1
|
Kaur SD, Singh AD, Kapoor DN. Current perspectives on Vaxinia virus: an immuno-oncolytic vector in cancer therapy. Med Oncol 2023; 40:205. [PMID: 37318642 DOI: 10.1007/s12032-023-02068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
Viruses are being researched as cutting-edge therapeutic agents in cancer due to their selective oncolytic action against malignancies. Immuno-oncolytic viruses are a potential category of anticancer treatments because they have natural features that allow viruses to efficiently infect, replicate, and destroy cancer cells. Oncolytic viruses may be genetically modified; engineers can use them as a platform to develop additional therapy modalities that overcome the limitations of current treatment approaches. In recent years, researchers have made great strides in the understanding relationship between cancer and the immune system. An increasing corpus of research is functioning on the immunomodulatory functions of oncolytic virus (OVs). Several clinical studies are currently underway to determine the efficacy of these immuno-oncolytic viruses. These studies are exploring the design of these platforms to elicit the desired immune response and to supplement the available immunotherapeutic modalities to render immune-resistant malignancies amenable to treatment. This review will discuss current research and clinical developments on Vaxinia immuno-oncolytic virus.
Collapse
Affiliation(s)
- Simran Deep Kaur
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Aman Deep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142048, India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
2
|
Bednarczyk M, Peters JK, Kasprzyk R, Starek J, Warminski M, Spiewla T, Mugridge JS, Gross JD, Jemielity J, Kowalska J. Fluorescence-Based Activity Screening Assay Reveals Small Molecule Inhibitors of Vaccinia Virus mRNA Decapping Enzyme D9. ACS Chem Biol 2022; 17:1460-1471. [PMID: 35576528 PMCID: PMC9207806 DOI: 10.1021/acschembio.2c00049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccinia virus (VACV) represents a family of poxviruses, which possess their own decapping machinery as a part of their strategy to eliminate host mRNAs and evade the innate immune response. D9 is one of the two encoded VACV decapping enzymes that is responsible for cap removal from the 5' end of both host mRNA transcripts and viral double-stranded RNAs. Little is known about the structural requirements for D9 inhibition by small molecules. Here, we identified a minimal D9 substrate and used it to develop a real-time fluorescence assay for inhibitor discovery and characterization. We screened a panel of nucleotide-derived substrate analogues and pharmacologically active candidates to identify several compounds with nano- and low micromolar IC50 values. m7GpppCH2p was the most potent nucleotide inhibitor (IC50 ∼ 0.08 μM), and seliciclib and CP-100356 were the most potent drug-like compounds (IC50 0.57 and 2.7 μM, respectively). The hits identified through screening inhibited D9-catalyzed decapping of 26 nt RNA substrates but were not active toward VACV D10 or human decapping enzyme, Dcp1/2. The inhibition mode for one of the compounds (CP-100356) was elucidated based on the X-ray cocrystal structure, opening the possibility for structure-based design of novel D9 inhibitors and binding probes.
Collapse
Affiliation(s)
- Marcelina Bednarczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Jessica K. Peters
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Jagoda Starek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Jeffrey S. Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| |
Collapse
|
3
|
Peters JK, Tibble RW, Warminski M, Jemielity J, Gross JD. Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis. Structure 2022; 30:721-732.e4. [PMID: 35290794 PMCID: PMC9081138 DOI: 10.1016/j.str.2022.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 02/16/2022] [Indexed: 01/06/2023]
Abstract
Poxviruses encode decapping enzymes that remove the protective 5' cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral double-stranded RNA (dsRNA), a trigger for antiviral responses. Here we present a high-resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a domain organization different from other decapping enzymes in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5' mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap-binding proteins VP39, eIF4E, and CBP20, and distinct from eukaryotic decapping enzyme Dcp2.
Collapse
Affiliation(s)
- Jessica K Peters
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan W Tibble
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Rodriguez W, Macveigh-Fierro D, Miles J, Muller M. Fated for decay: RNA elements targeted by viral endonucleases. Semin Cell Dev Biol 2020; 111:119-125. [PMID: 32522410 PMCID: PMC7276228 DOI: 10.1016/j.semcdb.2020.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
For over a decade, studies of messenger RNA regulation have revealed an unprecedented level of connectivity between the RNA pool and global gene expression. These connections are underpinned by a vast array of RNA elements that coordinate RNA-protein and RNA-RNA interactions, each directing mRNA fate from transcription to translation. Consequently, viruses have evolved an arsenal of strategies to target these RNA features and ultimately take control of the pathways they influence, and these strategies contribute to the global shutdown of the host gene expression machinery known as “Host Shutoff”. This takeover of the host cell is mechanistically orchestrated by a number of non-homologous virally encoded endoribonucleases. Recent large-scale screens estimate that over 70 % of the host transcriptome is decimated by the expression of these viral nucleases. While this takeover strategy seems extraordinarily well conserved, each viral endonuclease has evolved to target distinct mRNA elements. Herein, we will explore each of these RNA structures/sequence features that render messenger RNA susceptible or resistant to viral endonuclease cleavage. By further understanding these targeting and escape mechanisms we will continue to unravel untold depths of cellular RNA regulation that further underscores the integral relationship between RNA fate and the fate of the cell.
Collapse
Affiliation(s)
- William Rodriguez
- Microbiology Department, University of Massachusetts, Amherst, MA, United States
| | | | - Jacob Miles
- Microbiology Department, University of Massachusetts, Amherst, MA, United States
| | - Mandy Muller
- Microbiology Department, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
5
|
Abstract
INTRODUCTION Over the last decade, advances in biological therapies have resulted in remarkable clinical responses for the treatment of some previously incurable cancers. Oncolytic virotherapy is one of these promising novel strategies for cancer therapy. A successful oncolytic virus promotes tumor cell oncolysis and elicits a robust long-term anti-tumor immunity. AREAS COVERED Oncolytic poxviruses (Vaccinia virus and Myxoma virus) demonstrated encouraging results in multiple pre-clinical tumor models and some clinical trials for the treatment of various cancers. This review summarizes the advances made on poxvirus oncolytic virotherapy in the last five years. EXPERT OPINION Many challenges remain in poxvirus oncolytic virotherapy. Two key goals to achieve are enhancing the efficiency of viral delivery to tumor sites and overcoming local tumor immune-evasion. Additional efforts are necessary to explore the best combination of virotherapy with standard available treatments, particularly immunotherapies. By addressing these issues, this new modality will continue to improve as an adjunct biotherapy to treat malignant diseases.
Collapse
Affiliation(s)
- Lino E Torres-Domínguez
- a Biodesign Center for Immunotherapy, Vaccines and Virotherapy , Arizona State University , Tempe , AZ , USA
| | - Grant McFadden
- a Biodesign Center for Immunotherapy, Vaccines and Virotherapy , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
6
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Liu C, Xu J, Wen F, Yang F, Li X, Geng D, Li L, Chen J, Zheng J. Upregulation of syncytin-1 promotes invasion and metastasis by activating epithelial-mesenchymal transition-related pathway in endometrial carcinoma. Onco Targets Ther 2018; 12:31-40. [PMID: 30588028 PMCID: PMC6301305 DOI: 10.2147/ott.s191041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Endometrial carcinoma (EC) is the most common and lethal malignancy worldwide. Syncytin-1 is expressed in multiple types of cancer. However, the expression pattern and potential mechanism of syncytin-1 and its clinical significance in EC remain unclear. Materials and methods We analyzed 130 primary EC specimens from Binzhou Medical University to investigate the clinical role of syncytin-1 in EC by using different advanced pathological stages of EC tissues. Kaplan–Meier analysis was used to measure the overall survival of EC patients. Syncytin-1 expression was analyzed by Western blot assays in HECCL-1 and RL-95-2 cells. Cell proliferation, cycle, migration, and invasion abilities were detected by cell counting kit-8, flow cytometry, and transwell assays. AKT and epithelial-mesenchymal transition (EMT)-related genes were assessed by Western blot assays in HECCL-1 and RL-95-2 cells. Results Syncytin-1 was upregulated in EC tissues and cells and was related to clinical stages, expression of ER, Ki-67, and overall survival of EC. Functional research revealed that overexpression of syncytin-1 can promote cell proliferation, cell cycle progression, and the migration and invasion of EC cells. Suppression of syncytin-1 expression also inhibited cell proliferation and apoptosis in vitro. The expression of syncytin-1 substantially improved the expression levels of EMT-related genes (vimentin, E-cadherin, slug, and ZEB1) but significantly decreased those of epithelial markers (N-cadherin and snail). In addition, we found that syncytin-1 was not correlated with AKT-related genes (total-AKT, p-AKT, and vinculin). Conclusion Our results suggested that syncytin-1 may promote aggressive behavior and can serve as a novel prognostic biomarker for EC. Our study provides new insights into the regulatory mechanism of EMT signaling.
Collapse
Affiliation(s)
- Changmin Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Jiqin Xu
- Department of Obstetrics and Gynecology, Shuyang People's Hospital, Affiliated to Xuzhou Medical University, Jiangsu, China
| | - Feifei Wen
- Department of Pathology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Fangfang Yang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Xiaoming Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dianzhong Geng
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Lei Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Jiming Chen
- Department of Obstetrics and Gynecology, The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu, China,
| | - Jing Zheng
- Department of Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China,
| |
Collapse
|
8
|
Du S, Liu X, Cai Q. Viral-Mediated mRNA Degradation for Pathogenesis. Biomedicines 2018; 6:biomedicines6040111. [PMID: 30501096 PMCID: PMC6315618 DOI: 10.3390/biomedicines6040111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
Cellular RNA decay machinery plays a vital role in regulating gene expression by altering the stability of mRNAs in response to external stresses, including viral infection. In the primary infection, viruses often conquer the host cell’s antiviral immune response by controlling the inherently cellular mRNA degradation machinery to facilitate viral gene expression and establish a successful infection. This review summarizes the current knowledge about the diverse strategies of viral-mediated regulatory RNA shutoff for pathogenesis, and particularly sheds a light on the mechanisms that viruses evolve to elude immune surveillance during infection.
Collapse
Affiliation(s)
- Shujuan Du
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiaoqing Liu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Meade N, DiGiuseppe S, Walsh D. Translational control during poxvirus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1515. [PMID: 30381906 DOI: 10.1002/wrna.1515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Poxviruses are an unusual family of large double-stranded (ds) DNA viruses that exhibit an incredible degree of self-sufficiency and complexity in their replication and immune evasion strategies. Indeed, amongst their approximately 200 open reading frames (ORFs), poxviruses encode approximately 100 immunomodulatory proteins to counter host responses along with complete DNA synthesis, transcription, mRNA processing and cytoplasmic redox systems that enable them to replicate exclusively in the cytoplasm of infected cells. However, like all other viruses poxviruses do not encode ribosomes and therefore remain completely dependent on gaining access to the host translational machinery in order to synthesize viral proteins. Early studies of these intriguing viruses helped discover the mRNA cap and polyadenylated (polyA) tail that we now know to be present on most eukaryotic messages and which play fundamental roles in mRNA translation, while more recent studies have begun to reveal the remarkable lengths poxviruses go to in order to control both host and viral protein synthesis. Here, we discuss some of the central strategies used by poxviruses and the broader battle that ensues with the host cell to control the translation system, the outcome of which ultimately dictates the fate of infection. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|