861 28 rue Henri Desbruères, 91100, Corbeil Essonnes, France
| | | | - Thibault J M Sohier
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Antoine Corbin
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fabien Aubé
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210, Lyon, 69007, France
| | - Marie Teixeira
- SFR BioSciences, Plateau de Biologie Expérimentale de la Souris (AniRA-PBES), Ecole Normale Supérieure de Lyon, Université Lyon1, CNRS UMS3444 INSERM US8, 69007, Lyon, France
| | - Christian Pinset
- I-STEM/CECS, Inserm, UMR861 28 rue Henri Desbruères, 91100, Corbeil Essonnes, France
| | - Laurent Schaeffer
- Institut NeuroMyoGène, CNRS 5310, INSERM U121, Université Lyon 1, Faculté de Médecine Lyon Est, Lyon, 69008, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, 118 Route de Narbonne, 31062, Toulouse, France
| | - François-Loïc Cosset
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Els Verhoeyen
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- CIRI, Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Emiliano P Ricci
- CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210, Lyon, 69007, France.
| |
Collapse
|