1
|
Liu D, Mao Y, Tang Z, Liu D, Cao X. Exploring the protective mechanism of Lentinus edodes mycelium polysaccharide against AGEs-induced HUVECs damage: Insights from whole transcriptome sequencing and cell biology techniques. Int J Biol Macromol 2025:145214. [PMID: 40513741 DOI: 10.1016/j.ijbiomac.2025.145214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/29/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in laboratory could effectively inhibit the generation of advanced glycosylation end products (AGEs), but the inhibitory mechanism of LMP on AGEs-induced human umbilical vein endothelial cells (HUVECs) damage is still unclear. Whole transcriptome sequencing technology combined with cell-level verification were used to reveal the inhibition mechanism of LMP on AGEs-induced HUVECs damage in the research. Whole transcriptome sequencing data demonstrated the differential expressions of multiple lncRNAs, CircRNAs, miRNAs, and mRNAs among different groups. The results obtained from cell level qPCR verification were in agreement with those derived from sequencing, the ceRNA network was constructed, the inhibitory mechanism of LMP was found to be related to the ZNF609/MSTRG.335979-miR-483-3p-RAPGEF1 regulatory axis and its downstream p38 MAPK-related cellular inflammation and apoptosis pathways. In this study, the LMP inhibition on AGEs-treated HUVECs was obtained for the first time through whole transcriptome sequence. The research provides a novel perspective for investigating the mechanism of AGEs-induced diabetes angiopathy (DA), and also provides an experimental basis for the development and utilization of Lentinus edodes resources.
Collapse
Affiliation(s)
- Dan Liu
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China; College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yitong Mao
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Zhipeng Tang
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Dawo Liu
- Department of Obstetrics & Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, China.
| | - Xiangyu Cao
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
2
|
Wang Q, Chen M, Zhang J, Feng C, Li H, Guo J, Sun Z, Feng Y. Whole Transcriptome Sequencing Analyzes the Interactions of mRNAs and ncRNAs in Cholangiocarcinoma. Cancer Med 2025; 14:e70906. [PMID: 40304434 PMCID: PMC12042214 DOI: 10.1002/cam4.70906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Cholangiocarcinoma is a common hepatic malignant tumor with an unfavorable prognosis. Therefore, we systematically evaluated the transcriptomic landscape of CHOL by whole transcriptome sequencing technology in this study and constructed a ceRNA network associated with CHOL. METHODS First, whole transcriptome sequencing between the tumor tissues of CHOL and adjacent cancer tissues adjacent to the tumors from six patients with CHOL was performed. Then, a differential expression analysis between the CHOL group and adjacent cancer group was performed to screen significant markers. Subsequently, target gene predictive analysis and co-expression analysis were implemented to construct a ceRNA and protein-protein interaction network in CHOL, and enrichment analysis was performed to investigate gene-related molecular pathways. RESULTS The results showed that there were 761 differentially expressed mRNAs, 47 differentially expressed miRNAs, 61 differentially expressed lncRNAs, and 1481 differentially expressed circRNAs in the adjacent cancer group compared with the CHOL group, respectively. Enrichment analysis of differentially expressed mRNAs showed that the PI3K-Akt, calcium, and MAPK signaling pathways were significantly enriched. Hsa-miR-196b-5p can be a sponge to adsorb lncRNA H19 and 101 downregulated mRNAs, constructing an lncRNA-miRNA-mRNA network. Hsa_circ_0025636, hsa_circ_0057335, hsa-miR-96-5p, and hsa-miR-196b-5p were involved in the circRNA-miRNA-mRNA network. Moreover, five core genes were obtained through PPI interaction analysis, which also played an important role in the ceRNA network. CONCLUSIONS This study systematically presents a transcriptomic landscape of CHOL and identifies lncRNA/circRNA-associated ceRNA networks that could provide insights for future treatment and prognosis of CHOL, laying a certain foundation for the study of molecular mechanisms and providing novel ideas for its prognosis and treatment.
Collapse
Affiliation(s)
- Qinlei Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Menshou Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Jingru Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Chuan Feng
- Department of MedicineQingdao UniversityQingdaoShandongChina
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Jingyu Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Zhaowei Sun
- Department of Hepatobiliary and Pancreatic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Yujie Feng
- Department of Hepatobiliary and Pancreatic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| |
Collapse
|
3
|
Qiu Y, Gan M, Wang X, Liao T, Tang Y, Chen Q, Lei Y, Chen L, Wang J, Zhao Y, Niu L, Wang Y, Zhang S, Shen L, Zhu L. Whole transcriptome sequencing analysis reveals the effect of circZFYVE9/miR-378a-3p/IMMT axis on mitochondrial function in adipocytes. Int J Biol Macromol 2024; 281:136916. [PMID: 39490878 DOI: 10.1016/j.ijbiomac.2024.136916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Recent research highlights the complex regulation of lipid accumulation and mitochondrial function in adipocytes via non-coding RNAs like microRNAs and circular non-coding RNAs. Circular non-coding RNAs act as endogenous regulators, impacting lipid metabolism and mitochondrial function by interacting with miRNAs. Sequencing white and brown adipose tissues in mice revealed significant variations in 1936 mRNAs, 127 miRNAs, and 171 circRNAs. Analyses showed these RNAs' involvement in vital processes like mitochondrial biogenesis, oxidative phosphorylation, and the citric acid cycle, crucial for lipid metabolism. Focus on top differentially regulated miRNAs led to the construction of a regulatory network involving circRNAs, miRNAs, and mRNAs, illuminating the role of endogenous RNAs in lipid metabolism and mitochondrial function. The circZFYVE9/miR-378a-3p/IMMT axis was identified as influential in adipogenic differentiation of 3T3-L1 preadipocytes by regulating mitochondrial function. This study expands the understanding of non-coding RNAs in adipose tissue, particularly their connection to mitochondrial function and metabolism.
Collapse
Affiliation(s)
- Yanhao Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianci Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanling Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Wang H, Liu Q, Liu Y, Dong W, Wan J, Jiao X, Wu Y, Li T, Miao H. Role of the circRNA_34414/miR-6960a-5p/SIRT3 axis in postoperative delirium via CA1 Vglut1+ neurons in older mice. CNS Neurosci Ther 2024; 30:e14902. [PMID: 39138637 PMCID: PMC11322041 DOI: 10.1111/cns.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
AIMS Postoperative delirium (POD) is a common neurological complication in elderly patients after anesthesia/surgery. The main purpose of this study is to explore the effect of circRNA-targeted miRNA regulating SIRT3 on mitochondrial function through ceRNA mechanism under the surgical model of tibial fracture and to further explore the potential mechanism of postoperative delirium mediated by circRNA, so as to provide new ideas for clinical diagnosis and prevention of POD. METHODS The surgical model of tibial fracture under sevoflurane anesthesia caused acute delirium-like behavior in elderly mice. We observed that the decrease of SIRT3 and mitochondrial dysfunction was related to POD, and miRNA and circRNA (circRNA_34414) related to SIRT3 were further studied. Through luciferase and RAP, we observed that circRNA_34414, as a miRNA sponge, was involved in the regulation of SIRT3 expression. RESULTS Postoperative delirium in elderly mice showed decreased expression of hippocampal circRNA_34414, increased expression of miR-6960-5p, decreased expression of SIRT3, and impaired mitochondrial membrane potential. Overexpression of circRNA_34414, or knockdown of miR-6960-5p, or overexpression of SIRT3 in hippocampal CA1 glutamatergic neurons significantly upregulated hippocampal SIRT3 expression, increased mitochondrial membrane potential levels, and significantly ameliorated postoperative delirium in aged mice; CircRNA_34414 ameliorates postoperative delirium in mice, possibly by targeting miR-6960-5p to upregulate SIRT3. CONCLUSIONS CircRNA_34414 is involved in the improvement of postoperative delirium induced by anesthesia/surgery by upregulating SIRT3 via sponging miR-6960-5p.
Collapse
Affiliation(s)
- Hai‐Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Department of AnesthesiologyQidong People's Hospital/Qidong Liver Cancer Institute/Affiliated Qidong Hospital of Nantong UniversityNantongChina
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yan‐Ping Liu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Xin‐Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yu‐Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Tian‐Zuo Li
- Department of Anesthesiology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Hui‐Hui Miao
- Department of Anesthesiology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Zhou Z, Chen C, Han B, Wang Y, Liu Y, Liu Q, Xu X, Yin Y, Sun B. Circular RNA in cholangiocarcinoma: A systematic review and bibliometric analysis. Pathol Res Pract 2023; 249:154755. [PMID: 37651837 DOI: 10.1016/j.prp.2023.154755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a common primary liver malignancy with a poor prognosis. Many studies have demonstrated the involvement of circular RNAs (circRNAs) in tumorigenesis and progression. METHODS Four online databases (PubMed, Web of Science, Embase, and Scopus) were searched on May 04, 2023, for original papers regarding CCA and circRNAs. Bibliometric analysis of included studies was performed on R Studio and GraphPad Prism. RESULTS Thirty studies were included in the systematic review and bibliometric analysis. The systematic review showed that circRNAs were involved in CCA proliferation, invasion, metastasis, chemotherapy resistance, and other biological processes and were related to the prognosis of patients and many clinicopathological features. Exosomal circRNAs provide a new idea for the early diagnosis of CCA. The bibliometric analysis showed a significant upward trend in the number of studies on CCA and circRNAs. The 30 included papers had 201 authors and were published in 22 English journals. The first paper was published in 2018, and the second paper was the most cited (148 citations). CONCLUSION This systematic review and bibliometric analysis demonstrates that circRNAs in CCA have not been studied enough. CircRNAs play an important role in the occurrence and progression of CCA. They may become new targets for the diagnosis, treatment, and prognostic monitoring of CCA.
Collapse
Affiliation(s)
- Zheyu Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing 210008, China
| | - Chaobo Chen
- Department of General Surgery, Xishan People's Hospital of Wuxi City, Wuxi 214105, China; Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Bing Han
- Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yinyu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yang Liu
- Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qiaoyu Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoliang Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yin Yin
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Beicheng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing 210008, China; Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
6
|
Wang K, Su X, Song Q, Chen Z, Chen H, Han Y, Zhu C, Shen H. The circ_006573/miR-376b-3p Axis Advances Spinal Cord Functional Recovery after Injury by Modulating Vascular Regeneration. Mol Neurobiol 2023; 60:4983-4999. [PMID: 37209265 DOI: 10.1007/s12035-023-03357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/18/2023] [Indexed: 05/22/2023]
Abstract
Abnormal expression of non-coding RNAs after spinal cord injury (SCI) is associated with pathophysiological outcomes. We bioinformatically predicted a circRNA-miRNA-mRNA axis in SCI. A total of 4690 mRNAs, 17 miRNAs, and 3928 circRNAs were differentially expressed, with co-expressed RNAs predicted to regulate pathways related to wound healing. Among the most highly differentially expressed circRNAs, circ_006573, but not circ_016395, weakened the viability and migration of rat aortic endothelial cells, and its biological effects were rescued with miR-376b-3p mimics. Furthermore, circ_006573 overexpression induced changes in Cebpb, IL-18, and Plscr1 expression that were reversed by miR-376b-3p. In a rat model, circ_006573 shRNA administration improved the pathological manifestations of SCI and ameliorated motor function. Moreover, the expression of CD31, CD34, and VEGF-A in spinal cord tissues was significantly elevated after circ_006573 shRNA treatment, indicating that circ_006573 may be involved in vascular regeneration and functional recovery after SCI. Thus, the circ_006573-miR-376b-3p axis offers a foundation for understanding pathophysiological mechanisms and predicting strategies for treating SCI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjin Su
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxin Song
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingchao Han
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongxing Shen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Fuchs S, Danßmann C, Klironomos F, Winkler A, Fallmann J, Kruetzfeldt LM, Szymansky A, Naderi J, Bernhart SH, Grunewald L, Helmsauer K, Rodriguez-Fos E, Kirchner M, Mertins P, Astrahantseff K, Suenkel C, Toedling J, Meggetto F, Remke M, Stadler PF, Hundsdoerfer P, Deubzer HE, Künkele A, Lang P, Fuchs J, Henssen AG, Eggert A, Rajewsky N, Hertwig F, Schulte JH. Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN. Nat Commun 2023; 14:3936. [PMID: 37402719 DOI: 10.1038/s41467-023-38747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/12/2023] [Indexed: 07/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Steffen Fuchs
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France.
| | - Clara Danßmann
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Louisa-Marie Kruetzfeldt
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Julian Naderi
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Konstantin Helmsauer
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Christin Suenkel
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
- Lonza Drug Product Services, 4057, Basel, Switzerland
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Fabienne Meggetto
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
- The German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology, Helios Klinikum Berlin-Buch, 13125, Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Lang
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Nikolaus Rajewsky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
8
|
Deng C, Wei C, Hou Y, Xiong M, Ni D, Huang Y, Wang M, Yang X, Chen K, Chen Z. Identification of Key Differentially Expressed mRNAs, miRNAs, lncRNAs, and circRNAs for Xp11 Translocation Renal Cell Carcinoma (RCC) Based on Whole-Transcriptome Sequencing. Genes (Basel) 2023; 14:genes14030723. [PMID: 36980995 PMCID: PMC10047933 DOI: 10.3390/genes14030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
We carried out whole transcriptome sequencing (WTS) on the tumor and the matching adjacent normal tissues from five patients having Xp11 translocation renal cell carcinoma (RCC). This was performed in terms of obtaining more understanding of the genomic panorama and molecular basis of this cancer. To examine gene-regulatory networks in XP11 translocation RCC, variance expression analysis was carried out, followed by functional enrichment analysis. Gene Expression Omnibus (GEO) of Xp11 translocation RCC data was used to validate the results. As per inclusion criteria, a total of 1886 differentially expressed mRNAs (DEmRNAs), 56 differentially expressed miRNAs (DEmiRNAs), 223 differentially expressed lncRNAs (DElncRNAs), and 1764 differentially expressed circRNAs (DEcircRNAs) were found. KEGG enrichment study of DEmiRNA, DElncRNA, and DEcircRNA target genes identified the function of protein processing in the endoplasmic reticulum, lysosome, and neutrophil-mediated immunity. Three subnetwork modules integrated from the PPI network also revealed the genes involved in protein processing in the endoplasmic reticulum, lysosome, and protein degradation processes, which may regulate the Xp11 translocation RCC process. The ceRNA complex network was created by Cytoscape, which included three upregulated circRNAs, five upregulated lncRNAs, 24 upregulated mRNAs, and two downregulated miRNAs (hsa-let-7d-5p and hsa-miR-433-3p). The genes as a prominent component of the complex ceRNA network may be key factors in the pathogenesis of Xp11 translocation RCC. Our findings clarified the genomic and transcriptional complexity of Xp11 translocation RCC while also pointing to possible new targets for Xp11 translocation RCC characterization.
Collapse
Affiliation(s)
- Changqi Deng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: (K.C.); (Z.C.)
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: (K.C.); (Z.C.)
| |
Collapse
|
9
|
Circular RNAs in cholangiocarcinoma. Cancer Lett 2023; 553:215980. [PMID: 36336149 DOI: 10.1016/j.canlet.2022.215980] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Cholangiocarcinoma (CCA) is the most common primary biliary malignancy with an adverse prognosis. Although its incidence is relatively low, early diagnosis is difficult due to the lack of specific symptoms. Current treatment options for CCA are limited, resulting in a low curative rate. Circular RNAs (circRNAs) have become a new research hotspot in recent years, and they are frequently dysregulated in CCA and may become therapeutic targets and prognostic biomarkers of CCA. Accumulating evidence has demonstrated that numerous dysregulated circRNAs are vital players in the etiopathogenesis of CCA. Aberrant expression of specific circRNAs was correlated with unfavourable clinical characteristics in CCA. Many studies have found that circRNAs are involved in the progression and development of CCA through various mechanisms, including competitive inhibition of miRNAs via the competing endogenous RNA (ceRNA) network, interaction with RNA-binding proteins (RBPs), activation of cancer-related signalling pathways, and regulation of proteins and peptides. Additionally, some circRNAs are involved in the inflammatory microenvironment of CCA and play a crucial role in chemotherapy drug resistance. Thus, they are essential for the early diagnosis and prediction of CCA, and more attention should be given to the roles and mechanisms of circRNAs in CCA. In this review, we summarize the abnormal expression of circRNAs in CCA and the specific inflammatory microenvironment involved, as well as the roles and mechanisms of circRNAs in the occurrence and development of CCA. We also review the latest knowle dge on circRNAs in CCA and discuss the challenges associated with the introduction of circRNAs into clinical practice and their potential clinical value.
Collapse
|
10
|
Clancy JW, D'Souza-Schorey C. Tumor-Derived Extracellular Vesicles: Multifunctional Entities in the Tumor Microenvironment. ANNUAL REVIEW OF PATHOLOGY 2023; 18:205-229. [PMID: 36202098 PMCID: PMC10410237 DOI: 10.1146/annurev-pathmechdis-031521-022116] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor cells release extracellular vesicles (EVs) that can function as mediators of intercellular communication in the tumor microenvironment. EVs contain a host of bioactive cargo, including membrane, cytosolic, and nuclear proteins, in addition to noncoding RNAs, other RNA types, and double-stranded DNA fragments. These shed vesicles may deposit paracrine information and can also be taken up by stromal cells, causing the recipient cells to undergo phenotypic changes that profoundly impact diverse facets of cancer progression. For example, this unique form of cellular cross talk helps condition the premetastatic niche, facilitates evasion of the immune response, and promotes invasive and metastatic activity. These findings, coupled with those demonstrating that the number and content of EVs produced by tumors can vary depending on their tumor of origin, disease stage, or response to therapy, have raised the exciting possibility that EVs can be used for risk stratification, diagnostic, and even prognostic purposes. We summarize recent developments and the current knowledge of EV cargoes, their impact on disease progression, and implementation of EV-based liquid biopsies as tumor biomarkers.
Collapse
Affiliation(s)
- James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; ,
| | | |
Collapse
|
11
|
Liu J, Dai Y, Lu Y, Liu X, Deng J, Lu W, Liu Q. Identification and validation of a new pyroptosis-associated lncRNA signature to predict survival outcomes, immunological responses and drug sensitivity in patients with gastric cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1856-1881. [PMID: 36899512 DOI: 10.3934/mbe.2023085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gastric cancer (GC) ranks fifth in prevalence among carcinomas worldwide. Both pyroptosis and long noncoding RNAs (lncRNAs) play crucial roles in the occurrence and development of gastric cancer. Therefore, we aimed to construct a pyroptosis-associated lncRNA model to predict the outcomes of patients with gastric cancer. METHODS Pyroptosis-associated lncRNAs were identified through co-expression analysis. Univariate and multivariate Cox regression analyses were performed using the least absolute shrinkage and selection operator (LASSO). Prognostic values were tested through principal component analysis, a predictive nomogram, functional analysis and Kaplan‒Meier analysis. Finally, immunotherapy and drug susceptibility predictions and hub lncRNA validation were performed. RESULTS Using the risk model, GC individuals were classified into two groups: low-risk and high-risk groups. The prognostic signature could distinguish the different risk groups based on principal component analysis. The area under the curve and the conformance index suggested that this risk model was capable of correctly predicting GC patient outcomes. The predicted incidences of the one-, three-, and five-year overall survivals exhibited perfect conformance. Distinct changes in immunological markers were noted between the two risk groups. Finally, greater levels of appropriate chemotherapies were required in the high-risk group. AC005332.1, AC009812.4 and AP000695.1 levels were significantly increased in gastric tumor tissue compared with normal tissue. CONCLUSIONS We created a predictive model based on 10 pyroptosis-associated lncRNAs that could accurately predict the outcomes of GC patients and provide a promising treatment option in the future.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
| | - Yuyang Dai
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
- Department of Radiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
| | - Yueyao Lu
- Department of Oncology, The Changzhou Clinical School of Nanjing Medical University, Changzhou 213017, China
- Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Xiuling Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
| | - Jianzhong Deng
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
| | - Wenbin Lu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
- Department of Oncology, The Changzhou Clinical School of Nanjing Medical University, Changzhou 213017, China
- Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Qian Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
- Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| |
Collapse
|
12
|
Identification of Prognostic Factors in Cholangiocarcinoma Based on Integrated ceRNA Network Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7102736. [PMID: 36158120 PMCID: PMC9499749 DOI: 10.1155/2022/7102736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 12/03/2022]
Abstract
This study is aimed at screening prognostic biomarkers in cholangiocarcinoma (CHOL) based on competitive endogenous RNA (ceRNA) regulatory network analysis. Microarray data for lncRNAs, mRNA, and miRNAs were downloaded from the GEO and TCGA databases. Differentially expressed RNAs (DERs) were identified in CHOL and normal liver tissue samples. WGCNA was used to identify disease-related gene modules. By integrating the information from the starBase and DIANA-LncBasev2 databases, we constructed a ceRNA network. Survival analysis was performed, and a prognostic gene-based prognostic score (PS) model was generated. The correlation between gene expression and immune cell infiltration or immune-related feature genes was analyzed using TIMER. Finally, real-time quantitative PCR (RT-qPCR) was used to verify the expression of the 10 DERs with independent prognosis. A large cohort of DERs was identified in the CHOL and control samples. The ceRNA network consisted of 6 lncRNAs, 2 miRNAs, 90 mRNAs, and 98 nodes. Ten genes were identified as prognosis-related genes, and a ten-gene signature PS model was constructed, which exhibited a good prognosis predictive ability for risk assessment of CHOL patients (AUC value = 0.975). Four genes, ELF4, AGXT, ABCG2, and LDHD, were associated with immune cell infiltration and closely correlated with immune-related feature genes (CD14, CD163, CD33, etc.) in CHOL. Additionally, the consistency rate of the RT-qPCR results and bioinformatics analysis was 80%, implying a relatively high reliability of the bioinformatic analysis results. Our findings suggest that the ten-signature gene PS model has significant prognostic predictive value for patients with CHOL. These four immune-related DERs are involved in the progression of CHOL and may be useful prognostic biomarkers for CHOLs.
Collapse
|
13
|
Yang Y, Sun Q, Guo J, Liu Z, Wang J, Yao Y, Yu P, Cao J, Zhang Y, Song X. Identification of a lncRNA AC011511.5- Mediated Competitive Endogenous RNA Network Involved in the Pathogenesis of Allergic Rhinitis. Front Genet 2022; 13:811679. [PMID: 35711945 PMCID: PMC9194448 DOI: 10.3389/fgene.2022.811679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
LncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks are thought to be involved in regulating the development of various inflammatory diseases. Up to now, the mechanism of such a network in allergic rhinitis (AR) remains unclear. In the study, we investigated the differential expression of lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) by performing a microarray analysis of peripheral blood obtained from AR patients and healthy control subjects. StarBase 2.0 was used to predict miRNAs that might interact with various DElncRNAs and DEmRNAs. We constructed a ceRNA network based on potential lncRNA-miRNA-mRNA interactions. The Cluster Profiler R package was used to perform a functional enrichment analysis of the hub-ceRNA, and Molecular Complex Detection (MCODE) was used for further identification of the hub-ceRNA network. The expression levels of genes contained in the hub-ceRNA network were validated by RT-PCR. In total, 247 DEmRNAs and 18 DelncRNAs were aberrantly expressed in the PBMCs of AR patients. A ceRNA network consisting of 3 lncRNAs, 45 miRNAs, and 75 mRNAs was constructed. A GO analysis showed that negative regulation of immune response, response to interferon-beta, and response to interferon-alpha were important terms. A KEGG pathway analysis showed that 75 mRNAs were significantly enriched in "NOD-like receptor signaling pathway" and "tryptophan metabolism". Ultimately, a hub-ceRNA network was constructed based on 1 lncRNA (AC011511.5), 5 miRNAs (hsa-miR-576-5p, hsa-miR-520c-5p, hsa-miR-519b-5p, hsa-miR-519c-5p, and hsa-miR-518d-5p), and 2 mRNAs (ZFP36L1 and SNX27). Following further verification, we found that overexpression of lncRNA AC011511.5 or inhibitor of miR-576-5p upregulated SNX27 expression. The expression of SNX27 in the lncRNA AC011511.5 overexpression & miR-576-5p inhibitor group was not different from that in the miR-576-5p inhibitor group or lncRNA AC011511.5 overexpression group, indicating that overexpression of lncRNA AC011511.5 could not further upregulate the expression of SNX27 in miR-576-5p inhibitor Jurkat cells. This network may provide new insights to search for biomarkers that can be used for the diagnosis and clinical treatment of AR.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jing Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jianwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiayu Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
14
|
Construction and analysis of a ceRNA network and patterns of immune infiltration in chronic rhinosinusitis with nasal polyps: based on data mining and experimental verification. Sci Rep 2022; 12:9735. [PMID: 35697826 PMCID: PMC9192587 DOI: 10.1038/s41598-022-13818-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have revealed the significant role of the competing endogenous RNA (ceRNA) network in human diseases. However, systematic analysis of the ceRNA mechanism in chronic rhinosinusitis with nasal polyps (CRSwNP) is limited. In this study, we constructed a competitive endogenous RNA (ceRNA) network and identified a potential regulatory axis in CRSwNP based on bioinformatics analysis and experimental verification. We obtained lncRNA, miRNA, and mRNA expression profiles from the Gene Expression Omnibus. After analysis of CRSwNP patients and the control groups, we identified 565 DE-lncRNAs, 23 DE-miRNAs, and 1799 DE-mRNAs by the DESeq2 R package or limma R package. Enrichment analysis of 1799 DE-mRNAs showed that CRSwNP was associated with inflammation and immunity. Moreover, we identified 21 lncRNAs, 8 miRNAs and 8 mRNAs to construct the lncRNA-miRNA-mRNA ceRNA network. A potential MIAT/miR-125a/IRF4 axis was determined according to the degree and positive correlation between a lncRNA and its competitive endogenous mRNAs. The GSEA results suggested that IRF4 may be involved in immune cell infiltration. The validation of another dataset confirmed that MIAT and IRF4 were differentially expressed between the CRSwNP and control groups. The area under the ROC curve (AUC) of MIAT and IRF4 was 0.944. The CIBERSORT analysis revealed that eosinophils and M2 macrophages may be involved in the CRSwNP process. MIAT was correlated with dendritic cells and M2 macrophages, and IRF4 was correlated with dendritic cells. Finally, to validate the key genes, we performed in-silico validation using another dataset and experimental validation using immunohistochemistry, immunofluorescence, and Western blot. In summary, the constructed novel MIAT/miR-125a/IRF4 axis may play a critical role in the development and progression of CRSwNP. We believe that the ceRNA network and immune cell infiltration could offer further insight into novel molecular therapeutic targets for CRSwNP.
Collapse
|
15
|
Expression Profile of mRNAs and miRNAs Related to the Oxidative-Stress Phenomenon in the Ishikawa Cell Line Treated Either Cisplatin or Salinomycin. Biomedicines 2022; 10:biomedicines10051190. [PMID: 35625926 PMCID: PMC9138494 DOI: 10.3390/biomedicines10051190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The oxidative stress phenomenon is a result of anticancer therapy. The aim of this study was the assessment of gene expression profile changes, and to determine the miRNAs regulating genes’ transcriptional activity in an Ishikawa endometrial cancer culture exposed to cisplatin or salinomycin, compared to a control culture. The molecular analysis comprised the microarray technique (mRNAs and micro RNA (miRNA), the real-time quantitative reverse transcription reaction (RTqPCR), enzyme-linked immunosorbent assay (ELISA) reactions, and Western blot. NR4A2, MAP3K8, ICAM1, IL21, CXCL8, CCL7, and SLC7A11 were statistically significantly differentiated depending not only on time, but also on the drug used in the experiment. The conducted assessment indicated that the strongest links were between NR4A2 and hsa-miR-30a-5p and has-miR-302e, MAP3K8 and hsa-miR-144-3p, CXCL8 and hsa-miR-140-3p, and SLC7A11 and hsa-miR-144-3p. The obtained results suggest that four mRNAs—NR4A2, MAP3K8, CXCL8 and SLC7A11—and four miRNAs—hsa-miR-30a-5p, hsa-miR-302e, hsa-miR-144-3p and hsa-miR-140-3—changed their expressions regardless of the chemotherapeutic agent used, which suggests the possibility of their use in monitoring the severity of oxidative stress in endometrial cancer. However, considering the results at both the mRNA and the protein level, it is most likely that the expressions of NR4A2, MAP3K8, CXCL8 and SLC7A11 are regulated by miRNA molecules as well as other epigenetic mechanisms.
Collapse
|
16
|
Liu Z, Weng S, Xu H, Wang L, Liu L, Zhang Y, Guo C, Dang Q, Xing Z, Lu T, Han X. Computational Recognition and Clinical Verification of TGF-β-Derived miRNA Signature With Potential Implications in Prognosis and Immunotherapy of Intrahepatic Cholangiocarcinoma. Front Oncol 2021; 11:757919. [PMID: 34760703 PMCID: PMC8573406 DOI: 10.3389/fonc.2021.757919] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) were recently implicated in modifying the transforming growth factor β (TGF-β) signaling in multiple cancers. However, TGF-β-derived miRNAs and their potential clinical significance remain largely unexplored in intrahepatic cholangiocarcinoma (ICC). In this study, we proposed an integrated framework that enables the identification of TGF-β-derived miRNAs in ICC (termed “TGFmitor”). A total of 36 TGF-β-derived miRNAs were identified, of which nine significantly correlated with overall survival (OS) and aberrantly expressed in ICC. According to these miRNAs, we discovered and validated a TGF-β associated miRNA signature (TAMIS) in GSE53870 (n =63) and TCGA-CHOL (n =32). To further confirm the clinical interpretation of TAMIS, another validation based on qRT-PCR results from 181 ICC tissues was performed. TAMIS was proven to be an independent risk indicator for both OS and relapse-free survival (RFS). TAMIS also displayed robust performance in three cohorts, with satisfactory AUCs and C-index. Besides, patients with low TAMIS were characterized by superior levels of CD8+ T cells infiltration and PD-L1 expression, while patients with high TAMIS possessed enhanced CMTM6 expression. Kaplan-Meier analysis suggested CMTM6 could further stratify TAMIS. The TAMIShighCMTM6high subtype had the worst prognosis and lowest levels of CD8A and PD-L1 expression relative to the other subtypes, indicating this subtype might behave as “super-cold” tumors. Notably, the improved discrimination was observed when CMTM6 was combined with TAMIS. Overall, our signature could serve as a powerful tool to help improve prognostic management and immunotherapies of ICC patients.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - ChunGuang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
17
|
Lu Y, Zhang B, Wang B, Wu D, Wang C, Gao Y, Liang W, Xi H, Wang X, Chen L. MiR-144-3p inhibits gastric cancer progression and stemness via directly targeting GLI2 involved in hedgehog pathway. J Transl Med 2021; 19:432. [PMID: 34657624 PMCID: PMC8521984 DOI: 10.1186/s12967-021-03093-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide. Due to the dismal prognosis, identifying novel therapeutic targets in GC is urgently needed. Evidences have shown that miRNAs played critical roles in the regulation of tumor initiation and progression. GLI family zinc finger 2 (GLI2) has been reported to be up-regulated and facilitate cancer progression in multiple malignancies. In this study, we focused on identifying GLI2-targeted miRNAs and clarifying the underlying mechanism in GC. Methods Paired fresh gastric cancer tissues were collected from gastrectomy patients. GLI2 and miRNAs expression were detected in gastric cancer tissues and cell lines. Bioinformatics analysis was used to predict GLI2-targeted miRNAs and dual-luciferase reporter assay was applied for target verification. CCK-8, clone formation, transwell and flow cytometry were carried out to determine the proliferation, migration, invasion and cell cycle of gastric cancer cells. Tumorsphere formation assay and flow cytometry were performed to detail the stemness of gastric cancer stem cells (GCSCs). Xenograft models in nude mice were established to investigate the role of the miR-144-3p in vivo. Results GLI2 was frequently upregulated in GC and indicated a poor survival. Meanwhile, miR-144-3p was downregulated and negatively correlated with GLI2 in GC. GLI2 was a direct target gene of miR-144-3p. MiR-144-3p overexpression inhibited proliferation, migration and invasion of gastric cancer cells. Enhanced miR-144-3p expression inhibited tumorsphere formation and CD44 expression of GCSCs. Restoration of GLI2 expression partly reversed the suppressive effect of miR-144-3p. Xenograft assay showed that miR-144-3p could inhibit the tumorigenesis of GC in vivo. Conclusions MiR-144-3p was downregulated and served as an essential tumor suppressor in GC. Mechanistically, miR-144-3p inhibited gastric cancer progression and stemness by, at least in part, regulating GLI2 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03093-w.
Collapse
Affiliation(s)
- Yixun Lu
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Benlong Zhang
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Baohua Wang
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Di Wu
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chuang Wang
- Medical School of Chinese PLA, Beijing, 100853, China.,Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunhe Gao
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenquan Liang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongqing Xi
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinxin Wang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
18
|
Wu YQ, Liu Q, Wang HB, Chen C, Huang H, Sun YM, Ma LH, Wan J, Sun YY, Miao HH. Microarray Analysis Identifies Key Differentially Expressed Circular RNAs in Aged Mice With Postoperative Cognitive Dysfunction. Front Aging Neurosci 2021; 13:716383. [PMID: 34483886 PMCID: PMC8415796 DOI: 10.3389/fnagi.2021.716383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients. Circular RNAs (circRNAs) may contribute to neurodegenerative diseases. However, the role of circRNAs in POCD in aged mice has not yet been reported. This study aimed to explore the potential circRNAs in a POCD model. First, a circRNA microarray was used to analyze the expression profiles. Differentially expressed circRNAs were validated using quantitative real-time polymerase chain reaction. A bioinformatics analysis was then used to construct a competing endogenous RNA (ceRNA) network. The database for annotation, visualization, and integrated discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of circRNA-related genes. Moreover, protein-protein interactions were analyzed to predict the circRNA-regulated hub genes using the STRING and molecular complex detection plug-in of Cytoscape. Microarray screen 124 predicted circRNAs in the POCD of aged mice. We found that the up/downregulated circRNAs were involved in multiple signaling pathways. Hub genes, including Egfr and Prkacb, were identified and may be regulated by ceRNA networks. These results suggest that circRNAs are dysexpressed in the hippocampus and may contribute to POCD in aged mice.
Collapse
Affiliation(s)
- Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hai-Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yin-Ying Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hui-Hui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Circulating Long Non-Coding RNAs as Novel Potential Biomarkers for Osteogenic Sarcoma. Cancers (Basel) 2021; 13:cancers13164214. [PMID: 34439367 PMCID: PMC8392488 DOI: 10.3390/cancers13164214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating cell-free nucleic acids recently became attractive targets to develop non-invasive diagnostic tools for cancer detection. Along with DNA and mRNAs, transcripts lacking coding potential (non-coding RNAs, ncRNAs) directly involved in the process of tumor pathogenesis have been recently detected in liquid biopsies. Interestingly, circulating ncRNAs exhibit specific expression patterns associated with cancer and suggest their role as novel biomarkers. However, the potential of circulating long ncRNAs (c-lncRNAs) to be markers in osteosarcoma (OS) is still elusive. In this study we performed a systematic review to identify thirteen c-lncRNAs whose altered expression in blood associate with OS. We herein discuss the potential impact that these c-lncRNAs may have on clinical decision-making in the management of OS. Overall, we aimed to provide novel insights that can contribute to the development of future precision medicine in oncology.
Collapse
|
20
|
Sato K, Baiocchi L, Kennedy L, Zhang W, Ekser B, Glaser S, Francis H, Alpini G. Current Advances in Basic and Translational Research of Cholangiocarcinoma. Cancers (Basel) 2021; 13:3307. [PMID: 34282753 PMCID: PMC8269372 DOI: 10.3390/cancers13133307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a type of biliary tract cancer emerging from the biliary tree. CCA is the second most common primary liver cancer after hepatocellular carcinoma and is highly aggressive resulting in poor prognosis and patient survival. Treatment options for CCA patients are limited since early diagnosis is challenging, and the efficacy of chemotherapy or radiotherapy is also limited because CCA is a heterogeneous malignancy. Basic research is important for CCA to establish novel diagnostic testing and more effective therapies. Previous studies have introduced new techniques and methodologies for animal models, in vitro models, and biomarkers. Recent experimental strategies include patient-derived xenograft, syngeneic mouse models, and CCA organoids to mimic heterogeneous CCA characteristics of each patient or three-dimensional cellular architecture in vitro. Recent studies have identified various novel CCA biomarkers, especially non-coding RNAs that were associated with poor prognosis or metastases in CCA patients. This review summarizes current advances and limitations in basic and translational studies of CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
| | - Leonardo Baiocchi
- Hepatology Unit, Department of Medicine, University of Tor Vergata, 00133 Rome, Italy;
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA;
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
An M, Zang X, Wang J, Kang J, Tan X, Fu B. Comprehensive analysis of differentially expressed long noncoding RNAs, miRNAs and mRNAs in breast cancer brain metastasis. Epigenomics 2021; 13:1113-1128. [PMID: 34148372 DOI: 10.2217/epi-2021-0152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To delineate the transcriptomic landscape and potential molecular mechanisms of breast cancer brain metastasis (BCBM). Materials & methods: Whole-transcriptome sequencing was performed to identify long noncoding RNA (lncRNA), miRNA and mRNA expression profiles associated with BCBM. Results: A total of 739 differentially expressed lncRNAs, 115 differentially expressed miRNAs and 5749 differentially expressed mRNAs were identified in 231-BR cells compared with MDA-MB-231 cells. Real-time quantitative PCR results revealed the expression levels of candidate molecules were consistent with their correspondence RNA-seq data. Protein-protein interaction analysis identified some hub genes associated with BCBM, such as PTBP1, NUP98 and HYOU1. LncRNA-miRNA-mRNA network highlighted a potential mechanism of BCBM in which lncRNA FIRRE and RP11-169F17.1 sponging hsa-miR-501-5p to regulate the expression of MMS19, PTBP1 and NUP98. Conclusion: This study provides a framework for better understanding molecular mechanisms of BCBM.
Collapse
Affiliation(s)
- Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Xiaowen Zang
- Department of Neurology First Ward, Liaocheng Veterans Hospital, Liaocheng, PR China
| | - Jimin Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Jie Kang
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, PR China
| | - Xiaoyu Tan
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Bo Fu
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, PR China
| |
Collapse
|
22
|
Su Y, Yu T, Wang Y, Huang X, Wei X. Circular RNA circDNM3OS Functions as a miR-145-5p Sponge to Accelerate Cholangiocarcinoma Growth and Glutamine Metabolism by Upregulating MORC2. Onco Targets Ther 2021; 14:1117-1129. [PMID: 33628035 PMCID: PMC7898209 DOI: 10.2147/ott.s289241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is the second most common liver malignant tumor. CircRNA hsa_circ_0005230 (circDNM3OS) has been reported to exert an oncogenic role in CCA. However, the mechanisms related to circDNM3OS in CAA progression have not been fully elucidated. Methods The expression of circDNM3OS, microRNA (miR)-145-5p, and MORC2 (MORC Family CW-Type Zinc Finger 2) mRNA were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8), colony formation, transwell, wound-healing, and flow cytometry assays. The levels of glutamine, α-KG (α-ketoglutarate), and ATP (adenosine triphosphate) were detected using commercial kits. The relationship between circDNM3OS or MORC2 and miR-145-5p was verified by dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. Protein level of MORC2 was measured by Western blotting. The role of circDNM3OS in CCA growth was verified by xenograft experiment. Results CircDNM3OS and MORC2 were upregulated while miR-145-5p was downregulated in CCA tissues and cells. Inhibition of circDNM3OS reduced xenograft tumor growth in vivo and constrained proliferation, colony formation, migration, invasion, induced apoptosis, and reduced glutamine metabolism of CCA cells in vitro. CircDNM3OS sponged miR-145-5p to elevate MORC2 expression. MiR-145-5p silencing overturned circDNM3OS knockdown-mediated influence on malignancy and glutamine metabolism of CCA cells. Also, MORC2 overexpression reversed the repressive impact of miR-145-5p mimic on malignancy and glutamine metabolism of CCA cells. Conclusion CircDNM3OS facilitates CCA growth and glutamine metabolism by regulating the miR-145-5p/MORC2 pathway, offering a novel mechanism to understand the progression of CCA.
Collapse
Affiliation(s)
- Yongfeng Su
- Department of General Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Ting Yu
- Department of General Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Yaqi Wang
- Department of General Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Xianming Huang
- Department of Pathology, Jiangxi Provincial Cancer Hospital, Jiangxi, 330029, People's Republic of China
| | - Xiaoyong Wei
- Department of Hepatobiliary Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi, 330029, People's Republic of China
| |
Collapse
|
23
|
Gao W, Guo H, Niu M, Zheng X, Zhang Y, Xue X, Bo Y, Guan X, Li Z, Guo Y, He L, Zhang Y, Li L, Cao J, Wu Y. circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway. Mol Cancer 2020; 19:166. [PMID: 33234130 PMCID: PMC7686732 DOI: 10.1186/s12943-020-01279-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is the second most common malignant tumor in head and neck. Autophagy and circular RNAs (circRNAs) play critical roles in cancer progression and chemoresistance. However, the function and mechanism of circRNA in autophagy regulation of LSCC remain unclear. Methods The autophagy-suppressive circRNA circPARD3 was identified via RNA sequencing of 107 LSCC tissues and paired adjacent normal mucosal (ANM) tissues and high-content screening. RT-PCR, Sanger sequencing, qPCR and fluorescence in situ hybridization were performed to detect circPARD3 expression and subcellular localization. Biological functions of circPARD3 were assessed by proliferation, migration, invasion, autophagic flux, and chemoresistance assays using in vitro and in vivo models. The mechanism of circPARD3 was investigated by RNA immunoprecipitation, RNA pulldown, luciferase reporter assays, western blotting and immunohistochemical staining. Results Autophagy was inhibited in LSCC, and circPARD3 was upregulated in the LSCC tissues (n = 100, p < 0.001). High circPARD3 level was associated with advanced T stages (p < 0.05), N stages (p = 0.001), clinical stages (p < 0.001), poor differentiation degree (p = 0.025), and poor prognosis (p = 0.002) of LSCC patients (n = 100). Functionally, circPARD3 inhibited autophagy and promoted LSCC cell proliferation, migration, invasion and chemoresistance. We further revealed that activation of the PRKCI-Akt-mTOR pathway through sponging miR-145-5p was the main mechanism of circPARD3 inhibited autophagy, promoting LSCC progression and chemoresistance. Conclusion Our study reveals that the novel autophagy-suppressive circPARD3 promotes LSCC progression and chemoresistance through the PRKCI-Akt-mTOR pathway, providing new insights into circRNA-mediated autophagy regulation and potential biomarker and target for LSCC treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-01279-2.
Collapse
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Li
- Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China. .,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
24
|
Limb C, Liu DSK, Veno MT, Rees E, Krell J, Bagwan IN, Giovannetti E, Pandha H, Strobel O, Rockall TA, Frampton AE. The Role of Circular RNAs in Pancreatic Ductal Adenocarcinoma and Biliary-Tract Cancers. Cancers (Basel) 2020; 12:3250. [PMID: 33158116 PMCID: PMC7694172 DOI: 10.3390/cancers12113250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/17/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) and biliary-tract cancers (BTC) often present at a late stage, and consequently patients have poor survival-outcomes. Circular RNAs (circRNAs) are non-coding RNA molecules whose role in tumourigenesis has recently been realised. They are stable, conserved and abundant, with tissue-specific expression profiles. Therefore, significant interest has arisen in their use as potential biomarkers for PDAC and BTC. High-throughput methods and more advanced bioinformatic techniques have enabled better profiling and progressed our understanding of how circRNAs may function in the competing endogenous RNA (ceRNA) network to influence the transcriptome in these cancers. Therefore, the aim of this systematic review was to describe the roles of circRNAs in PDAC and BTC, their potential as biomarkers, and their function in the wider ceRNA network in regulating microRNAs and the transcriptome. Medline, Embase, Scopus and PubMed were systematically reviewed to identify all the studies addressing circRNAs in PDAC and BTC. A total of 32 articles were included: 22 considering PDAC, 7 for Cholangiocarcinoma (CCA) and 3 for Gallbladder Cancer (GBC). There were no studies investigating Ampullary Cancer. Dysregulated circRNA expression was associated with features of malignancy in vitro, in vivo, and ex vivo. Overall, there have been very few PDAC and BTC tissues profiled for circRNA signatures. Therefore, whilst the current studies have demonstrated some of their functions in these cancers, further work is required to elucidate their potential role as cancer biomarkers in tissue, biofluids and biopsies.
Collapse
Affiliation(s)
- Christopher Limb
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK; (C.L.); (T.A.R.)
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital campus, Du Cane Road, London W12 0NN, UK; (D.S.K.L.); (E.R.); (J.K.)
| | | | - Eleanor Rees
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital campus, Du Cane Road, London W12 0NN, UK; (D.S.K.L.); (E.R.); (J.K.)
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital campus, Du Cane Road, London W12 0NN, UK; (D.S.K.L.); (E.R.); (J.K.)
| | - Izhar N. Bagwan
- Department of Histopathology, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK;
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC VUmc, 1007 MB Amsterdam, The Netherlands;
- Fondazione Pisana Per La Scienza, 56017 San Giuliano Terme PI, Italy
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford, Surrey GU2 7WG, UK;
| | - Oliver Strobel
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany;
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK; (C.L.); (T.A.R.)
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK; (C.L.); (T.A.R.)
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital campus, Du Cane Road, London W12 0NN, UK; (D.S.K.L.); (E.R.); (J.K.)
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford, Surrey GU2 7WG, UK;
- HPB Surgical Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK
| |
Collapse
|
25
|
Yang Y, Deng X, Li Q, Wang F, Miao L, Jiang Q. Emerging roles of long noncoding RNAs in cholangiocarcinoma: Advances and challenges. Cancer Commun (Lond) 2020; 40:655-680. [PMID: 33142045 PMCID: PMC7743012 DOI: 10.1002/cac2.12109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA), a cancer with a relatively low incidence rate, is usually associated with poor prognosis. Current modalities for the diagnosis and treatment of CCA patients are still far from satisfactory. In recent years, numerous long noncoding RNAs (lncRNAs) have been identified as crucial players in the development of various cancers, including CCA. Abnormally expressed lncRNAs in CCA, regulated by some upstream molecules, significantly influence the biological behavior of tumor cells and are involved in tumor development through various mechanisms, including interactions with functional proteins, participation in competing for endogenous RNA (ceRNA) regulatory networks, activation of cancer‐related signaling pathways and epigenetic modification of gene expression. Furthermore, several lncRNAs are closely associated with the clinicopathological features of CCA patients, and are promising biomarkers for diagnosing and prognostication of CCA. Some of these lncRNAs play an important role in chemotherapy drug resistance. In addition, lncRNAs have also been shown to be involved in the inflammation microenvironment of CCA and malignant outcome of CCA risk factors, such as cholestatic liver diseases. In view of the difficulty of diagnosing CCA, more attention should be paid to detectable lncRNAs in the serum or bile. This review summarizes the recent knowledge on lncRNAs in CCA and provides a new outlook on the molecular mechanisms of CCA development from the perspective of lncRNAs. Moreover, we also discussed the limitations of the current studies and differential expression of lncRNAs in different types of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Quanpeng Li
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Fei Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Qi Jiang
- Department of Gastroenterology, Dongtai People's Hospital, Yancheng, Jiangsu, 224000, P. R. China
| |
Collapse
|