1
|
Jaudon F, Cingolani LA. Unlocking mechanosensitivity: integrins in neural adaptation. Trends Cell Biol 2024; 34:1029-1043. [PMID: 38514304 DOI: 10.1016/j.tcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Mechanosensitivity extends beyond sensory cells to encompass most neurons in the brain. Here, we explore recent research on the role of integrins, a diverse family of adhesion molecules, as crucial biomechanical sensors translating mechanical forces into biochemical and electrical signals in the brain. The varied biomechanical properties of neuronal integrins, including their force-dependent conformational states and ligand interactions, dictate their specific functions. We discuss new findings on how integrins regulate filopodia and dendritic spines, shedding light on their contributions to synaptic plasticity, and explore recent discoveries on how they engage with metabotropic receptors and ion channels, highlighting their direct participation in electromechanical transduction. Finally, to facilitate a deeper understanding of these developments, we present molecular and biophysical models of mechanotransduction.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy.
| |
Collapse
|
2
|
Capelletti S, García Soto SC, Gonçalves MAFV. On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies. Mol Ther 2024; 32:3793-3807. [PMID: 39169620 PMCID: PMC11573585 DOI: 10.1016/j.ymthe.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.
Collapse
Affiliation(s)
- Sabrina Capelletti
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Sofía C García Soto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
3
|
Zhang Z, Hou Z, Han M, Guo P, Chen K, Qin J, Tang Y, Yang F. Amygdala-Targeted Relief of Neuropathic Pain: Efficacy of Repetitive Transcranial Magnetic Stimulation in NLRP3 Pathway Suppression. Mol Neurobiol 2024; 61:8904-8920. [PMID: 38573415 PMCID: PMC11496354 DOI: 10.1007/s12035-024-04087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
This study investigates the effectiveness of repetitive transcranial magnetic stimulation (rTMS) as a nonpharmacological approach to treating neuropathic pain (NP), a major challenge in clinical research. Conducted on male Sprague-Dawley rats with NP induced through chronic constriction injury of the sciatic nerve, the research assessed pain behaviors and the impact of rTMS on molecular interactions within the amygdala. Through a comprehensive analysis involving Mechanical Withdrawal Threshold (MWT), Thermal Withdrawal Latency (TWL), RNA transcriptome sequencing, RT-qPCR, Western blotting, immunofluorescence staining, and Co-Immunoprecipitation (Co-IP), the study focused on the expression and interaction of integrin αvβ3 and its receptor P2X7R. Findings reveal that rTMS significantly influences the expression of integrin αvβ3 in NP models, suggesting an inhibition of the NP-associated NLRP3 inflammatory pathway through the disruption of integrin αvβ3-P2X7R interactions. These outcomes highlight the potential of rTMS in alleviating NP by targeting molecular interactions within the amygdala, offering a promising therapeutic avenue for managing NP.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Anesthesiology, Hunan University of Medicine General Hospital (The First People's Hospital of Huaihua), No. 144, South Jinxi Road, Huaihua, 418000, Hunan Province, P. R. China
| | - Zixin Hou
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P. R. China
| | - Mingming Han
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, P. R. China
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Peng Guo
- Department of Anesthesiology, Hunan University of Medicine General Hospital (The First People's Hospital of Huaihua), No. 144, South Jinxi Road, Huaihua, 418000, Hunan Province, P. R. China
| | - Kemin Chen
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P. R. China
| | - Jie Qin
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P. R. China
| | - Yuanzhang Tang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street Beijing, Beijing, 100053, P. R. China.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Fengrui Yang
- Department of Anesthesiology, Hunan University of Medicine General Hospital (The First People's Hospital of Huaihua), No. 144, South Jinxi Road, Huaihua, 418000, Hunan Province, P. R. China.
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P. R. China.
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
5
|
Nóbrega IDS, Teles e Silva AL, Yokota-Moreno BY, Sertié AL. The Importance of Large-Scale Genomic Studies to Unravel Genetic Risk Factors for Autism. Int J Mol Sci 2024; 25:5816. [PMID: 38892002 PMCID: PMC11172008 DOI: 10.3390/ijms25115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder. During the last 15 years, advances in genomic technologies and the availability of increasingly large patient cohorts have greatly expanded our knowledge of the genetic architecture of ASD and its neurobiological mechanisms. Over two hundred risk regions and genes carrying rare de novo and transmitted high-impact variants have been identified. Additionally, common variants with small individual effect size are also important, and a number of loci are now being uncovered. At the same time, these new insights have highlighted ongoing challenges. In this perspective article, we summarize developments in ASD genetic research and address the enormous impact of large-scale genomic initiatives on ASD gene discovery.
Collapse
Affiliation(s)
| | | | | | - Andréa Laurato Sertié
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Rua Comendador Elias Jafet, 755. Morumbi, São Paulo 05653-000, Brazil; (I.d.S.N.); (A.L.T.e.S.); (B.Y.Y.-M.)
| |
Collapse
|
6
|
Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr Gene Ther 2024; 24:193-207. [PMID: 38310456 DOI: 10.2174/0115665232275754231204072320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/05/2024]
Abstract
With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.
Collapse
Affiliation(s)
- Dilip Kumar Chanchal
- Department of Pharmacy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| | | | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Neha Agnihotri
- Department of Pharmacy, Maharana Pratap College of Pharmacy, Kothi, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Prateek Porwal
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| |
Collapse
|
7
|
He B, Wang Y, Li H, Huang Y. The role of integrin beta in schizophrenia: a preliminary exploration. CNS Spectr 2023; 28:561-570. [PMID: 36274632 DOI: 10.1017/s1092852922001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Integrins are transmembrane heterodimeric (αβ) receptors that transduce mechanical signals between the extracellular milieu and the cell in a bidirectional manner. Extensive research has shown that the integrin beta (β) family is widely expressed in the brain and that they control various aspects of brain development and function. Schizophrenia is a relatively common neurological disorder of unknown etiology and has been found to be closely related to neurodevelopment and neurochemicals in neuropathological studies of schizophrenia. Here, we review literature from recent years that shows that schizophrenia involves multiple signaling pathways related to neuronal migration, axon guidance, cell adhesion, and actin cytoskeleton dynamics, and that dysregulation of these processes affects the normal function of neurons and synapses. In fact, alterations in integrin β structure, expression and signaling for neural circuits, cortex, and synapses are likely to be associated with schizophrenia. We explored several aspects of the possible association between integrin β and schizophrenia in an attempt to demonstrate the role of integrin β in schizophrenia, which may help to provide new insights into the study of the pathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Binshan He
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhan Wang
- Department of Blood Transfusion, Ya'an People's Hospital, Ya'an, China
| | - Huang Li
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuanshuai Huang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Cingolani LA, Thalhammer A, Jaudon F, Muià J, Baj G. Nanoscale organization of Ca V2.1 splice isoforms at presynaptic terminals: implications for synaptic vesicle release and synaptic facilitation. Biol Chem 2023; 404:931-937. [PMID: 37658578 PMCID: PMC10695435 DOI: 10.1515/hsz-2023-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The distance between CaV2.1 voltage-gated Ca2+ channels and the Ca2+ sensor responsible for vesicle release at presynaptic terminals is critical for determining synaptic strength. Yet, the molecular mechanisms responsible for a loose coupling configuration of CaV2.1 in certain synapses or developmental periods and a tight one in others remain unknown. Here, we examine the nanoscale organization of two CaV2.1 splice isoforms (CaV2.1[EFa] and CaV2.1[EFb]) at presynaptic terminals by superresolution structured illumination microscopy. We find that CaV2.1[EFa] is more tightly co-localized with presynaptic markers than CaV2.1[EFb], suggesting that alternative splicing plays a crucial role in the synaptic organization of CaV2.1 channels.
Collapse
Affiliation(s)
- Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, via Giorgieri 5, I-34127Trieste, Italy
- Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi 10, I-16132Genoa, Italy
| | - Agnes Thalhammer
- Department of Life Sciences, University of Trieste, via Giorgieri 5, I-34127Trieste, Italy
- Centro Interdipartimentale di Microscopia Avanzata (CIMA), University of Trieste, via Fleming 31, I-34127Trieste, Italy
| | - Fanny Jaudon
- Department of Life Sciences, University of Trieste, via Giorgieri 5, I-34127Trieste, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, I-16132Genoa, Italy
| | - Jessica Muià
- Department of Life Sciences, University of Trieste, via Giorgieri 5, I-34127Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, via Giorgieri 5, I-34127Trieste, Italy
- Centro Interdipartimentale di Microscopia Avanzata (CIMA), University of Trieste, via Fleming 31, I-34127Trieste, Italy
| |
Collapse
|
9
|
Bendixen L, Jensen TI, Bak RO. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Mol Ther 2023; 31:1920-1937. [PMID: 36964659 PMCID: PMC10362391 DOI: 10.1016/j.ymthe.2023.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
The CRISPR-Cas system is commonly known for its ability to cleave DNA in a programmable manner, which has democratized gene editing and facilitated recent breakthroughs in gene therapy. However, newer iterations of the technology using nuclease-disabled Cas enzymes have spurred a variety of different types of genetic engineering platforms such as transcriptional modulation using the CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) systems. This review introduces the creation of these programmable transcriptional modulators, various methods of delivery utilized for these systems, and recent technological developments. CRISPRa and CRISPRi have also been implemented in genetic screens for interrogating gene function and discovering genes involved in various biological pathways. We describe recent compelling examples of how these tools have become powerful means to unravel genetic networks and uncovering important information about devastating diseases. Finally, we provide an overview of preclinical studies in which transcriptional modulation has been used therapeutically, and we discuss potential future directions of these novel modalities.
Collapse
Affiliation(s)
- Louise Bendixen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Trine I Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
10
|
Celora L, Jaudon F, Vitale C, Cingolani LA. Regulation of dendritic spine length in corticopontine layer V pyramidal neurons by autism risk gene β3 integrin. Mol Brain 2023; 16:49. [PMID: 37296444 DOI: 10.1186/s13041-023-01031-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
The relationship between autism spectrum disorder (ASD) and dendritic spine abnormalities is well known, but it is unclear whether the deficits relate to specific neuron types and brain regions most relevant to ASD. Recent genetic studies have identified a convergence of ASD risk genes in deep layer pyramidal neurons of the prefrontal cortex. Here, we use retrograde recombinant adeno-associated viruses to label specifically two major layer V pyramidal neuron types of the medial prefrontal cortex: the commissural neurons, which put the two cerebral hemispheres in direct communication, and the corticopontine neurons, which transmit information outside the cortex. We compare the basal dendritic spines on commissural and corticopontine neurons in WT and KO mice for the ASD risk gene Itgb3, which encodes for the cell adhesion molecule β3 integrin selectively enriched in layer V pyramidal neurons. Regardless of the genotype, corticopontine neurons had a higher ratio of stubby to mushroom spines than commissural neurons. β3 integrin affected selectively spine length in corticopontine neurons. Ablation of β3 integrin resulted in corticopontine neurons lacking long (> 2 μm) thin dendritic spines. These findings suggest that a deficiency in β3 integrin expression compromises specifically immature spines on corticopontine neurons, thereby reducing the cortical territory they can sample. Because corticopontine neurons receive extensive local and long-range excitatory inputs before relaying information outside the cortex, specific alterations in dendritic spines of corticopontine neurons may compromise the computational output of the full cortex, thereby contributing to ASD pathophysiology.
Collapse
Affiliation(s)
- Lucia Celora
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Fanny Jaudon
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, 16132, Italy
| | - Carmela Vitale
- Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16132, Italy
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy.
- Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16132, Italy.
| |
Collapse
|
11
|
Sandhu A, Kumar A, Rawat K, Gautam V, Sharma A, Saha L. Modernising autism spectrum disorder model engineering and treatment via CRISPR-Cas9: A gene reprogramming approach. World J Clin Cases 2023; 11:3114-3127. [PMID: 37274051 PMCID: PMC10237133 DOI: 10.12998/wjcc.v11.i14.3114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
A neurological abnormality called autism spectrum disorder (ASD) affects how a person perceives and interacts with others, leading to social interaction and communication issues. Limited and recurring behavioural patterns are another feature of the illness. Multiple mutations throughout development are the source of the neurodevelopmental disorder autism. However, a well-established model and perfect treatment for this spectrum disease has not been discovered. The rising era of the clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) system can streamline the complexity underlying the pathogenesis of ASD. The CRISPR-Cas9 system is a powerful genetic engineering tool used to edit the genome at the targeted site in a precise manner. The major hurdle in studying ASD is the lack of appropriate animal models presenting the complex symptoms of ASD. Therefore, CRISPR-Cas9 is being used worldwide to mimic the ASD-like pathology in various systems like in vitro cell lines, in vitro 3D organoid models and in vivo animal models. Apart from being used in establishing ASD models, CRISPR-Cas9 can also be used to treat the complexities of ASD. The aim of this review was to summarize and critically analyse the CRISPR-Cas9-mediated discoveries in the field of ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| |
Collapse
|
12
|
Moretto E, Miozzo F, Longatti A, Bonnet C, Coussen F, Jaudon F, Cingolani LA, Passafaro M. The tetraspanin TSPAN5 regulates AMPAR exocytosis by interacting with the AP4 complex. eLife 2023; 12:76425. [PMID: 36795458 PMCID: PMC9934860 DOI: 10.7554/elife.76425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Intracellular trafficking of AMPA receptors is a tightly regulated process which involves several adaptor proteins, and is crucial for the activity of excitatory synapses both in basal conditions and during synaptic plasticity. We found that, in rat hippocampal neurons, an intracellular pool of the tetraspanin TSPAN5 promotes exocytosis of AMPA receptors without affecting their internalisation. TSPAN5 mediates this function by interacting with the adaptor protein complex AP4 and Stargazin and possibly using recycling endosomes as a delivery route. This work highlights TSPAN5 as a new adaptor regulating AMPA receptor trafficking.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| | | | | | - Caroline Bonnet
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Francoise Coussen
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Fanny Jaudon
- Department of Life Sciences, University of TriesteTriesteItaly,IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of TriesteTriesteItaly,Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia (IIT)GenoaItaly
| | - Maria Passafaro
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| |
Collapse
|