1
|
Wang C, Jiang Y, Yang Z, Xu H, Khalid AK, Iftakhar T, Peng Y, Lu L, Zhang L, Bermudez L, Guo A, Chen Y. Host factor RBMX2 promotes epithelial cell apoptosis by downregulating APAF-1's Retention Intron after Mycobacterium bovis infection. Front Immunol 2024; 15:1431207. [PMID: 39308873 PMCID: PMC11412827 DOI: 10.3389/fimmu.2024.1431207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The Mycobacterium tuberculosis variant bovis (M. bovis) is a highly pathogenic environmental microorganism that causes bovine tuberculosis (bTB), a significant zoonotic disease. Currently, "test and culling" is the primary measure for controlling bTB, but it has been proven to be inadequate in animals due to their high susceptibility to the pathogen. Selective breeding for increased host resistance to bTB to reduce its prevalence is feasible. In this study, we found a vital host-dependent factor, RBMX2, that can potentially promote M. bovis infection. By knocking RBMX2 out, we investigated its function during M. bovis infection. Through transcriptome sequencing and alternative splicing transcriptome sequencing, we concluded that after M. bovis infection, embryo bovine lung (EBL) cells were significantly enriched in RNA splicing associated with apoptosis compared with wild-type EBL cells. Through protein/molecular docking, molecular dynamics simulations, and real-time quantitative PCR, we demonstrated that RBMX2 promotes the apoptosis of epithelial cells by upregulating and binding to apoptotic peptidase activating factor 1 (APAF-1), resulting in the alternative splicing of APAF-1 as a retention intron. To our knowledge, this is the first report of M. bovis affecting host epithelial cell apoptosis by hijacking RBMX2 to promote the intron splicing of downstream APAF-1. These findings may represent a significant contribution to the development of novel TB prevention and control strategies.
Collapse
Affiliation(s)
- Chao Wang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yanzhu Jiang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haojun Xu
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abdul Karim Khalid
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tahira Iftakhar
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongchong Peng
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lu Lu
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Zhang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Luiz Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. Engineering principles for rationally design therapeutic strategies against hepatocellular carcinoma. Front Mol Biosci 2024; 11:1404319. [PMID: 38939509 PMCID: PMC11208463 DOI: 10.3389/fmolb.2024.1404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
The search for new therapeutic strategies against cancer has favored the emergence of rationally designed treatments. These treatments have focused on attacking cell plasticity mechanisms to block the transformation of epithelial cells into cancerous cells. The aim of these approaches was to control particularly lethal cancers such as hepatocellular carcinoma. However, they have not been able to control the progression of cancer for unknown reasons. Facing this scenario, emerging areas such as systems biology propose using engineering principles to design and optimize cancer treatments. Beyond the possibilities that this approach might offer, it is necessary to know whether its implementation at a clinical level is viable or not. Therefore, in this paper, we will review the engineering principles that could be applied to rationally design strategies against hepatocellular carcinoma, and discuss whether the necessary elements exist to implement them. In particular, we will emphasize whether these engineering principles could be applied to fight hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, Mexico
| | | | - Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Xia S, Lu AC, Tobin V, Luo K, Moeller L, Shon DJ, Du R, Linton JM, Sui M, Horns F, Elowitz MB. Synthetic protein circuits for programmable control of mammalian cell death. Cell 2024; 187:2785-2800.e16. [PMID: 38657604 PMCID: PMC11127782 DOI: 10.1016/j.cell.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes. Here, we introduce naturally inspired "synpoptosis" circuits that proteolytically regulate engineered executioner proteins and mammalian cell death. These circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. Furthermore, synpoptosis circuits can be transmitted intercellularly, offering a foundation for engineering synthetic killer cells that induce desired death programs in target cells without self-destruction. Together, these results lay the groundwork for programmable control of mammalian cell death.
Collapse
Affiliation(s)
- Shiyu Xia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew C Lu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; UCLA-Caltech Medical Scientist Training Program, University of California, Los Angeles, CA 90095, USA
| | - Victoria Tobin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; UC Davis-Caltech Veterinary Scientist Training Program, University of California, Davis, CA 95616, USA
| | - Kaiwen Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lukas Moeller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - D Judy Shon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rongrong Du
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Margaret Sui
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Felix Horns
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Yang T, Nakanishi H, Itaka K. Development of a new caged intein for multi-input conditional translation of synthetic mRNA. Sci Rep 2024; 14:9988. [PMID: 38693346 PMCID: PMC11063168 DOI: 10.1038/s41598-024-60809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
mRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicators. To achieve such multi-input translational regulation of mRNA medicines, in this study, we engineered Rhodothermus marinus (Rma) DnaB intein to develop "caged Rma DnaB intein" that enables conditional reconstitution of full-length translational regulator protein from split fragments. By combining the caged Rma DnaB intein, the split translational regulator protein, and target protein-binding domains, we succeeded in target protein-dependent translational repression of mRNA in human cells. In addition, the caged Rma intein showed orthogonality to the previously reported Nostoc punctiforme (Npu) DnaE-based caged intein. Finally, by combining these two orthogonal caged inteins, we developed an mRNA-based logic gate that regulates translation based on the expression of multiple intracellular proteins. This study provides important information to develop safer mRNA medicines.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Shao J, Li S, Qiu X, Jiang J, Zhang L, Wang P, Si Y, Wu Y, He M, Xiong Q, Zhao L, Li Y, Fan Y, Viviani M, Fu Y, Wu C, Gao T, Zhu L, Fussenegger M, Wang H, Xie M. Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells. Cell Res 2024; 34:31-46. [PMID: 38172533 PMCID: PMC10770082 DOI: 10.1038/s41422-023-00896-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/27/2023] [Indexed: 01/05/2024] Open
Abstract
Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo.
Collapse
Affiliation(s)
- Jiawei Shao
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Shichao Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Jian Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lihang Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou, Zhejiang, China
| | - Pengli Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yaqing Si
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yuhang Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Minghui He
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Qiqi Xiong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Liuqi Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilin Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxuan Fan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chaohua Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ting Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Hui Wang
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou, Zhejiang, China.
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Free K, Nakanishi H, Itaka K. Development of Synthetic mRNAs Encoding Split Cytotoxic Proteins for Selective Cell Elimination Based on Specific Protein Detection. Pharmaceutics 2023; 15:pharmaceutics15010213. [PMID: 36678842 PMCID: PMC9867180 DOI: 10.3390/pharmaceutics15010213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
For the selective elimination of deleterious cells (e.g., cancer cells and virus-infected cells), the use of a cytotoxic gene is a promising approach. DNA-based systems have achieved selective cell elimination but risk insertional mutagenesis. Here, we developed a synthetic mRNA-based system to selectively eliminate cells expressing a specific target protein. The synthetic mRNAs used in the system are designed to express an engineered protein pair that are based on a cytotoxic protein, Barnase. Each engineered protein is composed of an N- or C-terminal fragment of Barnase, a target protein binding domain, and an intein that aids in reconstituting full-length Barnase from the two fragments. When the mRNAs are transfected to cells expressing the target protein, both N- and C-terminal Barnase fragments bind to the target protein, causing the intein to excise itself and reconstitute cytotoxic full-length Barnase. In contrast, when the target protein is not present, the reconstitution of full-length Barnase is not induced. Four candidate constructs containing split Barnase were evaluated for the ability to selectively eliminate target protein-expressing cells. One of the candidate sets demonstrated highly selective cell death. This system will be a useful therapeutic tool to selectively eliminate deleterious cells.
Collapse
Affiliation(s)
| | - Hideyuki Nakanishi
- Correspondence: (H.N.); (K.I.); Tel.: +81-3-5280-8087 (H.N. & K.I.); Fax: +81-3-5280-8088 (H.N. & K.I.)
| | - Keiji Itaka
- Correspondence: (H.N.); (K.I.); Tel.: +81-3-5280-8087 (H.N. & K.I.); Fax: +81-3-5280-8088 (H.N. & K.I.)
| |
Collapse
|
7
|
Lu Q, Hu Y, Yin Li C, Kuang Y. Aptamer-Array-Guided Protein Assembly Enhances Synthetic mRNA Switch Performance. Angew Chem Int Ed Engl 2022; 61:e202207319. [PMID: 35703374 PMCID: PMC9544043 DOI: 10.1002/anie.202207319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Synthetic messenger RNA (mRNA) switches are powerful synthetic biological tools that can sense cellular molecules to manipulate cell fate. However, their performances are limited by high output signal noise due to leaky output protein expression. Here, we designed a readout control module that disables protein leakage from generating signal. Aptamer array on the switch guides the inactive output protein to self-assemble into functional assemblies that generate output signal. Leaky protein expression fails to saturate the array, thus produces marginal signal. In this study, we demonstrated that switches with this module exhibit substantially lower signal noise and, consequently, higher input sensitivity and wider output range. Such switches are applicable for different types of input molecules and output proteins. The work here demonstrates a new type of spatially guided protein self-assembly, affording novel synthetic mRNA switches that promise accurate cell manipulation for biomedical applications.
Collapse
Affiliation(s)
- Qiuyu Lu
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong KongHong Kong
| | - Yaxin Hu
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong KongHong Kong
| | - Cheuk Yin Li
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong KongHong Kong
| | - Yi Kuang
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong KongHong Kong
- HKUST Shenzhen Research InstituteShenzhenGuangdongChina
| |
Collapse
|
8
|
Lu Q, Hu Y, Li CY, Kuang Y. Aptamer‐Array‐Guided Protein Assembly Enhances Synthetic mRNA Switch Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiuyu Lu
- Hong Kong University of Science and Technology School of Engineering Chemical and Biological Engineering HONG KONG
| | - Yaxin Hu
- Hong Kong University of Science and Technology School of Engineering Chemical and Biological Engineering HONG KONG
| | - Cheuk Yin Li
- Hong Kong University of Science and Technology School of Engineering Chemical and Biological Engineering HONG KONG
| | - Yi Kuang
- Hong Kong University of Science and Technology Chemical and Biological Engineering Room 5578, Academic Bldg,Clear Water Bay 000000 Kowloon HONG KONG
| |
Collapse
|
9
|
Sartorius K, Antwi SO, Chuturgoon A, Roberts LR, Kramvis A. RNA Therapeutic Options to Manage Aberrant Signaling Pathways in Hepatocellular Carcinoma: Dream or Reality? Front Oncol 2022; 12:891812. [PMID: 35600358 PMCID: PMC9115561 DOI: 10.3389/fonc.2022.891812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the early promise of RNA therapeutics as a magic bullet to modulate aberrant signaling in cancer, this field remains a work-in-progress. Nevertheless, RNA therapeutics is now a reality for the treatment of viral diseases (COVID-19) and offers great promise for cancer. This review paper specifically investigates RNAi as a therapeutic option for HCC and discusses a range of RNAi technology including anti-sense oligonucleotides (ASOs), Aptamers, small interfering RNA (siRNA), ribozymes, riboswitches and CRISPR/Cas9 technology. The use of these RNAi based interventions is specifically outlined in three primary strategies, namely, repressing angiogenesis, the suppression of cell proliferation and the promotion of apoptosis. We also discuss some of the inherent chemical and delivery problems, as well as targeting issues and immunogenic reaction to RNAi interventions.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Department of Surgery, KZN Kwazulu-Natal (UKZN) Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Samuel O. Antwi
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Lewis R. Roberts
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Nakanishi H, Saito H, Itaka K. Versatile Design of Intracellular Protein-Responsive Translational Regulation System for Synthetic mRNA. ACS Synth Biol 2022; 11:1077-1085. [PMID: 35188747 DOI: 10.1021/acssynbio.1c00567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synthetic mRNA (mRNA) enables transgene expression without the necessity of nuclear import and the risk of insertional mutagenesis, which makes it an attractive tool for medical applications such as vaccination and protein replacement therapy. For further improvement of mRNA therapeutics, cell-selective translation is desirable, because transgene expression in nontarget cells sometimes causes adverse effects. In this study, we developed an intracellular protein-responsive translational regulation system based on Caliciviral VPg-based translational activator (CaVT) combined with inteins and target protein-binding nanobodies. This system enabled both translational activation and repression in a target protein-dependent manner. Importantly, the target protein can be altered by simply exchanging the nanobodies. The versatile design for target protein-responsive translational regulation holds promise for producing mRNA therapeutics with high safety.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
11
|
Nakanishi H. Protein-Based Systems for Translational Regulation of Synthetic mRNAs in Mammalian Cells. Life (Basel) 2021; 11:life11111192. [PMID: 34833067 PMCID: PMC8621430 DOI: 10.3390/life11111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic mRNAs, which are produced by in vitro transcription, have been recently attracting attention because they can express any transgenes without the risk of insertional mutagenesis. Although current synthetic mRNA medicine is not designed for spatiotemporal or cell-selective regulation, many preclinical studies have developed the systems for the translational regulation of synthetic mRNAs. Such translational regulation systems will cope with high efficacy and low adverse effects by producing the appropriate amount of therapeutic proteins, depending on the context. Protein-based regulation is one of the most promising approaches for the translational regulation of synthetic mRNAs. As synthetic mRNAs can encode not only output proteins but also regulator proteins, all components of protein-based regulation systems can be delivered as synthetic mRNAs. In addition, in the protein-based regulation systems, the output protein can be utilized as the input for the subsequent regulation to construct multi-layered gene circuits, which enable complex and sophisticated regulation. In this review, I introduce what types of proteins have been used for translational regulation, how to combine them, and how to design effective gene circuits.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|