1
|
Huang S, Li B, Chen H, Rong C, Yang Z, Zhang X. Clinical Significance and Pathogenic Mechanisms of Long Non-Coding RNA TRPM2-AS in Cancers. Technol Cancer Res Treat 2025; 24:15330338251315625. [PMID: 39865876 PMCID: PMC11770775 DOI: 10.1177/15330338251315625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are known to play vital roles in human cancers. LncRNA TRPM2-AS has been found to be upregulated in various types of cancers. The elevated levels of TRPM2-AS are associated with important clinicopathological parameters such as tumor size, tumor stage, and lymph node metastasis, revealing that TRPM2-AS could be a potential target for cancer diagnosis, prognosis and treatment. Moreover, TRPM2-AS is involved in regulating the cell proliferation, migration, invasion, apoptosis, drug or radio resistance by serving as a competing endogenous RNA, directly bounding to proteins and regulating multiple signaling pathways. In this review, we comprehensively summarize the latest knowledge on the aberrant expression of TRPM2-AS, the relationship between TRPM2-AS and clinical features, and the detailed mechanisms of potential functions of TRPM2-AS in various cancer types. The current study highlights the potential of TRPM2-AS as a prognostic and therapeutic target in cancers.
Collapse
Affiliation(s)
- Shichen Huang
- School of Clinical Medicine, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China
| | - Bowen Li
- School of Clinical Medicine, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China
| | - Huanyu Chen
- School of Basic Medical Sciences, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China
| | - Cheng Rong
- School of Basic Medical Sciences, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China
| | - Zheng Yang
- School of Basic Medical Sciences, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610500, Sichuan, China
| |
Collapse
|
2
|
Wang K, Yang C, Xie J, Zhang X, Wei T, Yan Z. Long non-coding RNAs in ferroptosis and cuproptosis impact on prognosis and treatment in hepatocellular carcinoma. Clin Exp Med 2024; 24:135. [PMID: 38907744 PMCID: PMC11193701 DOI: 10.1007/s10238-024-01397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/08/2024] [Indexed: 06/24/2024]
Abstract
Ferroptosis and cuproptosis are recently discovered forms of cell death that have gained interest as potential cancer treatments, particularly for hepatocellular carcinoma. Long non-coding RNAs (lncRNAs) influence cancer cell activity by interacting with various nucleic acids and proteins. However, the role of ferroptosis and cuproptosis-related lncRNAs (FCRLs) in cancer remains underexplored. Ferroptosis and cuproptosis scores for each sample were assessed using Gene Set Variation Analysis (GSVA). Weighted correlation network analysis identified the FCRLs most relevant to our study. A risk model based on FCRLs was developed to categorize patients into high-risk and low-risk groups. We then compared overall survival (OS), tumor immune microenvironment, and clinical characteristics between these groups. The IPS score and ImmuCellAI webpage were used to predict the association between FCRL-related signatures and immunotherapy response. Finally, we validated the accuracy of FCRLs in hepatocellular carcinoma cell lines using induction agents (elesclomol and erastin). Patients in different risk subgroups showed significant differences in OS, immune cell infiltration, pathway activity, and clinical characteristics. Cellular assays revealed significant changes in the expression of AC019080.5, AC145207.5, MIR210HG, and LINC01063 in HCC cell lines following the addition of ferroptosis and cuproptosis inducers. We created a signature of four FCRLs that accurately predicted survival in HCC patients, laid the foundation for basic research related to ferroptosis and cuproptosis in hepatocellular carcinoma, and provided therapeutic recommendations for HCC patients.
Collapse
Affiliation(s)
- Kun Wang
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Chunqian Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingen Xie
- Department of General Medicine, Huai'an Cancer Hospital, Huai'an, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ting Wei
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Zhu Yan
- Emergency Medicine Department, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaian, China.
| |
Collapse
|
3
|
Jasielski P, Zawlik I, Bogaczyk A, Potocka N, Paszek S, Maźniak M, Witkoś A, Korzystka A, Kmieć A, Kluz T. The Promotive and Inhibitory Role of Long Non-Coding RNAs in Endometrial Cancer Course-A Review. Cancers (Basel) 2024; 16:2125. [PMID: 38893244 PMCID: PMC11171405 DOI: 10.3390/cancers16112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one of the most common malignant tumours in women. The development of this tumour is associated with several genetic disorders, many of which are still unknown. One type of RNA molecules currently being intensively studied in many types of cancer are long non-coding RNAs (lncRNAs). LncRNA-coding genes occupy a large fraction of the human genome. LncRNAs regulate many aspects of cell development, metabolism, and other physiological processes. Diverse types of lncRNA can function as a tumour suppressor or an oncogene that can alter migration, invasion, cell proliferation, apoptosis, and immune system response. Recent studies suggest that selected lncRNAs are important in an endometrial cancer course. Our article describes over 70 lncRNAs involved in the development of endometrial cancer, which were studied via in vivo and in vitro research. It was proved that lncRNAs could both promote and inhibit the development of endometrial cancer. In the future, lncRNAs may become an important therapeutic target. The aim of this study is to review the role of lncRNAs in the development of carcinoma of uterine body.
Collapse
Affiliation(s)
- Patryk Jasielski
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Michał Maźniak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Aleksandra Witkoś
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Adrianna Korzystka
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Aleksandra Kmieć
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
4
|
Wang B, Wang W, Zhou W, Zhao Y, Liu W. Cervical cancer-specific long non-coding RNA landscape reveals the favorable prognosis predictive performance of an ion-channel-related signature model. Cancer Med 2024; 13:e7389. [PMID: 38864475 PMCID: PMC11167610 DOI: 10.1002/cam4.7389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/30/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Ion channels play an important role in tumorigenesis and progression of cervical cancer. Multiple long non-coding RNA genes are widely involved in ion channel-related signaling regulation. However, the association and potential clinical application of lncRNAs in the prognosis of cervical cancer are still poorly explored. METHODS Thirteen patients with cervical cancer were enrolled in current study. Whole transcriptome (involving both mRNAs and lncRNAs) sequencing was performed on fresh tumor and adjacent normal tissues that were surgically resected from patients. A comprehensive cervical cancer-specific lncRNA landscape was obtained by our custom pipeline. Then, a prognostic scoring model of ion-channel-related lncRNAs was established by regression algorithms. The performance of the predictive model as well as its association with the clinical characteristics and tumor microenvironment (TME) status were further evaluated. RESULTS To comprehensively identify cervical cancer-specific lncRNAs, we sequenced 26 samples of cervical cancer patients and integrated the transcriptomic results. We built a custom analysis pipeline to improve the accuracy of lncRNA identification and functional annotation and obtained 18,482 novel lncRNAs in cervical cancer. Then, 159 ion channel- and tumorigenesis-related (ICTR-) lncRNAs were identified. Based on nine ICTR-lncRNAs, we also established a prognostic scoring model and validated its accuracy and robustness in assessing the prognosis of patients with cervical cancer. Besides, the TME was characterized, and we found that B cells, activated CD8+ T, and tertiary lymphoid structures were significantly associated with ICTR-lncRNAs signature scores. CONCLUSION We provided a thorough landscape of cervical cancer-specific lncRNAs. Through integrative analyses, we identified ion-channel-related lncRNAs and established a predictive model for assessing the prognosis of patients with cervical cancer. Meanwhile, we characterized its association with TME status. This study improved our knowledge of the prominent roles of lncRNAs in regulating ion channel in cervical cancer.
Collapse
Affiliation(s)
- Bochang Wang
- Department of Gynecological OncologyTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for CancerTianjinChina
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., Ltd.ShenzhenChina
| | - Wenhao Zhou
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., Ltd.ShenzhenChina
| | - Yujie Zhao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., Ltd.ShenzhenChina
| | - Wenxin Liu
- Department of Gynecological OncologyTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| |
Collapse
|
5
|
Rodrigues-Junior DM, Moustakas A. Unboxing the network among long non-coding RNAs and TGF-β signaling in cancer. Ups J Med Sci 2024; 129:10614. [PMID: 38571882 PMCID: PMC10989219 DOI: 10.48101/ujms.v129.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024] Open
Abstract
Deeper analysis of molecular mechanisms arising in tumor cells is an unmet need to provide new diagnostic and therapeutic strategies to prevent and treat tumors. The transforming growth factor β (TGF-β) signaling has been steadily featured in tumor biology and linked to poor prognosis of cancer patients. One pro-tumorigenic mechanism induced by TGF-β is the epithelial-to-mesenchymal transition (EMT), which can initiate cancer dissemination, enrich the tumor stem cell population, and increase chemoresistance. TGF-β signals via SMAD proteins, ubiquitin ligases, and protein kinases and modulates the expression of protein-coding and non-coding RNA genes, including those encoding larger than 500 nt transcripts, defined as long non-coding RNAs (lncRNAs). Several reports have shown lncRNAs regulating malignant phenotypes by directly affecting epigenetic processes, transcription, and post-transcriptional regulation. Thus, this review aims to update and summarize the impact of TGF-β signaling on the expression of lncRNAs and the function of such lncRNAs as regulators of TGF-β signaling, and how these networks might impact specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Yarahmadi G, Tavakoli Ataabadi S, Dashti Z, Dehghanian M. A review on expression and regulatory mechanisms of miR-337-3p in cancer. J Biomol Struct Dyn 2024:1-10. [PMID: 38500239 DOI: 10.1080/07391102.2024.2329294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
A group of diseases generally referred to as cancer represents a serious threat to people's health all over the world and has a significant negative influence on every aspect of the lives of patients. The development of cancer is influenced by several environmental, genetic, and epigenetic factors. MicroRNAs (miRNAs), a class of non-coding RNAs, can alter the expression of genes involved in cell proliferation, migration, metastasis, and apoptosis, lead to the pathogenesis of cancer. Additionally, several effectors modify miRNAs directly, including methylation, circular RNAs, and long non-coding RNAs (lncRNAs). In this review, we have explained the role of mir-337-3p in the pathways related to the pathogenesis of different cancers. Studying the functional role of miR-337-3p is necessary for detecting novel molecules as tumor markers and discovering novel targets for cancer treatment.
Collapse
Affiliation(s)
- Ghafour Yarahmadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadegh Tavakoli Ataabadi
- Department of Medical Genetics School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dashti
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Campus, Yazd, Iran
| | - Mehran Dehghanian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Zhang Y, Zhao J, Jin Q, Zhuang L. Transcriptomic Analyses and Experimental Validation Identified Immune-Related lncRNA-mRNA Pair MIR210HG- BPIFC Regulating the Progression of Hypertrophic Cardiomyopathy. Int J Mol Sci 2024; 25:2816. [PMID: 38474063 DOI: 10.3390/ijms25052816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease in which the myocardium of the heart becomes asymmetrically thickened, malformed, disordered, and loses its normal structure and function. Recent studies have demonstrated the significant involvement of inflammatory responses in HCM. However, the precise role of immune-related long non-coding RNAs (lncRNAs) in the pathogenesis of HCM remains unclear. In this study, we performed a comprehensive analysis of immune-related lncRNAs in HCM. First, transcriptomic RNA-Seq data from both HCM patients and healthy individuals (GSE180313) were reanalyzed thoroughly. Key HCM-related modules were identified using weighted gene co-expression network analysis (WGCNA). A screening for immune-related lncRNAs was conducted within the key modules using immune-related mRNA co-expression analysis. Based on lncRNA-mRNA pairs that exhibit shared regulatory microRNAs (miRNAs), we constructed a competing endogenous RNA (ceRNA) network, comprising 9 lncRNAs and 17 mRNAs that were significantly correlated. Among the 26 lncRNA-mRNA pairs, only the MIR210HG-BPIFC pair was verified by another HCM dataset (GSE130036) and the isoprenaline (ISO)-induced HCM cell model. Furthermore, knockdown of MIR210HG increased the regulatory miRNAs and decreased the mRNA expression of BPIFC correspondingly in AC16 cells. Additionally, the analysis of immune cell infiltration indicated that the MIR210HG-BPIFC pair was potentially involved in the infiltration of naïve CD4+ T cells and CD8+ T cells. Together, our findings indicate that the decreased expression of the lncRNA-mRNA pair MIR210HG-BPIFC was significantly correlated with the pathogenesis of the disease and may be involved in the immune cell infiltration in the mechanism of HCM.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jiuxiao Zhao
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao Jin
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
8
|
Yadav G, Kulshreshtha R. Pan-cancer analyses identify MIR210HG overexpression, epigenetic regulation and oncogenic role in human tumors and its interaction with the tumor microenvironment. Life Sci 2024; 339:122438. [PMID: 38242493 DOI: 10.1016/j.lfs.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Molecular entities showing dysregulation in multiple cancers may hold great biomarker or therapeutic potential. There is accumulating evidence that highlights the dysregulation of a long non-coding RNA, MIR210HG, in various cancers and its oncogenic role. However, a comprehensive analysis of MIR210HG expression pattern, molecular mechanisms, diagnostic or prognostic significance or evaluation of its interaction with tumor microenvironment across various cancers remains unstudied. METHODS A systematic pan-cancer analysis was done using multiple public databases and bioinformatic tools to study the molecular role and clinical significance of MIR210HG. We have analyzed expression patterns, genome alteration, transcriptional and epigenetic regulation, correlation with patient survival, immune infiltrates, co-expressed genes, interacting proteins, and pathways associated with MIR210HG. RESULTS The Pan cancer expression analysis of MIR210HG through various tumor datasets demonstrated that MIR210HG is significantly upregulated in most cancers and increased with the tumor stage in a subset of them. Furthermore, prognostic analysis revealed high MIR210HG expression is associated with poor overall and disease-free survival in specific cancer types. Genetic alteration analysis showed minimal alterations in the MIR210HG locus, indicating that overexpression in cancers is not due to gene amplification. The exploration of SNPs on MIR210HG suggested possible structural changes that may affect its interactions with the miRNAs. The correlation of MIR210HG with promoter methylation was found to be significantly negative in nature in majority of cancers depicting the possible epigenetic regulation of expression of MIR210HG. Additionally, MIR210HG showed negative correlations with immune cells and thus may have strong impact on the tumor microenvironment. Functional analysis indicates its association with hypoxia, angiogenesis, metastasis, and DNA damage repair processes. MIR210HG was found to interact with several proteins and potentially regulate chromatin modifications and transcriptional regulation. CONCLUSIONS A first pan-can cancer analysis of MIR210HG highlights its transcriptional and epigenetic deregulation and oncogenic role in the majority of cancers, its correlation with tumor microenvironment factors such as hypoxia and immune infiltration, and its potential as a prognostic biomarker and therapeutic target in several cancers.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
9
|
Safavi P, Moghadam KB, Haghighi Z, Ferns GA, Rahmani F. Interplay between LncRNA/miRNA and TGF-β Signaling in the Tumorigenesis of Gynecological Cancer. Curr Pharm Des 2024; 30:352-361. [PMID: 38303530 DOI: 10.2174/0113816128284380240123071409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Gynecologic cancers are among the most common malignancies with aggressive features and poor prognosis. Tumorigenesis in gynecologic cancers is a complicated process that is influenced by multiple factors, including genetic mutations that activate various oncogenic signaling pathways, including the TGF-β pathway. Aberrant activation of TGF-β signaling is correlated with tumor recurrence and metastasis. It has been shown that non-coding RNAs (ncRNAs) have crucial effects on cancer cell proliferation, migration, and metastasis. Upregulation of various ncRNAs, including long non-coding RNAs (lncRNA) and microRNAs (miRNAs), has been reported in several tumors, like cervical, ovarian, and endometrial cancers, but their cellular mechanisms remain to be investigated. Thus, recognizing the role of ncRNAs in regulating the TGF-β pathway may provide novel strategies for better treatment of cancer patients. The present study summarizes recent findings on the role of ncRNAs in regulating the TGF-β signaling involved in tumor progression and metastasis in gynecologic cancers.
Collapse
Affiliation(s)
- Pegah Safavi
- Department of Medical Radiation, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Kimia Behrouz Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Zahra Haghighi
- Department of Clinical Biochemistry, Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Luo D, Liang Y, Wang Y, Ye F, Jin Y, Li Y, Han D, Wang Z, Chen B, Zhao W, Wang L, Chen X, Jiang L, Yang Q. Long non-coding RNA MIDEAS-AS1 inhibits growth and metastasis of triple-negative breast cancer via transcriptionally activating NCALD. Breast Cancer Res 2023; 25:109. [PMID: 37770991 PMCID: PMC10540452 DOI: 10.1186/s13058-023-01709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with higher aggressiveness and poorer outcomes. Recently, long non-coding RNAs (lncRNAs) have become the crucial gene regulators in the progression of human cancers. However, the function and underlying mechanisms of lncRNAs in TNBC remains unclear. METHODS Based on public databases and bioinformatics analyses, the low expression of lncRNA MIDEAS-AS1 in breast cancer tissues was detected and further validated in a cohort of TNBC tissues. The effects of MIDEAS-AS1 on proliferation, migration, invasion were determined by in vitro and in vivo experiments. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were carried out to reveal the interaction between MIDEAS-AS1 and MATR3. Luciferase reporter assay, Chromatin immunoprecipitation (ChIP) and qRT-PCR were used to evaluate the regulatory effect of MIDEAS-AS1/MATR3 complex on NCALD. RESULTS LncRNA MIDEAS-AS1 was significantly downregulated in TNBC, which was correlated with poor overall survival (OS) and progression-free survival (PFS) in TNBC patients. MIDEAS-AS1 overexpression remarkably inhibited tumor growth and metastasis in vitro and in vivo. Mechanistically, MIDEAS-AS1 mainly located in the nucleus and interacted with the nuclear protein MATR3. Meanwhile, NCALD was selected as the downstream target, which was transcriptionally regulated by MIDEAS-AS1/MATR3 complex and further inactivated NF-κB signaling pathway. Furthermore, rescue experiment showed that the suppression of cell malignant phenotype caused by MIDEAS-AS1 overexpression could be reversed by inhibition of NCALD. CONCLUSIONS Collectively, our results demonstrate that MIDEAS-AS1 serves as a tumor-suppressor in TNBC through modulating MATR3/NCALD axis, and MIDEAS-AS1 may function as a prognostic biomarker for TNBC.
Collapse
Affiliation(s)
- Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Zekun Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Bing Chen
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjing Zhao
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Lijuan Wang
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Liyu Jiang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
Jiang Y, Liang F, Chen R, Huang Y, Xiao Z, Zeng H, Han P, Huang X. C2orf48 promotes the progression of nasopharyngeal carcinoma by regulating high mobility group AT-hook 2. Med Oncol 2023; 40:306. [PMID: 37755629 DOI: 10.1007/s12032-023-02179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Recurrence and metastasis are the major factors affecting the survival of nasopharyngeal carcinoma (NPC), and the mechanism remains unclear. Long non-coding RNA chromosome 2 open reading frame 48 (C2orf48) has been shown to influence the prognosis of many cancers. However, C2orf48's function in NPC has not been clarified. In this investigation, C2orf48 expression in NPC was measured by quantitative real-time PCR (qRT-PCR) at the cellular and tissue levels, and the association between C2orf48 expression and the prognosis of patients with NPC was examined. Additionally, the effects of C2orf48 and high mobility group AT-hook 2 (HMGA2) upon NPC proliferation, migration, and invasion were examined employing the MTT assay, colony formation assay, and transwell assay, respectively. Furthermore, the association between C2orf48 and HMGA2 in NPC was investigated. Our research demonstrated that C2orf48 was overexpressed in NPC tissues and cell lines, and compared to patients with lower levels of C2orf48 expression, those with higher levels had poorer 5-year overall survival and progression-free survival. Functionally, C2orf48 overexpression accelerated NPC cells proliferation, migration, and invasion. Besides, the tandem mass tag (TMT) quantitative proteomic analysis indicated that HMGA2 may be a target of C2orf48. Moreover, upregulation of C2orf48 could increase HMGA2 expression, and HMGA2 silencing could counteract the proliferation, migration, and invasion changes induced by C2orf48 in NPC cells. These results reveal that overexpression of C2orf48 can promote NPC cells proliferation, migration, and invasion via regulating the expression of HMGA2 and C2orf48 may be a potentially important prognostic marker for NPC.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Faya Liang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Yongsheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
- The Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiwen Xiao
- Department of Otorhinolaryngology, Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haicang Zeng
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.
| | - Xiaoming Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.
| |
Collapse
|
12
|
Alsaab HO. Pathological role of long non-coding (lnc) RNA in the regulation of Wnt/β-catenin signaling pathway during epithelial-mesenchymal transition (EMT). Pathol Res Pract 2023; 248:154566. [PMID: 37285735 DOI: 10.1016/j.prp.2023.154566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The term "epithelial-mesenchymal transition" (EMT) describes a biological process wherein epithelial cells acquire mesenchymal cell characteristics. This process enables the metastatic cells to migrate and invasion. Recent studies have established the connections between the EMT process and Wnt/β-catenin signaling in cancer. Key cellular functions such as differentiation, proliferation, migration, genetic stability, apoptosis, and stem cell renewal are modulated via Wnt/ β-catenin signaling pathway. Up-regulation of this evolutionarily conserved signal pathway leads to EMT. On the other hand, recent investigations have indicated that non-coding RNAs including microRNAs (miRNAs) and long non-coding RNA (lncRNAs) are involved in regulating of Wnt/β-catenin pathway. A high level of lncRNAs mainly has a positive correlation with EMT. However, lncRNA down-regulation has been observed in promoting EMT. It seems that depending on the specific targets, up-or down-regulation of lncRNAs can stimulate EMT by activating the Wnt/ β-catenin pathway. The evaluation of interactions between lncRNAs and the Wnt/ β-catenin signaling pathway in the regulation of EMT during metastasis can be fascinating. Herein, for the first time, the crucial role of lncRNAs-mediated regulation of the Wnt/ β-catenin signaling pathway in the EMT process of human tumors has been summarized.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
13
|
Jiang Z, Zhou J, Deng J, Li L, Wang R, Han Y, Zhou J, Tao R, Peng L, Wang D, Huang T, Yu Y, Zhou Z, Li J, Ousmane D, Wang J. Emerging roles of ferroptosis-related miRNAs in tumor metastasis. Cell Death Discov 2023; 9:193. [PMID: 37369681 DOI: 10.1038/s41420-023-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Ferroptosis, a novel mode of cell death dependent on iron and reactive oxygen species, has been extensively explored during malignant tumors metastasis. Ferroptosis can interact with multiple components of the tumor microenvironment to regulate metastasis. These interactions generally include the following aspects: (1) Epithelial-mesenchymal transformation, which can help cancer cells increase their sensitivity to ferroptosis while they have multiple mechanisms to fight against it; (2) Disorder of iron metabolism in cancer stem cells which maintains their stem characteristics; (3) Polarization of M0 macrophages to M2. (4) The paradoxical effects of iron metabolism and CD8 + T cells induced by ferroptosis (5) Regulation of angiogenesis. In addition, ferroptosis can be regulated by miRNAs through the reprogramming of various intracellular metabolism processes, including the regulation of the glutathione- glutathione peroxidase 4 pathway, glutamic acid/cystine transport, iron metabolism, lipid metabolism, and oxidative stress. Therefore, there are many potential interactions between ferroptosis-related miRNAs and tumor metastasis, including interaction with cancer cells and immune cells, regulating cytokines, and angiogenesis. This review focuses on the role of ferroptosis-related miRNA in tumor metastasis, aiming to help readers understand their relationship and provide a new perspective on the potential treatment strategies of malignant tumors.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junqi Deng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Luohong Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Ruifeng Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junyu Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Rui Tao
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yupei Yu
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Jinghe Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China.
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China.
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Guo L, Chen H, Chen J, Gao C, Fu X, Zhou S, Wu W, Li T, Lin J, Yang T, Chen Z, Cao L. PBX1-promoted SFRP4 transcription inhibits cell proliferation and epithelial-mesenchymal transition in endometrial carcinoma. Tissue Cell 2023; 82:102083. [PMID: 37054536 DOI: 10.1016/j.tice.2023.102083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE To explore the effects and mechanisms of action of the PBX1/secreted frizzled-related protein 4 (SFRP4) axis in endometrial carcinoma (EC). METHODS The expression of PBX1 and SFRP4 was analyzed using bioinformatics prediction, followed by validation in EC cells using quantitative reverse transcription-polymerase chain reaction and western blotting. After transduction with overexpression vectors for PBX1 and SFRP4, migration, proliferation, and invasion of EC cells were measured, accompanied by the detection of E-cadherin, Snail, N-cadherin, Vimentin, β-catenin, GSK-3β, and C-myc expression. The association between PBX1 and SFRP4 was validated using dual luciferase reporter gene and chromatin immunoprecipitation assays. RESULTS PBX1 and SFRP4 were downregulated in EC cells. Overexpression of PBX1 or SFRP4 resulted in weakened cell proliferation, migration, and invasion, as well as decreased expression of Snail, N-cadherin, Vimentin, β-catenin, GSK-3β, and C-myc and increased expression of E-cadherin. PBX1 bound to the SFRP4 promoter and promoted its transcription. Knockdown of SFRP4 reversed the repression of overexpressed PBX1 in the malignant phenotypes and EMT of EC cells, and PBX1 repressed Wnt/β-catenin pathway activation by upregulating SFRP4 transcription. CONCLUSION PBX1 inhibited activation of the Wnt/β-catenin pathway by promoting SFRP4 transcription, thereby suppressing malignant phenotypes in EC cells and the EMT process.
Collapse
|
15
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
Hu Z, Liu Y, Liu M, Zhang Y, Wang C. Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncol Lett 2023; 25:107. [PMID: 36817052 PMCID: PMC9932718 DOI: 10.3892/ol.2023.13693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNAs that are >200 nucleotides in length that do not have the ability to be translated into protein but are associated with numerous diseases, including cancer. The involvement of lncRNAs in the signalling of certain signalling pathways can promote tumour progression; these pathways include the transforming growth factor (TGF)-β signalling pathway, which is related to tumour development. The expression of lncRNAs in various tumour tissues is specific, and their interaction with the TGF-β signalling pathway indicates that they may serve as new tumour markers and therapeutic targets. The present review summarized the role of TGF-β pathway-associated lncRNAs in regulating tumorigenesis in different types of cancer and their effects on the TGF-β signalling pathway.
Collapse
Affiliation(s)
- Zhizhong Hu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meiqi Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Zhang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| |
Collapse
|
17
|
Cui CH, Wu Q, Zhou HM, He H, Wang Y, Tang Z, Zhang Y, Wang X, Xiao J, Zhang H. High tyrosine threonine kinase expression predicts a poor prognosis: a potential therapeutic target for endometrial carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1352. [PMID: 36660721 PMCID: PMC9843307 DOI: 10.21037/atm-22-5783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Background As the most common female malignancy, the incidence and mortality of endometrial carcinoma (EC) continue to increase worldwide. The effects of traditional standard therapy are limited; thus, novel therapeutic strategies urgently need to be developed. We sought to provide prospective targeting insights into EC therapeutics by comprehensively examining and confirming the biological molecular characterization of EC genes. Methods The molecular characterization of EC genes was integrated and analyzed using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) databases. The differentially expressed genes (DEGs) were identified, and the abnormal expression of some core cell-cycle proteins in the EC specimens was determined by examining and integrating the TCGA and GTEx data. The enriched signaling pathways involved in tumor progression were also examined. Results Immunohistochemical staining data from the Human Protein Atlas database showed that the differential expression levels of the cyclin dependent kinase inhibitor 2A (CDKN2A) and tyrosine threonine kinase (TTK) molecules, and the high messenger ribonucleic acid (RNA) levels of CDKN2A and TTK were associated with a poor prognosis in EC patients. High TTK expression was also significantly correlated with the tumor progression associated signaling pathways, such as the cell-cycle, nucleolus, and RNA processing pathways. The inhibition of TTK expression by a TTK inhibitor (NTRC0066-0) significantly suppressed the proliferation of the EC cells and synergistically increased the sensitivity of the EN and AN3-CA EC cell lines. Conclusions The findings suggest that the TTK inhibitor could be used in EC therapy. This study highlighted the potential predictive role of TTK molecules and showed that TTK molecules might serve as prospective targets for EC therapy.
Collapse
Affiliation(s)
- Chun-Hong Cui
- Basic Medical College, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai 10th People’s Hospital of Tongji University, Shanghai, China
| | - Hong-Mei Zhou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiju He
- Department of Hematology, Soochow University Affiliated No. 1 People’s Hospital, Suzhou, China
| | - Yan Wang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhendong Tang
- School of Data Science and Engineering, East China Normal University, Shanghai, China
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xue Wang
- Department of Dermatology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
19
|
Yu Z, Che N, He Y, Zhang B. ceRNA network of lncRNA MIR210HG/miR-377-3p/LMX1A in malignant proliferation of glioma cells. Genes Genomics 2022; 44:1445-1455. [PMID: 36197580 DOI: 10.1007/s13258-022-01312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glioma represents the most heterogeneous and malignant form of brain tumor with a poor prognosis. The long non-coding RNA (LncRNA)-mediated competing endogenous RNA (ceRNA) network plays a regulatory role in cancer progression. OBJECTIVES The present study was conducted to expound on the role of lncRNA MIR210 host gene (MIR210HG)-mediated ceRNA mechanism in the malignant proliferation of glioma cells and provide a novel theoretical basis for the treatment of glioma. METHODS Expression levels of lncRNA MIR210HG, microRNA (miR)-377-3p, and LIM homeobox transcription factor 1 alpha (LMX1A) in glioma tissues and cells were determined by reverse-transcription quantitative polymerase chain reaction. Then, cell proliferation was assessed by cell counting kit-8 and colony formation assays. After that, the subcellular localization of lncRNA MIR210HG was analyzed by subcellular fractionation assay and the bindings of miR-377-3p to lncRNA MIR210HG and LMX1A were analyzed by the dual-luciferase assay. Glioma cells were transfected with si-MIR210HG, miR-377-3p inhibitor, or overexpressed-LMX1A vectors to evaluate their effects on the malignant proliferation of glioma cells. RESULTS LncRNA MIR210HG was elevated in glioma tissues and cells and inhibition of lncRNA MIR210HG reduced the proliferation potential of glioma cells. LncRNA MIR210HG targeted and inhibited miR-377-3p and miR-377-3p targeted and inhibited LMX1A transcription. miR-377-3p downregulation or LMX1A overexpression reversed the inhibition of silencing lncRNA MIR210HG on glioma cell proliferation. CONCLUSION LncRNA MIR210HG was upregulated in glioma tissues and cells and inhibition of lncRNA MIR210HG suppressed glioma cell proliferation through promoting miR-377-3p and repressing LMX1A.
Collapse
Affiliation(s)
- Zhikuan Yu
- Department of Neurosurgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, 116000, Dalian, Liaoning Province, China
| | - Ningwei Che
- Department of Neurosurgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, 116000, Dalian, Liaoning Province, China
| | - Yeting He
- Department of Neurosurgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, 116000, Dalian, Liaoning Province, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, 116000, Dalian, Liaoning Province, China.
| |
Collapse
|
20
|
Xiao Y, Li X, Qiu S, Wang Y, Zhang D. LncRNA 122049 suppresses apoptosis of renal tubular epithelial cells in ischemic AKI by targeting the miR-330-5p/ELK1 axis. FASEB J 2022; 36:e22395. [PMID: 35695811 DOI: 10.1096/fj.202200064rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 01/13/2023]
Abstract
Several studies have reported that long non-coding RNAs (LncRNAs) were associated with the progression of acute kidney injury (AKI). However, the role and regulation mechanism of lncRNA122049 in ischemic AKI remains unknown. In the present study, we found that lncRNA 122049 protected against the ischemia/reperfusion (I/R) induced apoptosis in BUMPT cells. Mechanistically, the lncRNA 122049 directly sponged miR-330-5p, then increased the expression of ELK1(ETS transcription factor ELK1) to decrease renal cell apoptosis. In addition, miR-330-5p inhibitor completely reversed the pro-apoptotic effect of LncRNA 122049 siRNA on I/R-induced BUMPT cells apoptosis. Finally, overexpression of lncRNA 122049 attenuated ischemic mice AKI via targeting of the miR-330-5p/ELK1 axis. Collectively, the data demonstrated that LncRNA 122049 prevented the I/R-induced renal cell apoptosis via regulation of the miR-330-5p/ELK1 axis, which brings new insights into the pathogenesis and potential targeted treatment of ischemic AKI.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Blood Transfusion, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongjun Wang
- Department of Blood Transfusion, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
21
|
NEAT1 variant 1 weakens the genome-wide effect of miR-3122 on blocking H3K79me3 in bladder cancer. Aging (Albany NY) 2022; 14:4819-4826. [PMID: 35687898 PMCID: PMC9217706 DOI: 10.18632/aging.204113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Nuclear-enriched abundant transcript 1 (NEAT1) is one of the most well-studied long non-coding RNAs (lncRNAs) in multiple human carcinoma. Two distinct variants of NEAT1, however, are never illuminated their specific functions and mechanisms underlying carcinogenesis. In this study, biotin-labelled NEAT1 variants were generated to incubate with cell lysate of bladder cancer cell T24 cells, and fished a batch of RNA substances. Here, we observed that NEAT1.1 (the short transcript) could capture 122 microRNAs (miRNAs), 36 small nucleolar RNAs (snoRNAs), 55 lncRNAs and 38 mRNAs while NEAT1.2 (the long transcript) could obtain 142 miRNAs, 51 snoRNAs, 72 lncRNAs and 41 mRNAs. Furthermore, we also found that the distinctions of RNA binding substances between these two variants were mainly expressed in nucleus rather than cytoplasm. GO analysis indicated that these non-coding RNAs governed histone modification, nucleosome assembly and chromosome organization. We picked up miRNA miR-3122, which substantially interacted with NEAT1.1, and found that histone H3K79me3 was reduced in bladder cancer T24, BIU-87 and EJ-1 cells after miR-3122 overexpression, and rescued by NEAT1.1 additional compensation. Nonetheless, we failed to find that miR-3122 could interfere with expression of H3K79 methyltransferase disruptor of telomeric silencing-1 like (DOT1L). Interestingly, we harvested histone 3 fished by biotin-labelled miR-3122, and validated this intercrossing using RNA immunoprecipitation. Taken together, we demonstrated that NEAT1.1 weakened the effect of miR-3122 on H3K79me3 suppression in bladder cancer.
Collapse
|
22
|
Wang C, Kong F, Ma J, Miao J, Su P, Yang H, Li Q, Ma X. IGF2BP3 enhances the mRNA stability of E2F3 by interacting with LINC00958 to promote endometrial carcinoma progression. Cell Death Discov 2022; 8:279. [PMID: 35676262 PMCID: PMC9177600 DOI: 10.1038/s41420-022-01045-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in a variety of pathological processes involving cancer. However, the exact molecular mechanisms of lncRNA regulation in endometrial carcinoma (EC) remain poorly defined. The aim of this study was to illustrate the mechanism of LINC00958 in regulating the function of IGF2BP3, an RNA binding protein involved in mRNA stability, and their clinical implications in EC. First, we investigated the clinical role of IGF2BP3 in EC and demonstrated its prognostic value. Loss-of-function and gain-of-function studies showed that IGF2BP3 promoted EC cell proliferation, migration and invasion. Then, we carried out RNA immunoprecipitation sequencing (RIP-seq) analysis, RNA pulldown and immunofluorescence-RNA fluorescence in situ hybridization to identify LINC00958 that interacted with IGF2BP3 in the cytoplasm of EC cells. Rescue experiments indicated that knockdown of LINC00958 partially offset the EC cell progression mediated by IGF2BP3. After that, RNA sequencing was used to screen out the downstream genes of IGF2BP3 and LINC00958. The results revealed that IGF2BP3 upregulated E2F3 expression by interacting with LINC00958. Furthermore, RNA stability assays demonstrated that silencing LINC00958 partially rescued the IGF2BP3-mediated promoting effect on the mRNA stability of E2F3. Collectively, this study suggests that LINC00958, as an oncogene, assists IGF2BP3 in stabilizing E2F3 mRNA and ultimately promotes EC progression, providing a promising therapeutic target for patients with EC.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jianing Miao
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Peng Su
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
| |
Collapse
|
23
|
Wang X, Ye L, Li B. Development of a Genomic Instability-Derived lncRNAs-Based Risk Signature as a Predictor of Prognosis for Endometrial Cancer. J Cancer 2022; 13:2213-2225. [PMID: 35517417 PMCID: PMC9066205 DOI: 10.7150/jca.65581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
Endometrial cancer (EC) ranks fourth in the incidence rate among the most frequent gynaecological malignancies reported in the developed countries. Approximately 280,000 endometrial cancer cases are reported worldwide every year. Genomic instability and mutation are some of the favourable characteristics of human malignancies such as endometrial cancer. Studies have established that the majority of genomic mutations in human malignancies are found in the chromosomal regions that do not code for proteins. In addition, the majority of transcriptional products of these mutations are long non-coding RNAs (lncRNAs). In this study, 78 lncRNA genes were found on the basis of their mutation counts. Then, these lncRNAs were investigated to determine their relationship with genomic instability through hierarchical cluster analysis, mutation analysis, and differential analysis of driving genes responsible for genomic instability. The prognostic value of these lncRNAs was also assessed in patients with EC, and a risk factor score formula composed of 15 lncRNAs was constructed. We then identified this formula as genome instability-derived lncRNA-based gene signature (GILncSig), which stratified patients into high- and low-risk groups with significantly different outcome. And GILncSig was further validated in multiple independent patient cohorts as a prognostic factor of other clinicopathological features, such as stage, grade, overall survival rate. We observed that a high-risk score is often associated with an unfavourable prognosis in patients with EC.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lei Ye
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bilan Li
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
24
|
Zhu J, Huang Q, Liu S, Peng X, Xue J, Feng T, Huang W, Chen Z, Lai K, Ji Y, Wang M, Yuan R. Construction of a Novel LncRNA Signature Related to Genomic Instability to Predict the Prognosis and Immune Activity of Patients With Hepatocellular Carcinoma. Front Immunol 2022; 13:856186. [PMID: 35479067 PMCID: PMC9037030 DOI: 10.3389/fimmu.2022.856186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Background Genomic instability (GI) plays a crucial role in the development of various cancers including hepatocellular carcinoma. Hence, it is meaningful for us to use long non-coding RNAs related to genomic instability to construct a prognostic signature for patients with HCC. Methods Combining the lncRNA expression profiles and somatic mutation profiles in The Cancer Genome Atlas database, we identified GI-related lncRNAs (GILncRNAs) and obtained the prognosis-related GILncRNAs through univariate regression analysis. These lncRNAs obtained risk coefficients through multivariate regression analysis for constructing GI-associated lncRNA signature (GILncSig). ROC curves were used to evaluate signature performance. The International Cancer Genomics Consortium (ICGC) cohort, and in vitro experiments were used for signature external validation. Immunotherapy efficacy, tumor microenvironments, the half-maximal inhibitory concentration (IC50), and immune infiltration were compared between the high- and low-risk groups with TIDE, ESTIMATE, pRRophetic, and ssGSEA program. Results Five GILncRNAs were used to construct a GILncSig. It was confirmed that the GILncSig has good prognostic evaluation performance for patients with HCC by drawing a time-dependent ROC curve. Patients were divided into high- and low-risk groups according to the GILncSig risk score. The prognosis of the low-risk group was significantly better than that of the high-risk group. Independent prognostic analysis showed that the GILncSig could independently predict the prognosis of patients with HCC. In addition, the GILncSig was correlated with the mutation rate of the HCC genome, indicating that it has the potential to measure the degree of genome instability. In GILncSig, LUCAT1 with the highest risk factor was further validated as a risk factor for HCC in vitro. The ESTIMATE analysis showed a significant difference in stromal scores and ESTIMATE scores between the two groups. Multiple immune checkpoints had higher expression levels in the high-risk group. The ssGSEA results showed higher levels of tumor-antagonizing immune cells in the low-risk group compared with the high-risk group. Finally, the GILncSig score was associated with chemotherapeutic drug sensitivity and immunotherapy efficacy of patients with HCC. Conclusion Our research indicates that GILncSig can be used for prognostic evaluation of patients with HCC and provide new insights for clinical decision-making and potential therapeutic strategies.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Huang
- Department of General Practice, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ju Xue
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tangbin Feng
- Department of Surgery, II, Duchang County Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Wulang Huang
- Department of General Surgery, Affiliated Hospital of Jinggangshan University, Jian, China
| | - Zhimeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kuiyuan Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yufei Ji
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Miaomiao Wang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Shi W, Tang Y, Lu J, Zhuang Y, Wang J. MIR210HG promotes breast cancer progression by IGF2BP1 mediated m6A modification. Cell Biosci 2022; 12:38. [PMID: 35346372 PMCID: PMC8962467 DOI: 10.1186/s13578-022-00772-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/07/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women around the world, and the molecular mechanisms of breast cancer progression and metastasis are still unclear. This study aims to clarify the function and N6,2'-O-dimethyladenosine (m6A) regulation of lncRNA MIR210HG in breast cancer. RESULTS High expression of MIR210HG was confirmed in breast cancer. MIR210HG promoted breast cancer progression, which was mediated by its encoded miR-210. MIR210HG was regulated by IGF2BP1 mediated m6A modification. IGF2BP1 was confirmed highly expressed in breast cancer and induced both MIR210HG and miR-210 expression, which contributed to breast cancer progression. In addition, MIR210HG transcript was stabilized by IGF2BP1 and co-factor ELAVL1. IGF2BP1 was a direct target of MYCN via E-box binding motif. MYCN induced IGF2BP1 expression in breast cancer cells. MIR210HG and miR-210 expressions were also increased by MYCN. CONCLUSIONS In breast cancer, MIR210HG functions as an oncogenic lncRNA, which is also mediated by its encoded miR-210. In addition, both IGF2BP1 and ELAVL1 enhance the stability of MIR210HG, which contributes to the progression of breast cancer. Interestingly, IGF2BP1 is directly activated by MYCN, which explains the oncogenic role of MYCN. These findings clarify the m6A regulation related molecular mechanism of breast cancer progression. The MYCN/IGF2BP1/MIR210HG axis may serve as an alternative molecular mechanism of breast cancer progression.
Collapse
Affiliation(s)
- Wenjing Shi
- Department of Breast Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Embryo Original Diseases, Hengshan Rd. 910, Shanghai, 200030, China.,Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Yongzhe Tang
- Department of Breast Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Embryo Original Diseases, Hengshan Rd. 910, Shanghai, 200030, China.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Jing Lu
- Department of Breast Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Embryo Original Diseases, Hengshan Rd. 910, Shanghai, 200030, China.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Yihui Zhuang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Breast Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Embryo Original Diseases, Hengshan Rd. 910, Shanghai, 200030, China. .,Shanghai Municipal Key Clinical Speciality, Shanghai, China.
| |
Collapse
|
26
|
Liu ZK, Wu KF, Zhang RY, Kong LM, Shang RZ, Lv JJ, Li C, Lu M, Yong YL, Zhang C, Zheng NS, Li YH, Chen ZN, Bian H, Wei D. Pyroptosis-Related LncRNA Signature Predicts Prognosis and Is Associated With Immune Infiltration in Hepatocellular Carcinoma. Front Oncol 2022; 12:794034. [PMID: 35311105 PMCID: PMC8927701 DOI: 10.3389/fonc.2022.794034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is involved in various cancers, including hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) were recently verified as crucial mediators in the regulation of pyroptosis. However, the role of pyroptosis-related lncRNAs in HCC and their associations with prognosis have not been reported. In this study, we constructed a prognostic signature based on pyroptosis-related differentially expressed lncRNAs in HCC. A co-expression network of pyroptosis-related mRNAs-lncRNAs was constructed based on HCC data from The Cancer Genome Atlas. Cox regression analyses were performed to construct a pyroptosis-related lncRNA signature (PRlncSig) in a training cohort, which was subsequently validated in a testing cohort and a combination of the two cohorts. Kaplan-Meier analyses revealed that patients in the high-risk group had poorer survival times. Receiver operating characteristic curve and principal component analyses further verified the accuracy of the PRlncSig model. Besides, the external cohort validation confirmed the robustness of PRlncSig. Furthermore, a nomogram based on the PRlncSig score and clinical characteristics was established and shown to have robust prediction ability. In addition, gene set enrichment analysis revealed that the RNA degradation, the cell cycle, the WNT signaling pathway, and numerous immune processes were significantly enriched in the high-risk group compared to the low-risk group. Moreover, the immune cell subpopulations, the expression of immune checkpoint genes, and response to chemotherapy and immunotherapy differed significantly between the high- and low-risk groups. Finally, the expression levels of the five lncRNAs in the signature were validated by quantitative real-time PCR. In summary, our PRlncSig model shows significant predictive value with respect to prognosis of HCC patients and could provide clinical guidance for individualized immunotherapy.
Collapse
Affiliation(s)
- Ze-Kun Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ke-Fei Wu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ren-Yu Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ling-Min Kong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Run-Ze Shang
- Department of General Surgery, Affiliated Haixia Hospital of Huaqiao University (The 910 Hospital of the Joint Logistics Team), Quanzhou, China
| | - Jian-Jun Lv
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Can Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Meng Lu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yu-Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Cong Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Nai-Shan Zheng
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yan-Hong Li
- Department of Gynaecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
28
|
Divisato G, Piscitelli S, Elia M, Cascone E, Parisi S. MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules 2021; 11:biom11081074. [PMID: 34439740 PMCID: PMC8393604 DOI: 10.3390/biom11081074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial-mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.
Collapse
|