1
|
Song Z, Wang Q, Xiong H, Xiao J, Zhou Z, Li T, Sun Q, Qiu L, Tan Y, Liu X, Jiang H, Han S, Wang X. Bionic gene delivery system activates tumor autophagy and immunosuppressive niche to sensitize anti-PD-1 treatment against STK11-mutated lung adenocarcinoma. J Nanobiotechnology 2025; 23:312. [PMID: 40275340 PMCID: PMC12020135 DOI: 10.1186/s12951-025-03404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Clinical data have shown that Serine/Threonine Kinase 11 (STK11) mutation may be associated with an immunosuppressive tumor microenvironment (ITEM) and poor prognosis and failure of anti-PD-1 (αPD1) treatment in non-small cell lung cancer (NSCLC). To explore the potential of restoring STK11 protein in immunotherapy, a bionic gene delivery system was prepared by coating the STK11-encoded DNA-cationic polymer complex core with the tumor cell membrane, termed STK11@PPCM. STK11@PPCM could specifically bind with NSCLC cells and achieve precise delivery of STK11-encoded DNA. The released DNA effectively restored the STK11 protein expression, consequently reactivating autophagy and immunogenic cell death (ICD) in cancer cells. The liberated damage-associated molecular patterns (DAMPs) and autophagosome induced dendritic cells (DCs) maturation, which in turn enhanced CD8 + T cell infiltration, M1 macrophage polarization, and proinflammatory factor expression, thereby reversing the ITEM. Moreover, STK11@PPCM was also found to improve the sensitivity of cancer cells to αPD1 by increasing the expression of PD-L1, which was confirmed in STK11-mutated NSCLC cell xenografted mouse models, constructed by CRISPR-Cas9 knockout technology. This work demonstrated for the first time that restoration of functional STK11 can effectively reverse ITME and boost αPD1 efficacy in NSCLC, offering a new therapeutic approach for STK11-mutated lung adenocarcinoma in clinic.
Collapse
Affiliation(s)
- Zhongquan Song
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qikai Wang
- Health Management Center, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Jiang Xiao
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zihan Zhou
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Tianxiang Li
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qian Sun
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Liping Qiu
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yue Tan
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Shuhua Han
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
2
|
Esmaeilzadeh A, Hadiloo K, Yaghoubi S, Makoui MH, Mostanadi P. State of the art in CAR-based therapy: In vivo CAR production as a revolution in cell-based cancer treatment. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01056-7. [PMID: 40261561 DOI: 10.1007/s13402-025-01056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Chimeric antigen receptor (CAR) therapy has successfully treated relapsed/refractory hematological cancers. This strategy can effectively target tumor cells. However, despite positive outcomes in clinical applications, challenges remain to overcome. These hurdles pertain to the production of the drugs, solid tumor resistance, and side effects related to the treatment. Some cases have been missed during the drug preparation due to manufacturing issues, prolonged production times, and high costs. These challenges mainly arise from the in vitro manufacturing process, so reevaluating this process could minimize the number of missed patients. The immune cells are traditionally collected and sent to the laboratory; after several steps, the cells are modified to express the CAR gene before being injected back into the patient's body. During the in vivo method, the CAR gene is introduced to the immune cells inside the body. This allows for treatment to begin sooner, avoiding potential failures in drug preparation and the associated high costs. In this review, we will elaborate on the production and treatment process using in vivo CAR, examine the benefits and challenges of this approach, and ultimately present the available solutions for incorporating this treatment into clinical practice.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Pficell R&D Canadian Institution & Corporation, Profound Future Focused Innovative Cell and Gene Therapy, Pficell Canadian Institution and Corporation, Ontario, Canada.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kaveh Hadiloo
- Pficell R&D Canadian Institution & Corporation, Profound Future Focused Innovative Cell and Gene Therapy, Pficell Canadian Institution and Corporation, Ontario, Canada
- Department of Surgery, Velayat Clinical Research Development Unit, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan, Iran
| | - Sara Yaghoubi
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan, Iran
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Parsa Mostanadi
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan, Iran
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Gilbert BR, Miglani C, Karmakar A, Pal M, Chandran VC, Gupta S, Pal A, Ganguli M. A combination of systemic mannitol and mannitol modified polyester nanoparticles for caveolae-mediated gene delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102480. [PMID: 40104113 PMCID: PMC11919422 DOI: 10.1016/j.omtn.2025.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025]
Abstract
Overcoming the blood-brain barrier (BBB) remains a significant challenge for nucleic acid delivery to the brain. We have explored a combination of mannitol-modified poly (β-amino ester) (PBAE) nanoparticles and systemic mannitol injection for crossing the BBB. We incorporated mannitol in the PBAE polymer for caveolae targeting and selected monomers that may help avoid delivery to the liver. We also induced caveolae at the BBB through systemic mannitol injection in order to create an opportunity for the caveolae-targeting nanoparticles (M30 D90) containing plasmid DNA to cross the BBB. When a clinically relevant dose was administered intravenously in this caveolae induction model, M30 D90 demonstrated significant transgene expression of a reporter plasmid in the brain, with selective uptake by neuronal cells and minimal liver accumulation. We demonstrate that caveolae modulation using systemic mannitol administration and caveolae targeting using designed nanoparticles are necessary for efficient delivery to the brain. This delivery platform offers a simple, scalable, and controlled delivery solution and holds promise for treating brain diseases with functional targets.
Collapse
Affiliation(s)
- Betsy Reshma Gilbert
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | | | - Muneesh Pal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vysakh C Chandran
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Sarika Gupta
- National Institute of Immunology, New Delhi 110067, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Chen Q, Chang Y, He X, Ding Y, Wang R, Luo R, Yuan J, Chen J, Zhong G, Yang H, Chen J, Li J. Targeted Delivery of mRNA with Polymer-Lipid Nanoparticles for In Vivo Base Editing. ACS NANO 2025; 19:7835-7850. [PMID: 39962883 DOI: 10.1021/acsnano.4c14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Messenger RNA (mRNA) encoding base editors, along with single guide RNAs (sgRNAs), have emerged as a promising therapeutic approach for various disorders. However, there is still insufficient exploration in achieving targeted and efficient delivery of mRNA and sgRNA to multiple organs while ensuring high biocompatibility and stability in vivo. To address this challenge, we synthesized a library of 108 poly(β-amino) esters (PBAEs) by incorporating 100% hydrophobic side chains and end-caps with varying amines. These PBAEs were further formulated with other excipients, including helper lipids, cholesterol, and PEGylated lipids, to form polymer-lipid nanoparticles (PLNPs). Structure-function analysis revealed that eLog P of PBAEs could serve as a predictive parameter for determining the liver or lung tropism of PLNPs. The biocompatibility of PBAEs end-capped with monoamines was significantly higher compared to those end-capped with diamines. Leveraging these findings, we expanded the PBAE library and identified a leading PBAE (7C8C8) with mRNA delivery efficiency outperforming current FDA-approved ionizable lipids (ALC-0315, SM-102, and Dlin-MC3-DMA). The LD50 of the empty PLNPs (7C8C8) was determined to be 403.8 ± 49.46 mg/kg, indicating a significantly high safety profile. Additionally, PLNPs (7C8C8) demonstrated sustained transfection activity for at least 2 months when stored at -20 °C after freezing or at 4 °C following lyophilization. Subsequently, in vivo base editing using PLNPs (7C8C8) achieved an impressive editing efficiency of approximately 70% along with a significant reduction in protein levels exceeding 90%. Notably, synergistic effects were observed through simultaneous disruption of proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3 genes, resulting in a sustained low-density lipoprotein cholesterol reduction of over 60% for several months. These compelling findings provide strong support for the further development of PLNPs as promising platforms for mRNA-based therapies.
Collapse
Affiliation(s)
- Qimingxing Chen
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yan Chang
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan He
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yan Ding
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Runyuan Wang
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ran Luo
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Jialu Yuan
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Jiabei Chen
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianfeng Li
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Kim HL, Saravanakumar G, Lee S, Jang S, Kang S, Park M, Sobha S, Park SH, Kim SM, Lee JA, Shin E, Kim YJ, Jeong HS, Kim D, Kim WJ. Poly(β-amino ester) polymer library with monomer variation for mRNA delivery. Biomaterials 2025; 314:122896. [PMID: 39426123 DOI: 10.1016/j.biomaterials.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Non-viral vectors for mRNA delivery primarily include lipid nanoparticles (LNPs) and polymers. While LNPs are known for their high mRNA delivery efficiency, they can induce excessive immune responses and cause off-target effects, potentially leading to side effects. In this study, we aimed to explore polymer-based mRNA delivery systems as a viable alternative to LNPs, focusing on their mRNA delivery efficiency and potential application in mRNA vaccines. We created a library of poly(β-amino ester) (PBAE) polymers by combining various amine monomers and acrylate monomers. Through screening this polymer library, we identified specific polymer nanoparticles (PNPs) that demonstrated high mRNA expression efficiency, with sustained mRNA expression for up to two weeks. Furthermore, the PNPs showed mRNA expression only at the injection site and did not exhibit liver toxicity. Additionally, when assessing immune activation, the PNPs significantly induced T-cell immune activation and were effective in the plaque reduction neutralization test. These results suggest that polymer-based mRNA delivery systems not only hold potential for use in mRNA vaccines but also show promise for therapeutic applications.
Collapse
Affiliation(s)
- Hong Lyun Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Seowon Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Subin Jang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seonwoo Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mihyeon Park
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - So-Hee Park
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Soo-Min Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Eunkyung Shin
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Hye-Sook Jeong
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; OmniaMed Co, Ltd., Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
7
|
Gambrill B, Pertusati F, Shergill I, Hughes S, Prokopovich P. A novel multilayer antimicrobial urinary catheter material with antimicrobial properties. MATERIALS ADVANCES 2025; 6:1020-1030. [PMID: 39780948 PMCID: PMC11701715 DOI: 10.1039/d4ma01045k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Urinary catheters are commonly used in medical practice to drain and monitor urine of patients. However, urinary catheterisation is associated with the risk of developing catheter-associated urinary tract infections (CAUTIs), which can result in life-threatening sepsis that requires antibiotics for treatment. Using the layer-by-layer (LbL) technique, we assembled a multilayer catheter comprising nine quadruple layers (9QL) of alginate, chlorhexidine (CHX), alginate and poly(β-amino ester) (PBAE) built upon an amino-functionalised silicone. The prepared catheter materials were tested for pre-packaged storage conditions and sterilisation techniques. The daily release of CHX was measured at pH 7.4 and pH 5 and simulated urine at 37 °C, which was used to determine the antimicrobial affect. CHX release was detected for a minimum of 14 days in PBS (pH 7.4), pH 5 release media, and simulated urine for the samples tested against storage conditions and sterilisation techniques. Incubation of the prepared material with bacterial cultures for 24 hours restricted bacterial growth compared to incubation with the standard material. The minimum inhibition concentration of CHX for clinically isolated urinary tract infection (UTI) bacterial strains was in the range of 19.4-77.4 µM, at which the released CHX could indirectly prevent bacterial growth for up to 14 days. Based on the daily CHX release from the samples, the hydrolysis of PBAE at pH 5 was gradual, resulting in a greater number of days of preventing bacterial growth, followed by pH 7.4 and then simulated urine. To the best of our knowledge, this is the first report on the use of PBAE in association with a urinary catheter material for the release of an antimicrobial drug.
Collapse
Affiliation(s)
- Benjamin Gambrill
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building King Edward VII Ave Cardiff CF10 3NB UK
| | - Fabrizio Pertusati
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building King Edward VII Ave Cardiff CF10 3NB UK
| | - Iqbal Shergill
- Department of Urology, Wrexham Maelor Hospital Croesnewydd Rd Wrexham LL13 7TD UK
| | - Stephen Hughes
- Maelor Academic Unit of Medical & Surgical Sciences, Gwenfro Buildings Wrexham LL13 7YP UK
| | - Polina Prokopovich
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building King Edward VII Ave Cardiff CF10 3NB UK
| |
Collapse
|
8
|
Gao Y, Zhang L, Wang Z, Bai H, Wu C, Shuai Q, Yan Y. Enhanced Pulmonary and Splenic mRNA Delivery Using DOTAP-Incorporated Poly(β-Amino Ester)-Lipid Nanoparticles. Biomacromolecules 2025; 26:623-634. [PMID: 39746921 DOI: 10.1021/acs.biomac.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
mRNA-based therapies hold tremendous promise for treating various diseases, yet their clinical success is hindered by delivery challenges. This study developed a library of 140 lipocationic Poly(β-amino ester)s (PBAEs) and formulated lipid-polymer hybrid nanoparticles (LPHs) with four helper lipids, including 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), to enhance mRNA delivery. Initial in vitro screening of four representative PBAEs identified the D/P4-1 formulation (DOTAP/PBAE molar ratio of 4:1) as the most effective. Further screening of the library using this formulation identified eight top-performing LPHs. In vivo experiments confirmed high luciferase expression in the spleen and lungs of mice following intravenous administration of Luc mRNA-loaded LPHs. Detailed analysis revealed that DOTAP incorporation influenced LPH properties, including apparent pKa, surface charge, and internal hydrophobicity, enabling enhanced mRNA release and cellular uptake. This study demonstrates potent approaches to modulate PBAE-lipid nanoparticle properties by altering PBAE structures and nanoparticle composition, offering insights for designing effective hybrid carriers for mRNA therapeutics.
Collapse
Affiliation(s)
- Yuduo Gao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Luwei Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ziyue Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hao Bai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
9
|
Gharatape A, Sadeghi-Abandansari H, Ghanbari H, Basiri M, Faridi-Majidi R. Synthesis and characterization of poly (β-amino ester) polyplex nanocarrier with high encapsulation and uptake efficiency: impact of extracellular conditions. Nanomedicine (Lond) 2025; 20:125-139. [PMID: 39676537 PMCID: PMC11730802 DOI: 10.1080/17435889.2024.2440307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Poly (β-amino Ester) nanocarriers show promise for gene therapy, but their effectiveness can be limited by the environment within the body. This study aims to understand how common cell culture media components affect optimized PBAE nanocarrier performance in gene delivery. METHODS Optimized PBAE was synthesized based on Michael addition reaction and characterized by different assays, this study employed techniques like DLS and TEM to characterize PBAE nanocarriers, followed by cellular uptake analysis (flow cytometry and confocal imaging) and evaluation of gene expression under different polymer/DNA ratio ratios and media conditions. RESULTS The nanocarriers exhibited size under 200 nm and surface positive charge, with high encapsulation efficiency (up to 95%). Cellular uptake, transfection efficiency, and cytotoxicity were evaluated. Flow cytometry analysis revealed high cellular uptake (over 77% at 1 hour and up to 95% after 3 hours) and good viability. Transfection efficiency reached up to 80% with 2 μg DNA, particularly at weight ratios of 60 and 90. CONCLUSION The study also identified factors affecting transfection efficiency, including serum concentration and antibiotics in the culture medium, highlighting the importance of optimizing these conditions for future applications.
Collapse
Affiliation(s)
- Alireza Gharatape
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA
| | - Reza Faridi-Majidi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Nanotechnology research center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Rong Z, He X, Fan T, Zhang H. Nano Delivery System for Atherosclerosis. J Funct Biomater 2024; 16:2. [PMID: 39852558 PMCID: PMC11766408 DOI: 10.3390/jfb16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Atherosclerosis, a pathological process propelled by inflammatory mediators and lipids, is a principal contributor to cardiovascular disease incidents. Currently, drug therapy, the primary therapeutic strategy for atherosclerosis, faces challenges such as poor stability and significant side effects. The advent of nanomaterials has garnered considerable attention from scientific researchers. Nanoparticles, such as liposomes and polymeric nanoparticles, have been developed for drug delivery in atherosclerosis treatment. This review will focus on how nanoparticles effectively improve drug safety and efficacy, as well as the continuous development and optimization of nanoparticles of the same material and further explore current challenges and future opportunities in this field.
Collapse
Affiliation(s)
| | | | | | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Zhang J, Chen J. From classic to innovative: The continuation and modern application of calcium phosphate co-precipitation method in mRNA tumor delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102384. [PMID: 39687343 PMCID: PMC11647481 DOI: 10.1016/j.omtn.2024.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Affiliation(s)
- Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P.R. China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P.R. China
| |
Collapse
|
12
|
Magaña Rodriguez JR, Guerra-Rebollo M, Borrós S, Fornaguera C. Nucleic acid-loaded poly(beta-aminoester) nanoparticles for cancer nano-immuno therapeutics: the good, the bad, and the future. Drug Deliv Transl Res 2024; 14:3477-3493. [PMID: 38700815 PMCID: PMC11499432 DOI: 10.1007/s13346-024-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 10/24/2024]
Abstract
Immunotherapy has emerged as a promising approach to cancer treatment, offering improved survival rates and enhanced patients' quality of life. However, realizing the full potential of immunotherapy in clinical practice remains a challenge, as there is still plenty of room for modulating the complexity of the human immune system in favor of an antitumor immunogenicity. Nanotechnology, with its unique properties, holds promise in augmenting the efficacy of cancer immunotherapies in biotherapeutic protection and site- and time-controlled delivery of the immune modulator biologicals. Polymeric nanoparticles are promising biomaterials among different nanocarriers thanks to their robustness, versatility, and cost-efficient design and production. This perspective paper overviews critical concepts in nanometric advanced delivery systems applied to cancer immunotherapy. We focus on a detailed exploration of the current state of the art and trends in using poly(beta-aminoester) (pBAE) polymers for nucleic acid-based antitumor immunotherapies. Through different examples of the use of pBAE polymers reported in the literature, we revise the main advantages these polymers offer and some challenges to overcome. Finally, the paper provides insights and predictions on the path toward the clinical implementation of cancer nano-immunotherapies, highlighting the potential of pBAE polymers for advancements in this field.
Collapse
Affiliation(s)
- J Rodrigo Magaña Rodriguez
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain.
| |
Collapse
|
13
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Iqbal S, Chen X, Sohail M, Wu F, Fang S, Ma J, Wang H, Zhao Z, Shu G, Chen M, Du YZ, Ji J. Self-targeted smart polyester nanoparticles for simultaneous Delivery of photothermal and chemotherapeutic agents for efficient treatment of HCC. Biomater Sci 2024. [PMID: 39494574 DOI: 10.1039/d4bm01120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Advances in nanotechnology offer promising strategies to overcome the limitations of single-drug therapies in hepatocellular carcinoma (HCC) and other cancers such as multidrug resistance and variable drug tolerances. This study proposes a targeted nanoparticle system based on a poly(β-aminoester) (PβAE) core and a hyaluronic acid (HA) shell, designed for the codelivery of doxorubicin (DOX) and indocyanine green (ICG) to effectively treat HCC. These nanoparticles demonstrated remarkable physicochemical and colloidal stability, pH- and temperature-responsive release, enhanced cellular uptake, and drug retention within tumors. Upon near-infrared (NIR) irradiation, the photothermal conversion of ICG elevated local tumor temperatures up to 53.6 °C, enhancing apoptotic cell death significantly compared to chemotherapy alone (p < 0.05). Furthermore, the dual delivery system significantly enhanced therapeutic efficacy, as evidenced by a marked decrease in tumor growth in vivo compared to controls (p < 0.01). These findings illustrate that the HA/PβAE/DOX/ICG nanoparticles are not only able to precisely target tumor cells but also overcome the limitations associated with traditional chemotherapies and photothermal treatments, suggesting a promising avenue for clinical translation of cancer therapy.
Collapse
Affiliation(s)
- Sajid Iqbal
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoxiao Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Muhammad Sohail
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Ji Ma
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Haiyong Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Gaofeng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| |
Collapse
|
15
|
Al Hoque A, Kannaboina P, Abraham Y, Mehedi M, Sibi MP, Quadir M. Furan-rich, biobased transfection agents as potential oligomeric candidates for intracellular plasmid DNA delivery. RSC Adv 2024; 14:32637-32647. [PMID: 39411251 PMCID: PMC11476585 DOI: 10.1039/d4ra05978f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Biobased, DNA delivery vectors have been synthesized with a core motif composed of 2,5-bishydroxymethylfuran (BHMF) readily available from an important biomass feedstock 5-hydroxymethyl furfural (HMF). To generate the product, BHMF was first converted to 2,5-furan bishydroxymethyl diacrylate (2,5-FDA), which was later conjugated with different types of secondary amines. Rich in tertiary nitrogen, these oligomeric FDA-amino esters demonstrated stable electrostatic interactions with negatively charged plasmid DNA in an aqueous environment. We evaluated synthetic routes toward these plasmid DNA-binding amino esters (pFASTs), identified their nanoscale features, and attempted to establish their structure-property relationship in the context of the DNA delivery. Our preliminary studies show that the pFASTs formed stable complexes with the plasmid DNA. Dynamic light scattering indicated that the DNA polyplexes of pFASTs have hydrodynamic diameters within the size range of 100-150 nm with a surface charge (ζ-potential) ranging from -10 to +33 mV, depending on pFAST type. These oligomeric amino esters rich in furan motif were also found to successfully transfect the GFP-expressing plasmid DNA intracellularly. Collectively, this study establishes a new route to produce DNA transfection agents from sustainable resources that can be used for transferring genetic materials for humans, veterinary, and agrochemical purposes.
Collapse
Affiliation(s)
- Ashique Al Hoque
- Department of Coatings and Polymeric Materials, North Dakota State University Fargo ND 58108 USA +1-701-231-6283
- Department of Pharmaceutical Technology, Jadavpur University Kolkata India
| | - Prakash Kannaboina
- Department of Chemistry Biochemistry, North Dakota State University Fargo ND 58108 USA
| | - Yeabstega Abraham
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Grand Forks ND 58202 USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Grand Forks ND 58202 USA
| | - Mukund P Sibi
- Department of Chemistry Biochemistry, North Dakota State University Fargo ND 58108 USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University Fargo ND 58108 USA +1-701-231-6283
| |
Collapse
|
16
|
Chen B, Ren Q, Jiang P, Wu Q, Shuai Q, Yan Y. Combinatorial Synthesis of Alkyl Chain-Capped Poly(β-Amino Ester)s for Effective siRNA Delivery. Macromol Biosci 2024; 24:e2400168. [PMID: 39052313 DOI: 10.1002/mabi.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Poly (β-amino ester) (PBAE) is a class of biodegradable polymers containing ester bonds in their main chain, extensively investigated as cationic polymer carriers for siRNA. Most current PBAE carriers rely on termination with hydrophilic or charged amines. In this study, a polymer platform consisting of 168 PBAE polymers with hydrophobic alkyl chain terminals is constructed through sequential aza-Michael addition. A large number of effective carriers are identified through in vitro screening of the PBAE platform for siLuc delivery to HeLa-Luc cells. Specifically, PA8-C6 and PA8-C8 achieve remarkable gene knockdown efficacies of up to 80% with low cytotoxicity. Certain materials from the PA2 and PA5 series demonstrate potent siRNA delivery capabilities associated with elevated cytotoxicity. The pKa value of PBAE is predominantly determined by the hydrophilic amine side chains rather than the end-capping groups. A pKa range of ≈6.2-6.5 may contribute to the excellent delivery capability for PA8 series carriers. The co-formulation of PBAE carriers with helper lipids leads to the reduced size and surface charges of the polyplex NPs with siRNA, consequently decreasing the cytotoxicity and enhancing siRNA delivery efficacy. These findings hold significant implications for the development of novel degradable polymer carriers for siRNA delivery.
Collapse
Affiliation(s)
- Baiqiu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiong Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qi Shuai
- College of Pharmaceutical Sciences and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
17
|
Bui TA, Mei H, Sang R, Ortega DG, Deng W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. EBioMedicine 2024; 106:105266. [PMID: 39094262 PMCID: PMC11345408 DOI: 10.1016/j.ebiom.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a ground-breaking immunotherapeutic approach in cancer treatment. To overcome the complexity and high manufacturing cost associated with current ex vivo CAR T cell therapy products, alternative strategies to produce CAR T cells directly in the body have been developed in recent years. These strategies involve the direct infusion of CAR genes via engineered nanocarriers or viral vectors to generate CAR T cells in situ. This review offers a comprehensive overview of recent advancements in the development of T cell-targeted CAR generation in situ. Additionally, it identifies the challenges associated with in vivo CAR T method and potential strategies to overcome these issues.
Collapse
Affiliation(s)
- Thuy Anh Bui
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Whitlam Orthopaedic Research Centre, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Haoqi Mei
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rui Sang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - David Gallego Ortega
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Kromer AE, Sieber-Schäfer F, Farfan Benito J, Merkel OM. Design of Experiments Grants Mechanistic Insights into the Synthesis of Spermine-Containing PBAE Copolymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37545-37554. [PMID: 38985802 PMCID: PMC11284743 DOI: 10.1021/acsami.4c06079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Successful therapeutic delivery of siRNA with polymeric nanoparticles seems to be a promising but not vastly understood and complicated goal to achieve. Despite years of research, no polymer-based delivery system has been approved for clinical use. Polymers, as a delivery system, exhibit considerable complexity and variability, making their consistent production a challenging endeavor. However, a better understanding of the polymerization process of polymer excipients may improve the reproducibility and material quality for more efficient use in drug products. Here, we present a combination of Design of Experiment and Python-scripted data science to establish a prediction model, from which important parameters can be extracted that influence the synthesis results of polybeta-amino esters (PBAEs), a common type of polymer used preclinically for nucleic acid delivery. We synthesized a library of 27 polymers, each one at different temperatures with different reaction times and educt ratios using an orthogonal central composite (CCO-) design. This design allowed a detailed characterization of factor importance and interactions using a very limited number of experiments. We characterized the polymers by analyzing the resulting composition by 1H-NMR and the size distribution by GPC measurements. To further understand the complex mechanism of block polymerization in a one-pot synthesis, we developed a Python script that helps us to understand possible step-growth steps. We successfully developed and validated a predictive response surface and gathered a deeper understanding of the synthesis of polyspermine-based amphiphilic PBAEs.
Collapse
Affiliation(s)
- Adrian
P. E. Kromer
- Pharmaceutical
Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany
| | - Felix Sieber-Schäfer
- Pharmaceutical
Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany
| | - Johan Farfan Benito
- Pharmaceutical
Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany
- Université
Paris Cité, Paris 75015, France
| | - Olivia M. Merkel
- Pharmaceutical
Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany
- Center
for NanoScience Munich (CeNS), Munich 81377, Germany
- Cluster
for Nucleic Acid Therapeutics Munich (CNATM), Munich 81377, Germany
| |
Collapse
|
19
|
Antoniou V, Mourelatou EA, Galatou E, Avgoustakis K, Hatziantoniou S. Gene Therapy with Chitosan Nanoparticles: Modern Formulation Strategies for Enhancing Cancer Cell Transfection. Pharmaceutics 2024; 16:868. [PMID: 39065565 PMCID: PMC11280172 DOI: 10.3390/pharmaceutics16070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gene therapy involves the introduction of exogenous genetic material into host tissues to modify gene expression or cellular properties for therapeutic purposes. Initially developed to address genetic disorders, gene therapy has expanded to encompass a wide range of conditions, notably cancer. Effective delivery of nucleic acids into target cells relies on carriers, with non-viral systems gaining prominence due to their enhanced safety profile compared to viral vectors. Chitosan, a biopolymer, is frequently utilized to fabricate nanoparticles for various biomedical applications, particularly nucleic acid delivery, with recent emphasis on targeting cancer cells. Chitosan's positively charged amino groups enable the formation of stable nanocomplexes with nucleic acids and facilitate interaction with cell membranes, thereby promoting cellular uptake. Despite these advantages, chitosan-based nanoparticles face challenges such as poor solubility at physiological pH, non-specificity for cancer cells, and inefficient endosomal escape, limiting their transfection efficiency. To address these limitations, researchers have focused on enhancing the functionality of chitosan nanoparticles. Strategies include improving stability, enhancing targeting specificity, increasing cellular uptake efficiency, and promoting endosomal escape. This review critically evaluates recent formulation approaches within these categories, aiming to provide insights into advancing chitosan-based gene delivery systems for improved efficacy, particularly in cancer therapy.
Collapse
Affiliation(s)
- Varvara Antoniou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
| | - Elena A. Mourelatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Eleftheria Galatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| |
Collapse
|
20
|
Chu Z, Li Z, Yong H, Che D, Li B, Yan C, Zhou T, Wang X, Feng Y, Guo K, Geng S. Enhanced gene transfection and induction of apoptosis in melanoma cells by branched poly(β-amino ester)s with uniformly distributed branching units. J Control Release 2024; 367:197-208. [PMID: 38246205 DOI: 10.1016/j.jconrel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Melanoma, one of the most devastating forms of skin cancer, currently lacks effective clinical treatments. Delivery of functional genes to modulate specific protein expression to induce melanoma cell apoptosis could be a promising therapeutic approach. However, transfecting melanoma cells using non-viral methods, particularly with cationic polymers, presents significant challenges. In this study, we synthesized three branched poly(β-amino ester)s (HPAEs) with evenly distributed branching units but varying space lengths through a two-step "oligomer combination" strategy. The unique topological structure enables HPAEs to condense DNA to form nano-sized polyplexes with favorable physiochemical properties. Notably, HPAEs, especially HPAE-2 with intermediate branching unit space length, demonstrated significantly higher gene transfection efficiency than the leading commercial gene transfection reagent, jetPRIME, in human melanoma cells. Furthermore, HPAE-2 efficiently delivered the Bax-encoding plasmid into melanoma cells, leading to a pronounced pro-apoptotic effect without causing noticeable cytotoxicity. This study establishes a potent non-viral platform for gene transfection of melanoma cells by harnessing the distribution of branching units, paving the way for potential clinical applications of gene therapy in melanoma treatment.
Collapse
Affiliation(s)
- Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Delu Che
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bingjie Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuqing Feng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
21
|
Ding J, Zhang H, Dai T, Gao X, Yin Z, Wang Q, Long M, Tan S. TPGS-b-PBAE Copolymer-Based Polyplex Nanoparticles for Gene Delivery and Transfection In Vivo and In Vitro. Pharmaceutics 2024; 16:213. [PMID: 38399267 PMCID: PMC10891721 DOI: 10.3390/pharmaceutics16020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA. TPGS-b-PBAE (TBP) copolymers with varying feeding molar ratios were synthesised to obtain products of different molecular weights. Their gene transfection efficiency was subsequently evaluated in HEK 293T cells using green fluorescent protein plasmid (GFP) as the model because free GFP is unable to easily pass through the cell membrane and then express as a protein. The particle size, ζ-potential, and morphology of the TBP2-GFP polyplex NPs were characterised, and plasmid incorporation was confirmed through gel retardation assays. The TBP2-GFP polyplex NPs effectively transfected multiple cells with low cytotoxicity, including HEK 293T, HeLa, Me180, SiHa, SCC-7 and C666-1 cells. We constructed a MUC2 (Mucin2)-targeting CRISPR/cas9 gene editing system in HEK 293T cells, with gene disruption supported by oligodeoxynucleotide (ODN) insertion in vitro. Additionally, we developed an LMP1 (latent membrane protein 1)-targeting CRISPR/cas9 gene editing system in LMP1-overexpressing SCC7 cells, which was designed to cleave fragments expressing the LMP1 protein (related to Epstein-Barr virus infection) and thus to inhibit the growth of the cells in vivo. As evidenced by in vitro and in vivo experiments, this system has great potential for gene therapy applications.
Collapse
Affiliation(s)
- Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Handan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Tianli Dai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (Q.W.)
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (Q.W.)
| | - Mengqi Long
- Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-sen University, Meihua 52nd Road, Xiangzhou District, Zhuhai 510009, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| |
Collapse
|
22
|
Pontes AP, van der Wal S, Roelofs K, Grobbink A, Creemers LB, Engbersen JFJ, Rip J. A poly(amidoamine)-based polymeric nanoparticle platform for efficient in vivo delivery of mRNA. BIOMATERIALS ADVANCES 2024; 156:213713. [PMID: 38071770 DOI: 10.1016/j.bioadv.2023.213713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 12/27/2023]
Abstract
The successful use of mRNA vaccines enabled and accelerated the development of several new vaccine candidates and therapeutics based on the delivery of mRNA. In this study, we developed bioreducible poly(amidoamine)-based polymeric nanoparticles (PAA PNPs) for the delivery of mRNA with improved transfection efficiency. The polymers were functionalized with chloroquinoline (Q) moieties for improved endosomal escape and further stabilization of the mRNA-polymer construct. Moreover, these PAAQ polymers were covalently assembled around a core of multi-armed ethylenediamine (Mw 800, 2 % w/w) to form a pre-organized polymeric scaffolded PAAQ (ps-PAAQ) as a precursor for the formation of the mRNA-loaded nanoparticles. Transfection of mammalian cell lines with EGFP mRNA loaded into these PNPs showed a favorable effect of the Q incorporation on GFP protein expression. Additionally, these ps-PAAQ NPs were co-formulated with PEG-polymer coatings to shield the positive surface charge for increased stability and better in vivo applicability. The ps-PAAQ NPs coated with PEG-polymer displayed smaller particle size, electroneutral surface charge, and higher thermal stability. Importantly, these nanoparticles with both Q and PEG-polymer coating induced significantly higher luciferase activity in mice muscle than uncoated ps-PAAQ NPs, following intramuscular injection of PNPs loaded with luciferase mRNA. The developed technology is broadly applicable and holds promise for the development of new nucleotide-based vaccines and therapeutics in a range of infectious and chronic diseases.
Collapse
Affiliation(s)
- Adriano P Pontes
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands
| | | | - Karin Roelofs
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands
| | - Anne Grobbink
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands
| | - Laura B Creemers
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Johan F J Engbersen
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands; Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Jaap Rip
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands.
| |
Collapse
|
23
|
Sharma R, Shrivastava P, Gautam L, Agrawal U, Mohana Lakshmi S, Vyas SP. Rationally designed block copolymer-based nanoarchitectures: An emerging paradigm for effective drug delivery. Drug Discov Today 2023; 28:103786. [PMID: 37742910 DOI: 10.1016/j.drudis.2023.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Various polymeric materials have been investigated to produce unique modes of delivery for drug modules to achieve either temporal or spatial control of bioactives delivery. However, after intravenous administration, phagocytic cells quickly remove these nanostructures from the systemic circulation via the reticuloendothelial system (RES). To overcome these concerns, ecofriendly block copolymers are increasingly being investigated as innovative carriers for the delivery of bioactives. In this review, we discuss the design, fabrication techniques, and recent advances in the development of block copolymers and their applications as drug carrier systems to improve the physicochemical and pharmacological attributes of bioactives.
Collapse
Affiliation(s)
- Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India; Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228
| | - Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|