1
|
Wu L, Lan D, Sun B, Su R, Pei F, Kuang Z, Su Y, Lin S, Wang X, Zhang S, Chen X, Jia J, Zeng C. Luoshi Neiyi Prescription inhibits estradiol synthesis and inflammation in endometriosis through the HIF1A/EZH2/SF-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118659. [PMID: 39098622 DOI: 10.1016/j.jep.2024.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endometriosis (EMS) is a common gynecological disease that causes dysmenorrhea, chronic pelvic pain and infertility. Luoshi Neiyi Prescription (LSNYP), a traditional Chinese medicine (TCM) formula, is used to relieve EMS in the clinic. AIMS This study aimed to examine the active components of LSNYP and the possible mechanism involved in its treatment of EMS. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was used to identify the chemical components of LSNYP. Human primary ectopic endometrial stromal cells (ecESCs) and eutopic endometrial stromal cells (euESCs) were isolated, and the expression levels of hypoxia inducible factor 1A (HIF1A), enhancer of zeste homolog 2 (EZH2) and steroidogenic factor 1 (SF-1) were detected by immunofluorescence and qPCR. Cobalt chloride (CoCl2) was utilized to construct an in vitro hypoxic environment, and lentiviruses were engineered to downregulate HIF1A and EZH2 and upregulate EZH2. Subsequently, the expression levels of HIF1A, EZH2, and SF-1 were measured using qPCR or western blotting. The binding of EZH2 to the SF-1 locus in ESCs was examined via ChIP. Furthermore, the effects of LSNYP on the HIF1A/EZH2/SF-1 pathway were evaluated both in vitro and in vivo. RESULTS A total of 185 components were identified in LSNYP. The protein and gene expression levels of HIF1A and SF-1 were increased, whereas those of EZH2 were decreased in ecESCs. After treating euESCs with 50 μmol L-1 CoCl2 for 24 h, cell viability and estradiol (E2) production were enhanced. Hypoxia decreased EZH2 protein expression, while si-HIF1A increased it. SF-1 was increased when EZH2 was downregulated in normal and hypoxic environments, whereas the overexpression of EZH2 led to a decrease in SF-1 expression. ChIP revealed that hypoxia reduced EZH2 binding to the SF-1 locus in euESCs. In vitro, LSNYP-containing serum decreased E2 and prostaglandin E2 (PGE2) production, inhibited cell proliferation and invasion, and reduced the expression of HIF1A, SF-1, steroidogenic acute regulatory protein (StAR), and aromatase cytochrome P450 (P450arom). In vivo, LSNYP suppressed inflammation and adhesion and inhibited the HIF1A/EZH2/SF-1 pathway in endometriotic tissues. CONCLUSIONS LSNYP may exert pharmacological effects on EMS by inhibiting E2 synthesis and inflammation through regulation of the HIF1A/EZH2/SF-1 pathway. These results suggest that LSNYP may be a promising candidate for the treatment of EMS.
Collapse
Affiliation(s)
- Lizheng Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Dantong Lan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rui Su
- Department of Gynecology, Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, Guangdong, 510801, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Zijun Kuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yixuan Su
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xuanyin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Siyuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| |
Collapse
|
2
|
Wu L, Lin S, Hu Y, Jing S, Sun B, Chen X, Jia J, Zeng C, Pei F. Potential mechanism of Luoshi Neiyi prescription in endometriosis based on serum pharmacochemistry and network pharmacology. Front Pharmacol 2024; 15:1395160. [PMID: 39135784 PMCID: PMC11317381 DOI: 10.3389/fphar.2024.1395160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Endometriosis (EMs) is characterized by ectopic growth of active endometrial tissue outside the uterus. The Luoshi Neiyi prescription (LSNYP) has been extensively used for treating EMs in China. However, data on the active chemical components of LSNYP are insufficient, and its pharmacological mechanism in EMs treatment remains unclear. This study aimed to explore the potential mechanism of LSNYP for EMs through network pharmacology based on the components absorbed into the blood. Methods Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze blood components, and a series of network pharmacology strategies were utilized to predict targets of these components and EMs. Protein-protein interaction (PPI) network analysis, component-target-disease network construction, gene ontology (GO) functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Additionally, molecular docking, molecular dynamics simulations, and in vitro and in vivo experiments were conducted to validate the HIF1A/EZH2/ANTXR2 pathway associated with hypoxic pathology in EMs. Results Thirty-four absorbed components suitable for network pharmacology analysis were identified, and core targets, such as interleukin 6, EGFR, HIF1A, and EZH2, were founded. Enrichment results indicated that treatment of EMs with LSNYP may involve the regulation of hypoxia and inflammatory-related signaling pathways and response to oxidative stress and transcription factor activity. Experimental results demonstrated that LSNYP could decrease the expression of HIF1A, ANTXR2, YAP1, CD44, and β-catenin, and increased EZH2 expression in ectopic endometrial stromal cells and endometriotic tissues. Molecular docking and molecular dynamics simulations manifested that there was stable combinatorial activity between core components and key targets of the HIF1A/EZH2/ANTXR2 pathway. Conclusion LSNYP may exert pharmacological effects on EMs via the HIF1A/EZH2/ANTXR2 pathway; hence, it is a natural herb-related therapy for EMs.
Collapse
Affiliation(s)
- Lizheng Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongjun Hu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shangwen Jing
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
He Q, Wan S, Jiang M, Li W, Zhang Y, Zhang L, Wu M, Lin J, Zou L, Hu Y. Exploring the therapeutic potential of tonic Chinese herbal medicine for gynecological disorders: An updated review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118144. [PMID: 38583732 DOI: 10.1016/j.jep.2024.118144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynecological disorders have the characteristics of high incidence and recurrence rate, which sorely affects female's health. Since ancient times, traditional Chinese medicine (TCM), especially tonic medicine (TM), has been used to deal with gynecological disorders and has unique advantages in effectiveness and safety. AIM OF THE REVIEW In this article, we aim to summarize the research progress of TMs in-vivo and in-vitro, including their formulas, single herbs, and compounds, for gynecological disorders treatment in recent years, and to offer a reference for further research on the treatment of gynecological disorders and their clinical application in the treatment of TMs. MATERIALS AND METHODS Relevant information on the therapeutic potential of TMs against gynecological disorders was collected from several scientific databases including Web of Science, PubMed, CNKI, Google Scholar and other literature sources. RESULTS So far, there are 46 different formulas, 3 single herbs, and 24 compounds used in the treatment of various gynecological disorders such as premature ovarian failure, endometriosis breast cancer, and so on. Many experimental results have shown that TMs can regulate apoptosis, invasion, migration, oxidative stress, and the immune system. In addition, the effect of TMs in gynecological disorders treatment may be due to the regulation of VEGF, PI3K-AKT, MAPK, NF-κB, and other signaling pathways. Apparently, TMs play an active role in the treatment of gynecological disorders by regulating these signaling pathways. CONCLUSION TMs have a curative effect on the prevention and treatment of gynecological disorders. It could relieve and treat gynecological disorders through a variety of pathways. Therefore, the appropriate TM treatment program makes it more possible to treat gynecological disorders.
Collapse
Affiliation(s)
- Qizhi He
- School of Pharmacy, Zunyi Medical University, Guizhou, China; School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Shun Wan
- Hunan University of Chinese Medicine, Changsha, China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Yan Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Lele Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Mengyao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Jie Lin
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Pharmacy, Zunyi Medical University, Guizhou, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| | - Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, China.
| |
Collapse
|
4
|
Ding D, Liu S, Liu F, Hao S, Zhang C, Shen Y, Wei W, Chen Q, Han F. Exploring the role of Chinese herbal medicine in the long-term management of postoperative ovarian endometriotic cysts: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1376037. [PMID: 38910886 PMCID: PMC11190181 DOI: 10.3389/fphar.2024.1376037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Background Ovarian endometriotic cysts (OEC) represent the primary manifestation of endometriosis, constituting a hormonally dependent inflammatory disorder in gynecology. It significantly affects the quality of life and reproductive health of women. It is worth noting that traditional Chinese medicine (TCM), especially Chinese herbal medicine (CHM), has been widely applied in mainland China due to its unique therapeutic system and commendable clinical efficacy, bringing new hope for preventing and managing OEC. Objective This study aims to evaluate the efficacy and safety of CHM in the management of postoperative OEC. Simultaneously, it seeks to explore the medication laws, therapeutic principles, and specific treatment mechanisms of CHM. Methods Eight electronic databases were searched from their inception to 01 November 2023. Randomized controlled trials (RCTs) assessing the therapeutic effects and safety of CHM for postoperative OEC were included. The risk of bias for each trial was assessed using the Cochrane Collaboration's tool. The certainty of the evidence was evaluated using the GRADE profiler 3.2. Additionally, we extracted formulation from the included studies, conducting a thorough analysis. Results (ⅰ) Twenty-two RCTs involving 1938 patients were included. In terms of the primary efficacy outcome, the CHM group demonstrated a potentially lower recurrence rate compared to both control (odds ratio (OR) = 0.25; 95% confidence intervals (CI): 0.10-0.64) and conventional western medicine (CWM) (OR = 0.26; 95% CI: 0.11-0.65) groups. Furthermore, the joint application of CHM and CWM resulted in a significant reduction in the recurrence rate (OR = 0.26; 95% CI: 0.17-0.40). (ⅱ) Regarding secondary efficacy outcomes, (a) Total clinical efficacy rate: CHM showcased an augmentation in clinical effectiveness compared to both the control (OR = 4.23; 95% CI: 1.12-15.99) and CWM (OR = 2.94; 95% CI: 1.34-6.43) groups. The combined administration of CHM and CWM substantially enhanced overall clinical effectiveness (OR = 3.44; 95% CI: 2.37-5.00). (b) VAS Score: CHM exhibited the capacity to diminish the VAS score in comparison to surgery alone (Mean difference (MD) = -0.86; 95% CI: -1.01 to -0.71). Nevertheless, no substantial advantage was observed compared to CWM alone (MD = -0.16; 95% CI: -0.49 to 0.17). The integration of CHM with CWM effectively ameliorated pain symptoms (MD = -0.87; 95% CI: -1.10 to -0.65). (c) Serum Level of Cancer antigen 125 (CA125): the CHM group potentially exhibited lower CA125 levels in comparison to CWM alone (MD = -11.08; 95% CI: -21.75 to -0.42). The combined intervention of CHM and CWM significantly decreased CA125 levels (MD = -5.31; 95% CI: -7.27 to -3.36). (d) Pregnancy Rate: CHM exhibited superiority in enhancing the pregnancy rate compared to surgery (OR = 3.95; 95% CI: 1.60-9.74) or CWM alone (OR = 3.31; 95% CI: 1.40-7.83). The combined utilization of CHM and CWM demonstrated the potential to enhance pregnancy rates compared to CWM (OR = 2.99; 95% CI: 1.28-6.98). Concerning safety outcome indicators, CHM effectively decreased the overall incidence of adverse events and, to a certain extent, alleviated perimenopausal symptoms as well as liver function impairment. (ⅲ) Most of CHMs were originated from classical Chinese herbal formulas. Prunus persica (L.) Batsch (Taoren), Angelica sinensis (Oliv.) Diels (Danggui), Salvia miltiorrhiza Bunge (Danshen), Paeonia lactiflora Pall. (Chishao), and Corydalis yanhusuo W.T.Wang (Yanhusuo) were most frequently used CHM. Conclusion CHM may be a viable choice in the long-term management of postoperative OEC, with the potential to enhance clinical efficacy while decreasing recurrence and adverse effects.
Collapse
Affiliation(s)
- Danni Ding
- Heilongjiang University of Chinese Medicine, First Clinical Medical College, Harbin, China
| | - Shaoxuan Liu
- Heilongjiang University of Chinese Medicine, First Clinical Medical College, Harbin, China
| | - Fangyuan Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songli Hao
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunlan Zhang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Shen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wei
- Heilongjiang University of Chinese Medicine, First Clinical Medical College, Harbin, China
| | - Qiaochu Chen
- Heilongjiang University of Chinese Medicine, First Clinical Medical College, Harbin, China
| | - Fengjuan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Liu H, Liang J, Dai X, Peng Y, Xiong W, Zhang L, Li X, Li W, Liu K, Bi S, Wang X, Zhang W, Liu Y. Transcriptome-wide N6-methyladenosine (m6A) methylation profiling of long non-coding RNAs in ovarian endometriosis. Genomics 2024; 116:110803. [PMID: 38290592 DOI: 10.1016/j.ygeno.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Keyi Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siyi Bi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Li Y, Meng X, Fu X, An M, Liu H, Ma Y, Li Q, Hao G, Ma Y, Zhang Y, Yang J, Chen J. Bushen Wenyang Huayu Decoction Targets TLR4/NF- κB Mediated Autophagy to Treat Endometriosis Effectively. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4263417. [PMID: 36437825 PMCID: PMC9699773 DOI: 10.1155/2022/4263417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 04/03/2025]
Abstract
Endometriosis has been found to be closely related to autophagy. This study aimed to elucidate the possible mechanism of Bushen Wenyang Huayu Decoction (BWHD) in treating endometriosis (EMs) by targeting TLR4/NF-κB-mediated autophagy. Autologous grafting was used to generate the EMs model in rats. Once the model was developed, BWHD high-dose and low-dose groups received intragastric administration of BWHD, and the gestrinone group served as a positive control. Immunofluorescence labeling and Western blotting were used for the protein expression of toll-like receptor 4 (TLR4), nuclear transcription factor-κB (NF-κB), Beclin-1, and selective autophagy connector protein P62 (P62). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze mRNA levels of TLR4, NF-κB, Beclin-1, and P62. We found that BWHD significantly reduced the size of ectopic lesions in rats with EMs, regulated reproductive hormone levels, and alleviated the cell autophagy level. It suggested that BWHD could be an effective treatment of EMs by targeting TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ying Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xin Meng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinping Fu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Mingli An
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Huimin Liu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiming Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qingxue Li
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang 050011, China
| | - Guorong Hao
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang 050011, China
| | - Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jian Yang
- Department of Rehabilitation, Youfu Hospital of Hebei Province, Shijiazhuang 050051, China
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
7
|
Mao Y, Meng L, Liu H, Lu Y, Yang K, Ouyang G, Ban Y, Chen S. Therapeutic potential of traditional Chinese medicine for vascular endothelial growth factor. J Zhejiang Univ Sci B 2022; 23:353-364. [PMID: 35557037 DOI: 10.1631/jzus.b2101055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is the main regulator of physiological angiogenesis during embryonic development, bone growth, and reproductive function, and it also participates in a series of pathological changes. Traditional Chinese medicine (TCM), with a history of more than 2000 years, has been widely used in clinical practice, while the exploration of its mechanisms has only begun. This review summarizes the research of recent years on the influence of TCM on VEGF. It is found that many Chinese medicines and recipes have a regulatory effect on VEGF, indicating that Chinese medicine has broad prospects as a complementary and alternative therapy, providing new treatment ideas for clinical applications and the theoretical basis for research on the mechanisms of TCM.
Collapse
Affiliation(s)
- Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| | - Yuting Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Guangze Ouyang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Yanran Ban
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Shuang Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| |
Collapse
|
8
|
Meresman GF, Götte M, Laschke MW. Plants as source of new therapies for endometriosis: a review of preclinical and clinical studies. Hum Reprod Update 2020; 27:367-392. [PMID: 33124671 DOI: 10.1093/humupd/dmaa039] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Given the disadvantages and limitations of current endometriosis therapy, there is a progressive increase in studies focusing on plant-derived agents as a natural treatment option with the intention of achieving high efficiency, avoiding adverse effects and preserving the chance for successful pregnancy. The heterogeneity of these studies in terms of evaluated agents, applied approaches and outcomes illustrates the need for an up-to-date summary and critical view on this rapidly growing field in endometriosis research. OBJECTIVE AND RATIONALE This review provides a comprehensive overview of plant-derived agents and natural treatment strategies that are under preclinical or clinical investigation and critically evaluates their potential for future endometriosis therapy. SEARCH METHODS An English language PubMed literature search was performed using variations of the terms 'endometriosis', 'natural therapy', 'herb/herbal', 'plant', 'flavonoid', 'polyphenol', 'phytochemical', 'bioactive', 'Kampo' and 'Chinese medicine'. It included both animal and human studies. Moreover, the Clinicaltrials.gov database was searched with the term 'endometriosis' for clinical trials on plant-derived agents. No restriction was set for the publication date. OUTCOMES Natural therapies can be assigned to three categories: (i) herbal extracts, (ii) specific plant-derived bioactive compounds and (iii) Chinese herbal medicine (CHM). Agents of the first category have been shown to exert anti-proliferative, anti-inflammatory, anti-angiogenic and anti-oxidant effects on endometrial cells and endometriotic lesions. However, the existing evidence supporting their use in endometriosis therapy is quite limited. The most studied specific plant-derived bioactive compounds are resveratrol, epigallocatechin-3-gallate, curcumin, puerarin, ginsenosides, xanthohumol, 4-hydroxybenzyl alcohol, quercetin, apigenin, carnosic acid, rosmarinic acid, wogonin, baicalein, parthenolide, andrographolide and cannabinoids, with solid evidence about their inhibitory activity in experimental endometriosis models. Their mechanisms of action include pleiotropic effects on known signalling effectors: oestrogen receptor-α, cyclooxygenase-2, interleukin-1 and -6, tumour necrosis factor-α, intercellular adhesion molecule-1, vascular endothelial growth factor, nuclear factor-kappa B, matrix metalloproteinases as well as reactive oxygen species (ROS) and apoptosis-related proteins. Numerous studies suggest that treatment with CHM is a good choice for endometriosis management. Even under clinical conditions, this approach has already been shown to decrease the size of endometriotic lesions, alleviate chronic pelvic pain and reduce postoperative recurrence rates. WIDER IMPLICATIONS The necessity to manage endometriosis as a chronic disease highlights the importance of identifying novel and affordable long-term safety therapeutics. For this purpose, natural plant-derived agents represent promising candidates. Many of these agents exhibit a pleiotropic action profile, which simultaneously inhibits fundamental processes in the pathogenesis of endometriosis, such as proliferation, inflammation, ROS formation and angiogenesis. Hence, their inclusion into multimodal treatment concepts may essentially contribute to increase the therapeutic efficiency and reduce the side effects of future endometriosis therapy.
Collapse
Affiliation(s)
- Gabriela F Meresman
- Institute of Biology and Experimental Medicine (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|