1
|
Barros MM, Castro J, Araújo D, Oliveira R, Campos AM, Silva S, Outor-Monteiro D, Almeida C. Application of DNA aptamers to block enterotoxigenic Escherichia coli toxicity in a Galleria mellonella larval model. Front Chem 2024; 12:1425903. [PMID: 39268007 PMCID: PMC11390681 DOI: 10.3389/fchem.2024.1425903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the major bacterial cause of diarrheal diseases in pigs, particularly at young ages, resulting in significant costs to swine farming. The pathogenicity of ETEC is largely dependent on the presence of fimbriae and the ability to produce toxins. Fimbriae are responsible for their initial adhesion to the intestinal epithelial cells, leading to the onset of infection. In particular, the F4 type (K88) fimbriae are often attributed to neonatal infections and have also been associated with post-weaning diarrheal infections. This disease is traditionally prevented or treated with antibiotics, but their use is being severely restricted due to the emergence of resistant bacteria and their impact on human health. Emerging approaches such as aptamers that target the F4-type fimbriae and block the initial ETEC adhesion are a promising alternative. The aim of this study is to assess the effectiveness of two aptamers, Apt31 and Apt37, in controlling ETEC infection in the G. mellonella in vivo model. Initially, the dissociation constant (KD) of each aptamer against ETEC was established using real-time quantitative PCR methodology. Subsequently, different concentrations of the aptamers were injected into Galleria mellonella to study their toxicity. Afterwards, the anti-ETEC potential of Apt31 and Apt37 was assessed in the larvae model. The determined KD was 81.79 nM (95% CI: 31.21-199.4 nM) and 50.71 nM (95% CI: 26.52-96.15 nM) for the Apt31 and Apt37, respectively, showing no statistical difference. No toxicity was observed in G. mellonella following injection with both aptamers at any concentration. However, the administration of Apt31 together with ETEC-F4+ in G. mellonella resulted in a significant improvement of approximately 30% in both larvae survival and health index compared to ETEC-F4+ alone. These findings suggest that aptamers have promising inhibitory effect against ETEC infections and pave the way for additional in vivo studies.
Collapse
Affiliation(s)
- Maria Margarida Barros
- National Institute for Agrarian and Veterinariay Research (INIAV), Vairão, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Joana Castro
- National Institute for Agrarian and Veterinariay Research (INIAV), Vairão, Portugal
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Daniela Araújo
- National Institute for Agrarian and Veterinariay Research (INIAV), Vairão, Portugal
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS-Associate Laboratory, Braga, Portugal
| | - Ricardo Oliveira
- National Institute for Agrarian and Veterinariay Research (INIAV), Vairão, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana Maria Campos
- National Institute for Agrarian and Veterinariay Research (INIAV), Vairão, Portugal
| | - Sónia Silva
- National Institute for Agrarian and Veterinariay Research (INIAV), Vairão, Portugal
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS-Associate Laboratory, Braga, Portugal
| | - Divanildo Outor-Monteiro
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinariay Research (INIAV), Vairão, Portugal
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Fernandes L, Barco-Tejada A, Blázquez E, Araújo D, Ribeiro A, Silva S, Cussó L, Costa-de-Oliveira S, Rodrigues ME, Henriques M. Development and Evaluation of Microencapsulated Oregano Essential Oil as an Alternative Treatment for Candida albicans Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40628-40640. [PMID: 39067028 PMCID: PMC11311128 DOI: 10.1021/acsami.4c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Vulvovaginal candidiasis (VVC) is characterized as a very common fungal infection that significantly affects women's health worldwide. Essential oils (EOs) are currently being evaluated as an alternative therapy. The development of efficient techniques such as micro- or nanoencapsulation for protecting and controlling release is essential to overcome the limitations of EO applications. Therefore, the aim of this study was to develop and characterize oregano EO-loaded keratin microparticles (OEO-KMPs) as a potential treatment for VVC. OEO-KMPs were produced using high-intensity ultrasonic cycles and characterized in terms of morphological and physicochemical parameters. In vitro evaluation included assessing the toxicity of the OEO-KMPs and their effect against Candida albicans using microdilution and agar diffusion, while the activity against biofilm was quantified using colony forming units (CFU). The efficacy of the OEO-KMPs in an in vivo VVC mouse model was also studied. Female BALB/c mice were intravaginally infected with C. albicans, 24 h postinfection animals were treated intravaginally with 15 μL of OEO-KMPs and 24 h later vaginal fluid was analyzed for C. albicans and Lactobacillus growth (CFU mL-1). The results showed the stability of the OEO-KMPs over time, with high encapsulation efficiency and controlled release. This nanoparticle size facilitated penetration and completely inhibited the planktonic growth of C. albicans. In addition, an in vitro application of 2.5% of the OEO-KMPs eradicated mature C. albicans biofilms while preserving Lactobacillus species. In in vivo, a single intravaginal application of OEO-KMPs induced a reduction in C. albicans growth, while maintaining Lactobacillus species. In conclusion, this therapeutic approach with OEO-KMPs is promising as a potential alternative or complementary therapy for VVC while preserving vaginal microflora.
Collapse
Affiliation(s)
- Liliana Fernandes
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ainara Barco-Tejada
- Departamento
de Bioingeniería, Universidad Carlos
III de Madrid, 126, 28903 Getafe, Madrid, Spain
- Unidad
de Medicina y Cirugía Experimenta, Instituto de Investigación Sanitaria Gregorio Marañón, 28029 Madrid, Spain
| | - Elena Blázquez
- Departamento
de Bioingeniería, Universidad Carlos
III de Madrid, 126, 28903 Getafe, Madrid, Spain
- Unidad
de Medicina y Cirugía Experimenta, Instituto de Investigación Sanitaria Gregorio Marañón, 28029 Madrid, Spain
| | - Daniela Araújo
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- National
Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila do Conde, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| | - Artur Ribeiro
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| | - Sónia Silva
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- National
Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila do Conde, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| | - Lorena Cussó
- Departamento
de Bioingeniería, Universidad Carlos
III de Madrid, 126, 28903 Getafe, Madrid, Spain
- Advanced
Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares
Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de
Salud Mental, Instituto de Salud Carlos
III, 28029 Madrid, Spain
| | - Sofia Costa-de-Oliveira
- Division
of Microbiology, Department of Pathology, and Center for Health Technology
and Services Research − CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - M. Elisa Rodrigues
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| | - Mariana Henriques
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Castro J, Oliveira R, Fernandes L, Carvalho I, Oliveira H, Brinks E, Cho GS, Franz C, Almeida C, Silva S, Araújo D. Molecular characterization and virulence profile of Klebsiella pneumoniae and Klebsiella oxytoca isolated from ill cats and dogs in Portugal. Vet Microbiol 2024; 292:110056. [PMID: 38537400 DOI: 10.1016/j.vetmic.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Klebsiella spp. are important pathogens of humans and companion animals such as cats and dogs, capable of causing severe life-threatening diseases. The aim of this study was to characterize the molecular and phenotypic properties of Klebsiella pneumoniae and Klebsiella oxytoca isolated from ill companion animals by whole genome sequencing, followed by in vitro assessment of biofilm formation and in vivo pathogenicity using the Galleria mellonella model. Two LPS O-types were identified for all the K. pneumoniae isolates tested (O3B and O1/O2v2) and only one for K. oxytoca isolates (OL104), and the most common STs found were ST11 and ST266. Furthermore, a high diversity of K-locus types was found for K. pneumoniae (KL102; KL105; KL31, and KL13). Within K. pneumoniae, one specific O/K/ST-types combination (i.e., KL105-ST11-O1/O2v2) showed results that were of concern, as it exhibited a high inflammatory response at 12 h post-infection in G. mellonella with 80% of the larvae dead at 72 h post-infection. This virulence potential, on the other hand, did not appear to be directly related to the biofilm-forming capacity. Also, virulence and resistance scores obtained for this set of strains did surpass score 1. The present study demonstrated that Klebsiella spp. isolated from companion animals belonging to STs that can cause human infections and present virulence on an invertebrate model. Thus, this study underscores the role of dogs and cats as reservoirs of resistant Klebsiella spp. that could potentially be transmitted to humans.
Collapse
Affiliation(s)
- Joana Castro
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão 4485-655, Portugal; Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Ricardo Oliveira
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão 4485-655, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Liliana Fernandes
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Carvalho
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Hugo Oliveira
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Charles Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Carina Almeida
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão 4485-655, Portugal; Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Sónia Silva
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão 4485-655, Portugal; Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Araújo
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão 4485-655, Portugal; Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
David H, Solomon AP. Molecular association of Candida albicans and vulvovaginal candidiasis: focusing on a solution. Front Cell Infect Microbiol 2023; 13:1245808. [PMID: 37900321 PMCID: PMC10611527 DOI: 10.3389/fcimb.2023.1245808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Martins C, Piontkivska D, Mil-Homens D, Guedes P, Jorge JMP, Brinco J, Bárria C, Santos ACF, Barras R, Arraiano C, Fialho A, Goldman GH, Silva Pereira C. Increased Production of Pathogenic, Airborne Fungal Spores upon Exposure of a Soil Mycobiota to Chlorinated Aromatic Hydrocarbon Pollutants. Microbiol Spectr 2023; 11:e0066723. [PMID: 37284774 PMCID: PMC10434042 DOI: 10.1128/spectrum.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Organic pollutants are omnipresent and can penetrate all environmental niches. We evaluated the hypothesis that short-term (acute) exposure to aromatic hydrocarbon pollutants could increase the potential for fungal virulence. Specifically, we analyzed whether pentachlorophenol and triclosan pollution results in the production of airborne fungal spores with greater virulence than those derived from an unpolluted (Control) condition. Each pollutant altered the composition of the community of airborne spores compared to the control, favoring an increase in strains with in vivo infection capacity (the wax moth Galleria mellonella was used as an infection model). Fungi subsisting inside larvae at 72 h postinjection with airborne spore inocula collected in polluted and unpolluted conditions exhibited comparable diversity (mainly within Aspergillus fumigatus). Several virulent Aspergillus strains were isolated from larvae infected with the airborne spores produced in a polluted environment. Meanwhile, strains isolated from larvae injected with spores from the control, including one A. fumigatus strain, showed no virulence. Potential pathogenicity increased when two Aspergillus virulent strains were assembled, suggesting the existence of synergisms that impact pathogenicity. None of the observed taxonomic or functional traits could separate the virulent from the avirulent strains. Our study emphasizes pollution stress as a possible driver of phenotypic adaptations that increase Aspergillus pathogenicity, as well as the need to better understand the interplay between pollution and fungal virulence. IMPORTANCE Fungi colonizing soil and organic pollutants often meet. The consequences of this encounter constitute an outstanding question. We scrutinized the potential for virulence of airborne fungal spores produced under unpolluted and polluted scenarios. The airborne spores showed increased diversity of strains with higher infection capacity in Galleria mellonella whenever pollution is present. Inside the larvae injected with either airborne spore community, the surviving fungi demonstrated a similar diversity, mainly within Aspergillus fumigatus. However, the isolated Aspergillus strains greatly differ since virulence was only observed for those associated with a polluted environment. The interplay between pollution and fungal virulence still hides many unresolved questions, but the encounter is costly: pollution stress promotes phenotypic adaptations that may increase Aspergillus pathogenicity.
Collapse
Affiliation(s)
- Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dalila Mil-Homens
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Paula Guedes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - João M. P. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João Brinco
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ariana C. F. Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Barras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Arsénio Fialho
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Gustavo H. Goldman
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
6
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
7
|
Araújo D, Gonçalves B, Vilas Boas D, Rodrigues ME, Henriques M, Silva S. Combined Application of Antisense Oligomers to Control Transcription Factors of Candida albicans Biofilm Formation. Mycopathologia 2023:10.1007/s11046-023-00734-0. [PMID: 37099227 DOI: 10.1007/s11046-023-00734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/29/2023] [Indexed: 04/27/2023]
Abstract
Antisense oligomers (ASOs) have been little exploited to control determinants of Candida albicans virulence. Biofilm formation is an important virulence factor of C. albicans, that is regulated by a complex network of transcription factors (such as EFG1, BRG1 and ROB1). Thus, the main goal of this work was to project ASOs, based on the 2'-OMethyl chemical modification, to target BRG1 and ROB1 mRNA and to validate its application either alone or in combination with the EFG1 mRNA target, to reduce C. albicans biofilm formation. The ability of ASOs to control gene expression was evaluate by qRT-PCR. The effect on biofilm formation was determined by the total biomass quantification, and simultaneously the carbohydrates and proteins reduction on extracellular matrix. It was verified that all the oligomers were able to reduce the levels of gene expression and the ability of C. albicans to form biofilms. Furthermore, the combined application of the cocktail of ASOs enhances the inhibition of C. albicans biofilm formation, minimizing biofilm thickness by reducing the quantity of matrix content (protein and carbohydrate). So, our work confirms that ASOs are useful tools for research and therapeutic development on the control of Candida species biofilm formation.
Collapse
Affiliation(s)
- D Araújo
- Centre of Biological Engineering, LMaS-Laboratório de Microbiologia Aplicada à Saúde, CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal.
| | - B Gonçalves
- Centre of Biological Engineering, LMaS-Laboratório de Microbiologia Aplicada à Saúde, CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - D Vilas Boas
- Centre of Biological Engineering, LMaS-Laboratório de Microbiologia Aplicada à Saúde, CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - M E Rodrigues
- Centre of Biological Engineering, LMaS-Laboratório de Microbiologia Aplicada à Saúde, CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - M Henriques
- Centre of Biological Engineering, LMaS-Laboratório de Microbiologia Aplicada à Saúde, CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - S Silva
- Centre of Biological Engineering, LMaS-Laboratório de Microbiologia Aplicada à Saúde, CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary, Rua Dos Lagidos, Lugar da Madalena, Vairão, Vila Do Conde, Portugal
| |
Collapse
|
8
|
Fernandes L, Costa R, Silva S, Henriques M, Costa-de-Oliveira S, Rodrigues ME. Effect of Vapor-Phase Oregano Essential Oil on Resistant Candida Species Biofilms: Mechanisms of Action. Microbiol Spectr 2023; 11:e0512422. [PMID: 36971589 PMCID: PMC10100680 DOI: 10.1128/spectrum.05124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most prevalent vaginal infectious diseases. The increasing incidence of drug-resistant Candida strains and the limited therapeutic options make the discovery of effective alternative therapies fundamental. Essential oils (EOs) have been suggested as a promising alternative, and interestingly, vapor-phase essential oils (VP-EOs) present more advantages than their direct application. Thus, this study aims to evaluate the effect of oregano VP-EO (VP-OEO) on biofilms of antifungal-resistant vaginal isolates of Candida species (Candida albicans and Candida glabrata) and determine its mode of action. CFU, membrane integrity, and metabolic activity were evaluated. Furthermore, a reconstituted vaginal epithelium was used to mimic vaginal conditions and evaluate the effect of VP-OEO on Candida species infection, analyzed by DNA quantification, microscopy, and lactate dehydrogenase activity. The results revealed high VP-OEO antifungal activity. There was a significant reduction (>4 log CFU) in Candida species biofilms. Furthermore, the results show that the mechanisms of action of VP-OEO are related to membrane integrity and metabolic activity. The epithelium model confirms the effectiveness of VP-OEO. This study suggests that VP-EO can be considered a first approach for the development of an alternative form of VVC treatment. IMPORTANCE This work presents a new approach to the application of essential oils, exposure to the vapor phase, which can be considered a first approach for the development of a complementary or alternative form of vulvovaginal candidiasis (VVC) treatment. VVC is a significant infection caused by Candida species and remains a common disease that affects millions of women every year. The great difficulty in treating VVC and the extremely limited effective therapeutic options make the development of alternative treatments crucial. In this scope, this study aims to contribute to the development of effective, inexpensive, and nontoxic strategies for the prevention and treatment of this infectious disease, based on natural products. Moreover, this new approach has several advantages for women, such as lower costs, easy access, an easier mode of application, avoidance of skin contact, and, therefore, fewer negative impacts on women's health.
Collapse
Affiliation(s)
- Liliana Fernandes
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa
- Aromas Aqua Spa—Clínica Saúde, Vila Verde, Braga, Portugal
| | - Sónia Silva
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria E. Rodrigues
- Centre of Biological Engineering, LMaS—Laboratório de Microbiologia Aplicada à Saúde, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Vanreppelen G, Wuyts J, Van Dijck P, Vandecruys P. Sources of Antifungal Drugs. J Fungi (Basel) 2023; 9:jof9020171. [PMID: 36836286 PMCID: PMC9965926 DOI: 10.3390/jof9020171] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Due to their eukaryotic heritage, the differences between a fungal pathogen's molecular makeup and its human host are small. Therefore, the discovery and subsequent development of novel antifungal drugs are extremely challenging. Nevertheless, since the 1940s, researchers have successfully uncovered potent candidates from natural or synthetic sources. Analogs and novel formulations of these drugs enhanced the pharmacological parameters and improved overall drug efficiency. These compounds ultimately became the founding members of novel drug classes and were successfully applied in clinical settings, offering valuable and efficient treatment of mycosis for decades. Currently, only five different antifungal drug classes exist, all characterized by a unique mode of action; these are polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. The latter, being the latest addition to the antifungal armamentarium, was introduced over two decades ago. As a result of this limited arsenal, antifungal resistance development has exponentially increased and, with it, a growing healthcare crisis. In this review, we discuss the original sources of antifungal compounds, either natural or synthetic. Additionally, we summarize the existing drug classes, potential novel candidates in the clinical pipeline, and emerging non-traditional treatment options.
Collapse
|
10
|
Ye Y, He J, Wang H, Li W, Wang Q, Luo C, Tang X, Chen X, Jin X, Yao K, Zhou M. Cell Wall Destruction and Internal Cascade Synergistic Antifungal Strategy for Fungal Keratitis. ACS NANO 2022; 16:18729-18745. [PMID: 36278973 DOI: 10.1021/acsnano.2c07444] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fungal keratitis is one of the most common blindness-causing diseases, but clinical antifungal treatment remains a challenge. The fungal cell wall and biofilm matrix which severely confine the drug preparation are the critical obstructive factors to therapeutic effects. Herein, we report ethylenediaminetetraacetic acid (EDTA) modified AgCu2O nanoparticles (AgCuE NPs) to disrupt the cell wall and then eradicate C. albicans through the internal cascade synergistic effects of ion-released chemotherapy, chemodynamic therapy, photodynamic therapy, and mild photothermal therapy. AgCuE NPs exhibited excellent antifungal activity both in preventing biofilm formation and in destroying mature biofilms. Furthermore, AgCuE NP based gel formulations were topically applied to kill fungi, reduce inflammation, and promote wound healing, using optical coherence tomography and photoacoustic imaging to monitor nanogel retention and therapeutic effects on the infected murine cornea model. The AgCuE NP gel showed good biosafety and no obvious ophthalmic and systemic side effects. This study suggests that the AgCuE NP gel is an effective and safe antifungal strategy for fungal keratitis with a favorable prognosis and potential for clinical translation.
Collapse
Affiliation(s)
- Yang Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Hanle Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Wenbo Li
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Qingya Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Xiajing Tang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, People's Republic of China
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
11
|
Voropaev AD, Yekaterinchev DA, Urban YN, Zverev VV, Nesvizhsky YV, Voropaeva EA, Likhanskaya EI, Afanasiev MS, Afanasiev SS. <i>CDR1, CDR2, MDR1</i> and <i>ERG11</i> expression in azole resistant <i>Сandida albicans</i> isolated from HIV-infected patients in city of Moscow. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-ccm-1931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Candida fungi are common opportunistic microorganisms capable of causing infections of various localization, as well as life-threatening conditions in immunocompromised patients, such as HIV-infected individuals, oncology patients, subjects undergoing HSCT, which number has been steadily increasing in recent years. In addition, resistance to anti-fungal drugs has been spreading as well. Naturally sensitive to azoles, C. albicans possess a variety of mechanisms of acquired resistance, including efflux transporters and target protein-encoding gene amplification. This study was conducted to assess a prevalence of such mechanisms in the isolates sample obtained from HIV-infected patients in the Moscow region of the Russian Federation, characterize a relationship between these mechanisms and patterns of developing drug resistance. 18 strains of C. albicans resistant to fluconazole and voriconazole were isolated from HIV-infected patients with recurrent oropharyngeal candidiasis in the Moscow region. The expression levels of the ERG11, MDR1, CDR1, CDR2 genes involved in the formation of acquired azole resistance were measured using quantitative PCR, the 2CT method with ACT and PMA genes as control genes and reference values of sensitive isolates. Expression levels exceeding the average values of sensitive isolates by more than 3 standard deviations were considered significantly elevated. In most of the isolates, elevated levels of CDR1 and CDR2 gene expression were found: 89% and 78%, respectively. The expression level of the MDR1 gene was increased only in 28% of cases. ERG11 expression levels were significantly elevated in 78% of the isolates. Expression levels of all resistance genes studied were significantly increased in 4 strains. In this sample of C. albicans isolates, acquired resistance is mainly associated with efflux vectors encoded by the CDR1 and CDR2 genes. Also, in most isolates, an increased expression level for the azole target protein gene ERG11 was detected. The expression level of the efflux transporter gene MDR1 was increased in the smallest number of samples. It is also impossible to exclude a potential role of other mechanisms in developing acquired resistance, such as mutations in the ERG11 gene. It can be assumed that the identified mechanisms of resistance result from long-term, widespread, and sometimes uncontrolled use of azoles, including those in treatment and prevention of candidiasis in HIV-infected patients.
Collapse
|