1
|
Jin Z, Chen Y. Serum PM20D1 levels are associated with nutritional status and inflammatory factors in gastric cancer patients undergoing early enteral nutrition. Open Med (Wars) 2025; 20:20241111. [PMID: 39927167 PMCID: PMC11806234 DOI: 10.1515/med-2024-1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 02/11/2025] Open
Abstract
Background and objective Early nutritional support holds paramount importance for postoperative gastric cancer (GC) patients. Peptidase M20 domain containing 1 (PM20D1) is a secretory enzyme associated with glucose and lipid metabolism. However, there is a dearth of clinical studies delving into the connection between PM20D1, lipid metabolism, and inflammatory factors in GC patients who have received enteral nutrition (EN). This research aimed to investigate the serum levels of PM20D1 in GC patients following early EN and their potential associations with lipid metabolism, nutritional markers, and inflammatory factors. Methods This prospective observational study enrolled 180 GC patients between May 2020 and July 2022. On the first postoperative day, all patients received EN support, which was maintained for a duration of 5 days. Serum levels of PM20D1, interleukin (IL)-6, IL-1β, and C-reactive protein were measured on the sixth day after surgery using an enzyme-linked immunosorbent assay. Data on demographics, clinical statistics, lipid metabolism, nutritional parameters, and the prognostic nutritional index (PNI) were collected. Patients were followed up for 12 months, and both overall survival and disease-free survival were recorded. Results In the low PNI group, the serum levels of PM20D1, albumin (ALB), and blood lymphocytes (BL) showed significant reductions. Pearson analysis revealed a negative correlation between PM20D1 and IL-6 levels, whereas a positive correlation emerged between PM20D1 and ALB and BL levels. Furthermore, PM20D1 demonstrated potential as a biomarker for diagnosing poor nutritional status (PNI < 43) in GC patients and was a risk factor for poor nutritional status in GC patients. Conclusion Serum PM20D1 remarkably declined in GC patients after early EN and was associated with poor nutritional status.
Collapse
Affiliation(s)
- Zhengyu Jin
- Department of General Surgery, Suzhou Dushu Lake Hospital,
Suzhou, 215000, Jiangsu, P. R. China
| | - Yuning Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, P. R. China
| |
Collapse
|
2
|
Wu J, Chen X, Li R, Lu Q, Ba Y, Fang J, Liu Y, Li R, Liu Y, Wang Y, Chen J, Li Y, Huang Y. Identifying genetic determinants of sarcopenia-related traits: a Mendelian randomization study of druggable genes. Metabolism 2024; 160:155994. [PMID: 39117060 DOI: 10.1016/j.metabol.2024.155994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Sarcopenia, characterized by progressive muscle mass and function loss, particularly affects the elderly, and leads to severe consequences such as falls and mortality. Despite its prevalence, targeted pharmacotherapies for sarcopenia are lacking. Utilizing large-sample genome-wide association studies (GWAS) data is crucial for cost-effective drug discovery. METHODS Herein, we conducted four studies to understand the putative causal effects of genetic components on muscle mass and function. Study 1 employed a two-sample Mendelian randomization (MR) on 15,944 potential druggable genes, investigating their potential causality with muscle quantity and quality in a European population (N up to 461,089). Study 2 validated MR results through sensitivity analyses and colocalization analyses. Study 3 extended validation across other European cohorts, and study 4 conducted quantitative in vivo verification. RESULTS MR analysis revealed significant causality between four genes (BLOC-1 related complex subunit 7, BORCS7; peptidase m20 domain containing 1, PM20D1; nuclear casein kinase and cyclin dependent kinase substrate 1, NUCKS1 and ubiquinol-cytochrome c reductase complex assembly factor 1, UQCC1) and muscle mass and function (p-values range 5.98 × 10-6 to 9.26 × 10-55). To be specific, BORCS7 and UQCC1 negatively regulated muscle quantity and quality, whereas enhancing PM20D1 and NUCKS1 expression showed promise in promoting muscle mass and function. Causal relationships remained robust across sensitivity analyses, with UQCC1 exhibiting notable colocalization effects (PP·H4 93.4 % to 95.8 %). Further validation and in vivo replication verified the potential causality between these genes and muscle mass as well as function. CONCLUSIONS Our druggable genome-wide MR analysis identifies BORCS7, PM20D1, NUCKS1, and UQCC1 as causally associated with muscle mass and function. These findings offer insights into the genetic basis of sarcopenia, paving the way for these genes to become promising drug targets in mitigating this debilitating condition.
Collapse
Affiliation(s)
- Jihao Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruijun Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiying Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China; Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Yucheng Ba
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiayun Fang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yilin Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruijie Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yixuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yiling Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jinsi Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yinong Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Wang L, Liu J, Zhou L, Fu Q. Serum PM20D1 levels in patients with idiopathic pulmonary arterial hypertension and its clinical significance. BMC Cardiovasc Disord 2024; 24:207. [PMID: 38614995 PMCID: PMC11015596 DOI: 10.1186/s12872-024-03855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the serum levels of Peptidase M20 domain containing 1 (PM20D1) in idiopathic pulmonary arterial hypertension (IPAH) patients and examine its association with lipid metabolism, echocardiography, and hemodynamic parameters. METHODS This prospective observational research enrolled 103 IPAH patients from January 2018 to January 2022. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum PM20D1 levels in all patients before treatment within 24 h of admission. Demographic data, echocardiography, hemodynamic parameters and serum biomarkers were also collected. RESULTS The IPAH patients in the deceased group had significantly elevated age, right atrial (RA), mean pulmonary arterial pressure (mPAP), mean right atrial pressure (mRAP), pulmonary capillary wedge pressure (PCWP), pulmonary vascular resistance (PVR) and significantly decreased 6 min walking distance (6MWD) and tricuspid annulus peak systolic velocity (TASPV). IPAH patients showed significant decreases in serum PM20D1, low-density lipoprotein cholesterol (LDL-C), and albumin (ALB). Additionally, PM20D1 was negatively correlated with RA, NT-proBNP and positively correlated with PVR, ALB, 6MWD, and TAPSV. Moreover, PM20D1 has the potential as a biomarker for predicting IPAH patients' prognosis. Finally, logistic regression analysis indicated that PM20D1, ALB, NT-proBNP, PVR, TASPV, RA and 6MWD were identified as risk factors for mortality in IPAH patients. CONCLUSION Our findings indicated that the serum levels of PM20D1 were significantly decreased in IPAH patients with poor prognosis. Moreover, PM20D1 was identified as a risk factor associated with mortality in IPAH patients.
Collapse
Affiliation(s)
- Lin Wang
- Department of Respiratory and Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Jiaxiang Liu
- Department of Cardiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Liufang Zhou
- Department of Anesthesiology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan Province, P.R. China
| | - Qingmei Fu
- Department of Ultrasound, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No.116, Changjiang South Road, Tianyuan District, Zhuzhou City, 412000, Hunan Province, P.R. China.
| |
Collapse
|
4
|
Gao L, Zhang L, Zhang Y, Madaniyati M, Shi S, Huang L, Song X, Pang W, Chu G, Yang G. miR-10a-5p inhibits steroid hormone synthesis in porcine granulosa cells by targeting CREB1 and inhibiting cholesterol metabolism. Theriogenology 2023; 212:19-29. [PMID: 37683501 DOI: 10.1016/j.theriogenology.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
During growth, proliferation, differentiation, atresia, ovulation, and luteinization, the morphology and function of granulosa cells (GCs) change. Estrogen and progesterone are steroid hormones secreted by GCs that regulate the ovulation cycle of sows and help maintain pregnancy. miR-10a-5p is highly expressed in GCs and can inhibit GC proliferation. However, the role of miR-10a-5p in the steroid hormone synthesis of porcine GCs is unclear. In this study, miR-10a-5p agomir or antagomir was transfected into GCs. Overexpression of miR-10a-5p in GCs inhibited steroid hormone secretion and significantly downregulated steroid hormone synthesis via 3β-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1. Interference with miR-10a-5p had the opposite effect. Bodipy and Oil Red O staining showed that overexpression of miR-10a-5p significantly reduced the formation of lipid droplets. Overexpression significantly inhibited the content of total cholesterol esters in GCs. The mRNA and protein levels of 3-hydroxy-3-methylglutaryl-CoA reductase and scavenger receptor class B member 1 decreased significantly, and the opposite effects were seen by interference with miR-10a-5p. Bioinformatic analysis of potential targets identified cAMP-responsive element binding protein 1 as a potential target and dual-luciferase reporter system analysis confirmed that miR-10a-5p directly targets the 3' untranslated region. These findings suggest that miR-10a-5p inhibits the expression of 3β-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1 to inhibit the synthesis of steroid hormones in GCs. In addition, miR-10a-5p inhibits the cholesterol metabolism pathway of GCs to modulate steroid hormone synthesis.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mielie Madaniyati
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangrong Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Ho TL, Lai YL, Hsu CJ, Su CM, Tang CH. High-mobility group box-1 impedes skeletal muscle regeneration via downregulation of Pax-7 synthesis by increasing miR-342-5p expression. Aging (Albany NY) 2023; 15:12618-12632. [PMID: 37963838 PMCID: PMC10683625 DOI: 10.18632/aging.205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/15/2023] [Indexed: 11/16/2023]
Abstract
High mobility group box-1 (HMGB1) is a driver of inflammation in various muscular diseases. In a previous study, we determined that HMGB1 induced the atrophy of skeletal muscle by impairing myogenesis. Skeletal muscle regeneration after injury is dependent on pair box 7 (Pax-7)-mediated myogenic differentiation. In the current study, we determined that the HMGB1-induced downregulation of Pax-7 expression in myoblasts inhibited the regeneration of skeletal muscle. We also determined that HMGB1 inhibits Pax-7 and muscle differentiation by increasing miR-342-5p synthesis via receptors for advanced glycation end-products (RAGE), toll-like receptor (TLR) 2, TLR4, and c-Src signaling pathways. In a mouse model involving glycerol-induced muscle injury, the therapeutic inhibition of HMGB1 was shown to rescue Pax-7 expression and muscle regeneration. The HMGB1/Pax-7 axis is a promising therapeutic target to promote muscular regeneration.
Collapse
Affiliation(s)
- Trung-Loc Ho
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Liang Lai
- Department of Physical Medicine and Rehabilitation, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
6
|
Mierzejewski B, Ciemerych MA, Streminska W, Janczyk-Ilach K, Brzoska E. miRNA-126a plays important role in myoblast and endothelial cell interaction. Sci Rep 2023; 13:15046. [PMID: 37699959 PMCID: PMC10497517 DOI: 10.1038/s41598-023-41626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland.
| |
Collapse
|
7
|
Wei X, Wang J, Sun Y, Zhao T, Luo X, Lu J, Hou W, Yu X, Xue L, Yan Y, Wang H. MiR-222-3p suppresses C2C12 myoblast proliferation and differentiation via the inhibition of IRS-1/PI3K/Akt pathway. J Cell Biochem 2023; 124:1379-1390. [PMID: 37565526 DOI: 10.1002/jcb.30453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have revealed the profound impact of microRNAs on regulating skeletal muscle development and regeneration. However, the biological function and regulation mechanism of miR-222-3p in skeletal muscle remains largely unknown. In this study, miR-222-3p was found to be abundantly expressed in the impaired skeletal muscles, indicating that it might have function in the development and regeneration process of the skeletal muscle. MiR-222-3p overexpression impeded C2C12 myoblast proliferation and myogenic differentiation, whereas inhibition of miR-222-3p got the opposite results. The dual-luciferase reporter assay showed that insulin receptor substrate-1 (IRS-1) was the target gene of miR-222-3p. We next found that knockdown of IRS-1 could obviously suppress C2C12 myoblast proliferation and differentiation. Additionally, miR-222-3p-induced repression of myoblast proliferation and differentiation was verified to be associated with a decrease in phosphoinositide 3-kinase (PI3K)-Akt signaling. Overall, we demonstrated that miR-222-3p inhibited C2C12 cells myogenesis via IRS-1/PI3K/Akt pathway. Therefore, miR-222-3p may be used as a therapeutic target for alleviating muscle loss caused by inherited and nonhereditary diseases.
Collapse
Affiliation(s)
- Xiaofang Wei
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Juan Wang
- Department of Nephrology, Shanghai General Hosptial, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yaqin Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Tong Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, P.R. China
| |
Collapse
|
8
|
Zhang Z, Yu T, Li H, Du L, Jin Z, Peng X, Yan Y, Zhou J, Gu J. Long Noncoding RNA AROD Inhibits Host Antiviral Innate Immunity via the miR-324-5p-CUEDC2 Axis. Microbiol Spectr 2023; 11:e0420622. [PMID: 37036350 PMCID: PMC10269697 DOI: 10.1128/spectrum.04206-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of noncoding RNAs that are involved in multiple biological processes. Here, we report a mechanism through which the lnc-AROD-miR-324-5p-CUEDC2 axis regulates the host innate immune response, using influenza A virus (IAV) as a model. We identified that host lnc-AROD without protein-coding capability is composed of 975 nucleotides. Moreover, lnc-AROD inhibited interferon-β expression, as well as interferon-stimulated genes ISG15 and MxA. Furthermore, in vivo assays confirmed that lnc-AROD overexpression increased flu virus pathogenicity and mortality in mice. Mechanistically, lnc-AROD interacted with miR-324-5p, leading to decreased binding of miR-324-5p to CUEDC2. Collectively, our findings demonstrated that lnc-AROD is a critical regulator of the host antiviral response via the miR-324-5p-CUEDC2 axis, and lnc-AROD functions as competing endogenous RNA. Our results also provided evidence that lnc-AROD serves as an inhibitor of the antiviral immune response and may represent a potential drug target. IMPORTANCE lnc-AROD is a potential diagnostic and discriminative biomarker for different cancers. However, so far the mechanisms of lnc-AROD regulating virus replication are not well understood. In this study, we identified that lnc-AROD is downregulated during RNA virus infection. We demonstrated that lnc-AROD enhanced CUEDC2 expression, which in turn inhibited innate immunity and favored IAV replication. Our studies indicated that lnc-AROD functions as a competing endogenous RNA that binds miR-324-5p and reduces its inhibitory effect on CUEDC2. Taken together, our findings reveal that lnc-AROD plays an important role during the host antiviral immune response.
Collapse
Affiliation(s)
- Zixiao Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Tianqi Yu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Haimin Li
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Liuyang Du
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Zian Jin
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Xiran Peng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinyan Gu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| |
Collapse
|
9
|
Liu Y, Yao Y, Zhang Y, Yan C, Yang M, Wang Z, Li W, Li F, Wang W, Yang Y, Li X, Tang Z. MicroRNA-200c-5p Regulates Migration and Differentiation of Myoblasts via Targeting Adamts5 in Skeletal Muscle Regeneration and Myogenesis. Int J Mol Sci 2023; 24:ijms24054995. [PMID: 36902425 PMCID: PMC10003123 DOI: 10.3390/ijms24054995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
Skeletal muscle, as a regenerative organization, plays a vital role in physiological characteristics and homeostasis. However, the regulation mechanism of skeletal muscle regeneration is not entirely clear. miRNAs, as one of the regulatory factors, exert profound effects on regulating skeletal muscle regeneration and myogenesis. This study aimed to discover the regulatory function of important miRNA miR-200c-5p in skeletal muscle regeneration. In our study, miR-200c-5p increased at the early stage and peaked at first day during mouse skeletal muscle regeneration, which was also highly expressed in skeletal muscle of mouse tissue profile. Further, overexpression of miR-200c-5p promoted migration and inhibited differentiation of C2C12 myoblast, whereas inhibition of miR-200c-5p had the opposite effect. Bioinformatic analysis predicted that Adamts5 has potential binding sites for miR-200c-5p at 3'UTR region. Dual-luciferase and RIP assays further proved that Adamts5 is a target gene of miR-200c-5p. The expression patterns of miR-200c-5p and Adamts5 were opposite during the skeletal muscle regeneration. Moreover, miR-200c-5p can rescue the effects of Adamts5 in the C2C12 myoblast. In conclusion, miR-200c-5p might play a considerable function during skeletal muscle regeneration and myogenesis. These findings will provide a promising gene for promoting muscle health and candidate therapeutic target for skeletal muscle repair.
Collapse
Affiliation(s)
- Yanwen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yilong Yao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yongsheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chao Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Mingsha Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zishuai Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Wangzhang Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Fanqinyu Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Wei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonglin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Guangxi Engineering Centre for Resource Development of Bama Xiang Pig, Hechi 547500, China
- Correspondence: ; Tel.: +86-15302617976
| |
Collapse
|
10
|
miR-34a Regulates Lipid Droplet Deposition in 3T3-L1 and C2C12 Cells by Targeting LEF1. Cells 2022; 12:cells12010167. [PMID: 36611960 PMCID: PMC9818453 DOI: 10.3390/cells12010167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Intramuscular fat (IMF) content plays a key role in improving the flavor and palatability of pork. The IMF content varies between species, breeds, and individuals of the same breed. Hence, it is necessary to elucidate the mechanisms of IMF deposition to improve pork quality. Herein, the IMF content in the longissimus dorsi muscles of 29 Laiwu pigs was detected and divided into two groups, the H group (IMF > 12%) and the L group (IMF < 5%). RNA sequencing analysis showed 24 differentially expressed (DE) miRNA, and GO and KEGG analysis demonstrated that the DE miRNAs were significantly enriched in lipid metabolic process, lipid storage, Wnt, mTOR, and PPAR signaling pathways. miR-34a was found to be increased in the H group and 3T3-L1-derived adipocytes, while Lef1 was decreased. Luciferase reporter assays demonstrated that Lef1 was a potential target of miR-34a. Mechanism analysis revealed that miR-34a could increase lipid droplet deposition in 3T3-L1 and C2C12 cells by dampening the suppressive function of Lef1 on the transcription of adipogenic markers (i.e., Pparg, Cebpa, Fabp4, and Plin1). Moreover, overexpression of miR-34a could enhance the lipid deposition in the co-culture system of 3T3-L1 and C2C12 cells as well as in C2C12 cells cultured with conditioned medium from the progress of adipocyte differentiation. Taken together, our study indicated that miR-34a was an important positive modulator in the regulation of fatty metabolism and fat deposition by inhibiting the suppressive function of Lef1. These results might provide insight for the exploration of potential strategies to promote intramuscular fat deposition in livestock.
Collapse
|
11
|
Mullen M, Williams K, LaRocca T, Duke V, Hambright WS, Ravuri SK, Bahney CS, Ehrhart N, Huard J. Mechanical strain drives exosome production, function, and miRNA cargo in C2C12 muscle progenitor cells. J Orthop Res 2022; 41:1186-1197. [PMID: 36250617 DOI: 10.1002/jor.25467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
Mesenchymal stem cells (MSCs) have been proven to promote tissue repair. However, concerns related to their clinical application and regulatory hurdles remain. Recent data has demonstrated the proregenerative secretome of MSCs can result in similar effects in the absence of the cells themselves. Within the secretome, exosomes have emerged as a promising regenerative component. Exosomes, which are nanosized lipid vesicles secreted by cells, encapsulate micro-RNA (miRNA), RNA, and proteins that drive MSCs regenerative potential with cell specific content. As such, there is an opportunity to optimize the regenerative potential of MSCs, and thus their secreted exosome fraction, to improve clinical efficacy. Exercise is one factor that has been shown to improve muscle progenitor cell function and regenerative potential. However, the effect of exercise on MSC exosome content and function is still unclear. To address this, we used an in vitro culture system to evaluate the effects of mechanical strain, an exercise mimetic, on C2C12 (muscle progenitor cell) exosome production and proregenerative function. Our results indicate that the total exosome production is increased by mechanical strain and can be regulated with different tensile loading regimens. Furthermore, we found that exosomes from mechanically stimulated cells increase proliferation and myogenic differentiation of naïve C2C12 cells. Lastly, we show that exosomal miRNA cargo is differentially expressed following strain. Gene ontology mapping suggests positive regulation of bone morphogenetic protein signaling, regulation of actin-filament-based processes, and muscle cell apoptosis may be at least partially responsible for the proregenerative effects of exosomes from mechanically stimulated C2C12 muscle progenitor cells.
Collapse
Affiliation(s)
- Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA
| | - Katherine Williams
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Tom LaRocca
- Deptartment of Health and Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Victoria Duke
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA
| | - William S Hambright
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA
| | - Sudheer K Ravuri
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA
| | - Chelsea S Bahney
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA.,Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA.,Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital (ZSFG), University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Nicole Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA.,Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA.,Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Guo Z, Chen X, Chen D, Yu B, He J, Zheng P, Luo Y, Chen H, Yan H, Huang Z. Dihydromyricetin alters myosin heavy chain expression via AMPK signaling pathway in porcine myotubes. Food Funct 2022; 13:10525-10534. [PMID: 36149397 DOI: 10.1039/d2fo02173k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dihydromyricetin (DHM) has attracted wide concern for its excellent biological function and pharmacological activities and was reported to have a positive effect on skeletal muscle insulin resistance, slow-twitch fibers expression and AMPK signaling. Thus, we took porcine myotubes derived from skeletal muscle satellite cells as the object to investigate the effects of DHM on myosin heavy chain (MyHC) expression and its mechanism in this study. Data showed that DHM up-regulated protein expression of MyHC I and down-regulated the protein expression of MyHC IIb, accompanied by an increase of MyHC I mRNA level and a decrease of MyHC IIb mRNA level. Besides, DHM increased the activities of malate dehydrogenase and succinic dehydrogenase and reduced lactate dehydrogenase activity. AMP-activated protein kinase (AMPK) was phosphorylated and AMPKα1 mRNA level was increased by DHM. The AMPK signaling-related factors including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), sirtuin1 (Sirt1), nuclear respiratory factor 1 (NRF1), and phospho-calmodulin-dependent protein kinase kinase-β (p-CaMKKβ) were increased by DHM. Inhibition of the AMPK signaling by compound C and AMPKα1 siRNA significantly attenuated the effects of DHM on expressions of MyHC I, MyHC IIb, PGC-1α and Sirt1. As a whole, DHM increased MyHC I expression and decreased MyHC IIb expression by the AMPK signaling.
Collapse
Affiliation(s)
- Zhongyang Guo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| |
Collapse
|
13
|
Kadkhoda S, Hussen BM, Eslami S, Ghafouri-Fard S. A review on the role of miRNA-324 in various diseases. Front Genet 2022; 13:950162. [PMID: 36035118 PMCID: PMC9399342 DOI: 10.3389/fgene.2022.950162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Recent studies have revealed important functions of several microRNAs (miRNAs) in the pathogenesis of human diseases. miR-324 is an example of miRNAs with crucial impacts on the pathogenesis of a wide range of disorders. Gene ontology studies have indicated possible role of miR-324 in responses of cells to the leukemia inhibitory factor, long-term synaptic potentiation, positive regulation of cytokines production and sensory perception of sound. In human, miR-324 is encoded by MIR324 gene which resides on chromosome 17p13.1. In the current manuscript, we provide a concise review of the role of miR-324 in the pathogenesis of cancers as well as non-cancerous conditions such as aneurysmal subarachnoid hemorrhage, diabetic nephropathy, epilepsy, pulmonary/renal fibrosis, ischemic stroke and ischemia reperfusion injuries. Moreover, we summarize the role of this miRNA as a prognostic marker for malignant disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
14
|
Zhang P, Du J, Guo X, Wu S, He J, Li X, Shen L, Chen L, Li B, Zhang J, Xie Y, Niu L, Jiang D, Li X, Zhang S, Zhu L. LncMyoD Promotes Skeletal Myogenesis and Regulates Skeletal Muscle Fiber-Type Composition by Sponging miR-370-3p. Genes (Basel) 2021; 12:genes12040589. [PMID: 33920575 PMCID: PMC8072939 DOI: 10.3390/genes12040589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The development of skeletal muscle is a highly ordered and complex biological process. Increasing evidence has shown that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play a vital role in the development of myogenic processes. In this study, we observed that lncMyoD regulates myogenesis and changes myofiber-type composition. miR-370-3p, which is directly targeted by lncMyoD, promoted myoblast proliferation and inhibited myoblast differentiation in the C2C12 cell line, which serves as a valuable model for studying muscle development. In addition, the inhibition of miR-370-3p promoted fast-twitch fiber transition. Further analysis indicated that acyl-Coenzyme A dehydrogenase, short/branched chain (ACADSB) is a target gene of miR-370-3p, which is also involved in myoblast differentiation and fiber-type transition. Furthermore, our data suggested that miR-370-3p was sponged by lncMyoD. In contrast with miR-370-3p, lncMyoD promoted fast-twitch fiber transition. Taken together, our results suggest that miR-370-3p regulates myoblast differentiation and muscle fiber transition and is sponged by lncMyoD.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Bohong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
| | - Jingjun Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
| | - Yuhao Xie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (J.D.); (X.G.); (S.W.); (J.H.); (X.L.); (L.S.); (L.C.); (B.L.); (J.Z.); (Y.X.); (L.N.); (D.J.); (X.L.); (S.Z.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|