1
|
Blanco R, Quezada-Romegialli C, Muñoz JP. Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence. Viruses 2025; 17:324. [PMID: 40143252 PMCID: PMC11946124 DOI: 10.3390/v17030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Despite significant advancements in early diagnosis and treatment, breast cancer (BC) remains a major global health challenge. Ongoing research is essential to identify novel risk factors, implement innovative screening programs, and develop personalized treatment approaches. Among the various risk factors, infection with certain oncogenic viruses has emerged as a potential contributor to BC development. Increasing evidence suggests that bovine leukemia virus (BLV) may contribute to zoonotic infections in humans, with a potential role in BC initiation and progression. This review evaluates clinical and experimental data on BLV presence in both malignant and non-malignant breast tissues, exploring potential mechanisms through which BLV may access human breast tissue and contribute to carcinogenesis. Current data reveal a higher prevalence of BLV infection in BC tissues compared to non-tumor tissues, correlating with an increased risk of BC development. In this context, dairy and meat products from BLV-infected animals have been proposed as potential transmission sources. BLV-encoded proteins disrupt key oncogenic pathways, which support their possible role in breast carcinogenesis. However, the interpretation of these findings is limited by potential confounding factors such as genetic predisposition, environmental exposures, and dietary influences. Further research, including well-controlled epidemiological studies, longitudinal cohorts, and mechanistic investigations into BLV proteins in human breast cells, is necessary to determine its role in BC development.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile;
| | - Claudio Quezada-Romegialli
- Plataforma de Monitoreo Genómico y Ambiental, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
2
|
Brantley KD, Tamimi RM. The association between infectious agents and breast cancer: a review of the epidemiologic evidence. Breast Cancer Res Treat 2024; 207:235-252. [PMID: 38971906 DOI: 10.1007/s10549-024-07388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Several viruses have been casually linked to human cancers, including cervical, nasopharyngeal, liver, sarcoma, and Merkel cell carcinomas. However, the etiologic contribution of viral infections to breast cancer, the number one incident cancer among women worldwide, is not well established. Among studies exploring associations of viruses with breast cancer, potential linkages have been identified between breast cancer and five viruses: beta retrovirus, (i.e., mouse mammary tumor virus), human papillomavirus, Epstein Barr virus. bovine leukemia virus, and human cytomegalovirus. METHODS In this review, we provide a comprehensive evaluation of epidemiological ecologic, case-control, case-only, and cohort studies investigating these associations. We discuss results from several existing reviews and meta-analyses, evaluate epidemiological studies published in the past five years, and assess the relationship between these viruses and breast tumor clinicopathological factors. RESULTS The strongest epidemiological evidence for a viral role in breast cancer exists for MMTV and HPV, though limitations include lack of prospective studies for MMTV and potential detection bias in HPV studies. Viral detection challenges have limited studies of EBV and HCMV. Fewer studies have evaluated BLV, and though it has been associated with higher risk of breast cancer, sample sizes are quite small. CONCLUSION: While epidemiologic evidence exists for an association between these five viruses and breast cancer, various methodological issues and lack of prospective studies preclude robust conclusions. Future research should prioritize establishing a temporal relationship between infection and disease, minimizing misclassification of detection assays, and further exploring the influence of co-infections.
Collapse
Affiliation(s)
- Kristen D Brantley
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MS, USA.
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, USA
| |
Collapse
|
3
|
Lawson JS, Glenn WK. The viral origins of breast cancer. Infect Agent Cancer 2024; 19:39. [PMID: 39187871 PMCID: PMC11346025 DOI: 10.1186/s13027-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
During the past two decades evidence has been developed that indicates a handful of viruses with known oncogenic capacity, have potential roles in breast cancer. These viruses are mouse mammary tumour virus (MMTV - the cause of breast cancer in mice), high-risk human papilloma viruses (HPV-the cause of cervical cancer), Epstein Barr virus (EBV-the cause of lymphomas and naso-pharyngeal cancer) and bovine leukemia virus (BLV - the cause of cancers in cattle). These viruses may act alone or in combination. Each of these viruses are significantly more prevalent in breast cancers than in normal and benign breast tissue controls. The odds ratios for the prevalence of these viruses in breast cancer compared to normal and benign breast controls, are based on case control studies - MMTV 13·40, HPV 5.56, EBV 4·43 and BLV 2·57. The odds ratios for MMTV are much greater compared to the other three viruses. The evidence for a causal role for mouse mammary tumour virus and high risk for cancer human papilloma viruses in human breast cancer is increasingly comprehensive. The evidence for Epstein Barr virus and bovine leukemia virus is more limited. Overall the evidence is substantial in support of a viral cause of breast cancer.
Collapse
|
4
|
Mendoza W, Isaza JP, López L, López-Herrera A, Gutiérrez LA. Bovine Leukemia Virus molecular detection and associated factors among dairy herd workers in Antioquia, Colombia. Acta Trop 2024; 256:107253. [PMID: 38782108 DOI: 10.1016/j.actatropica.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The Bovine Leukemia Virus (BLV) affects mainly cattle, is transmitted by exposure to contaminated biological fluids, and generates lymphomas in 5 % of infected animals. The zoonotic potential of BLV has been studied, and it is currently unknown if it circulates in human workers on dairy herds in Antioquia. Objective: To determine the frequency of BLV detection, the genotypes of the virus, and the factors associated with its detection in workers for dairy herds in Antioquia, Colombia. Through a cross-sectional study in 51 dairy herds, 164 adults were recruited. A peripheral blood sample was collected from each participant for molecular detection of the BLV env and tax genes, and associated factors were explored through bivariate and multivariate mixed Poisson model analyses. The analysis showed that 82 % (134/164) of the participants were men, with an average age of 40. Using qPCR, the constitutive gene GAPDH was amplified to evaluate the presence of amplification inhibitors in the DNA samples. Using nested PCR, the amplification of the env viral gene was obtained in 13 % (22/164) of the total samples analyzed, while all the samples tested negative for tax. The amplicons of the env gene were sequenced, and the identity compatible with BLV was verified by BLAST analysis (NCBI). Using molecular phylogeny analysis, based on maximum likelihood and haplotype network analysis, it was identified that BLV genotype 1 is present in the evaluated population. 16 % (26/164) of the participants reported having ever had an accident with surgical material during work with cattle; this variable was associated with BLV positivity even after adjusting for other variables (PRa =2.70, 95 % CI= 1.01- 7.21). Considering that other studies have reported the circulation of BLV genotype 1 in cattle from this same region and the present report in humans from dairy herds, the results suggest a possible zoonotic transmission of BLV genotype 1 in Antioquia, reinforcing the need to continue investigating to determine the potential role of this virus as an etiological agent of disease in livestock farmers in the department.
Collapse
Affiliation(s)
- Willington Mendoza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Juan Pablo Isaza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Lucelly López
- Grupo de Investigación en Salud Pública, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Colombia
| | - Lina A Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia.
| |
Collapse
|
5
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
6
|
Mendoza W, Isaza JP, López L, López-Herrera A, Gutiérrez LA. Bovine leukemia virus detection in humans: A systematic review and meta-analysis. Virus Res 2023; 335:199186. [PMID: 37532141 PMCID: PMC10425403 DOI: 10.1016/j.virusres.2023.199186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
To review the available studies on the frequency of detection of the bovine leukemia virus in human samples, a systematic review with meta-analysis of the scientific literature was carried out, including papers published in English, Spanish, and Portuguese in 5 multidisciplinary databases. We collected information from different populations following a detailed and reproducible search protocol in which two researchers verified the inclusion and exclusion criteria. We identified 759 articles, of which only 33 met the inclusion criteria. Analyzed studies reported that the presence of the virus was measured in human samples, such as paraffin-embedded breast tissue and peripheral blood from 10,398 individuals, through serological and molecular techniques. An overall virus frequency of 27% (Ranging between 17 and 37%) was observed, with a high-frequency data heterogeneity between studies. The presence of this virus in different human biological samples suggests the need to investigate further its transmission route to humans and its potential role in developing and progressing diseases.
Collapse
Affiliation(s)
- Willington Mendoza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1a Nº 70-01, Bloque 11C - Oficina 417, Medellín, Colombia
| | - Juan Pablo Isaza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1a Nº 70-01, Bloque 11C - Oficina 417, Medellín, Colombia
| | - Lucelly López
- Grupo de Investigación en Salud Pública, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Colombia
| | - Lina A Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1a Nº 70-01, Bloque 11C - Oficina 417, Medellín, Colombia.
| |
Collapse
|
7
|
de Quadros DL, Ribeiro VA, Rezende MA, Maté YA, Gomes MA, Secchi K, Strottmann DM, Frandoloso R, Kreutz LC. Oncogenic viral DNA related to human breast cancer found on cattle milk and meat. Comp Immunol Microbiol Infect Dis 2023; 101:102053. [PMID: 37672958 DOI: 10.1016/j.cimid.2023.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Bovine leukemia virus (BLV) is a major cause of lymphoma in cattle and has been recently correlated to breast cancer in humans. How and whether BLV might reach humans remains unknown but it could be through cattle-derived milk and meat. Here our aim was to investigate whether BLV DNA could be found in fresh milk and raw meat destined to human consumption and whether anti-BLV antibodies could be detected in human blood at the same geographical region. Milk (n = 36) and meat (n = 54) samples were collected from cows knowingly seropositive or negative to BLV and evaluated by nested PCR targeting BLV tax gene. Human serum samples (n = 900) were tested by ELISA to detect anti-BLV antibodies. BLV DNA was detected in 39 % of the milk samples and in 32 % of meat samples from BLV positive cows. Anti-BLV antibodies were found in 4.1 % of the human serum samples. Our data further supports the hypothesis that BLV might cause a zoonotic infection and indicate that milk and meat from BLV-infected cattle might be considered a potential source of infection to humans.
Collapse
Affiliation(s)
- Daniel Lazzari de Quadros
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Vitoria Agnoletto Ribeiro
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Mariana Antunes Rezende
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Yasmin Ampese Maté
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Márcio Alexandro Gomes
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Katia Secchi
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Daisy Maria Strottmann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3773, CEP 81350-010 Curitiba, PR, Brazil
| | - Rafael Frandoloso
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil
| | - Luiz Carlos Kreutz
- Universidade de Passo Fundo, Escola de Ciências Agrárias, Inovação e Negócios, Programa de Pós-Graduação em Bioexperimentação, Prédio G3, Campus I, Rodovia BR 285, Km 292, Bairro São José, 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
8
|
Nikbakht Brujeni G, Houshmand P, Soufizadeh P. Bovine leukemia virus: a perspective insight into the infection and immunity. IRANIAN JOURNAL OF VETERINARY RESEARCH 2023; 24:290-300. [PMID: 38799292 PMCID: PMC11127729 DOI: 10.22099/ijvr.2023.48236.7023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/21/2023] [Indexed: 05/29/2024]
Abstract
Bovine leukemia virus (BLV) is a member of the Retroviridae family and belongs to the Deltaretrovirus genus. It has a close relationship with human T-cell leukemia virus type I. BLV is responsible for causing enzootic bovine leukosis (EBL), a contagious disease that affects the bovine lymphatic system. This virus poses challenges for the global cattle industry, as it impacts cattle populations all over the world. Despite being widespread and impactful, BLV often goes unnoticed, with many researchers unaware of its presence and the potential consequences it carries. BLV demonstrates varying levels of pathogenicity. The majority of cattle (around 70%) become seropositive asymptomatic carriers, displaying no noticeable clinical symptoms. However, a smaller proportion of infected animals experience persistent lymphocytosis, characterized by an elevated number of lymphocytes in the bloodstream. If not monitored and managed, a subset of these persistently infected cattle may advance to lymphosarcoma. This condition typically presents as tumors in different lymphoid tissues, impacting various organs and overall health and productivity. Furthermore, recent research has highlighted the potential association between the occurrence of breast and lung cancer in humans and the presence of BLV. This review will delve into the recent discoveries concerning BLV, specifically exploring its epidemiology, the economic impact it has on the global cattle industry, its implications for human medicine, and the association between different alleles of the major histocompatibility complex (MHC) and susceptibility or resistance to BLV. Bovine leukemia virus, Enzootic bovine leukosis, Major histocompatibility complex, Retroviridae.
Collapse
Affiliation(s)
- Gh. Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - P. Houshmand
- Ph.D. Student in Immunology, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - P. Soufizadeh
- Graduated from Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Yamanaka MP, Saito S, Hara Y, Matsuura R, Takeshima SN, Hosomichi K, Matsumoto Y, Furuta RA, Takei M, Aida Y. No evidence of bovine leukemia virus proviral DNA and antibodies in human specimens from Japan. Retrovirology 2022; 19:7. [PMID: 35585539 PMCID: PMC9116711 DOI: 10.1186/s12977-022-00592-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background The potential risk and association of bovine leukemia virus (BLV) with human remains controversial as it has been reported to be both positive and negative in human breast cancer and blood samples. Therefore, establishing the presence of BLV in comprehensive human clinical samples in different geographical locations is essential. Result In this study, we examined the presence of BLV proviral DNA in human blood and breast cancer tissue specimens from Japan. PCR analysis of BLV provirus in 97 Japanese human blood samples and 23 breast cancer tissues showed negative result for all samples tested using long-fragment PCR and highly-sensitive short-fragment PCR amplification. No IgG and IgM antibodies were detected in any of the 97 human serum samples using BLV gp51 and p24 indirect ELISA test. Western blot analysis also showed negative result for IgG and IgM antibodies in all tested human serum samples. Conclusion Our results indicate that Japanese human specimens including 97 human blood, 23 breast cancer tissues, and 97 serum samples were negative for BLV. Supplementary Information The online version contains supplementary material available at 10.1186/s12977-022-00592-6.
Collapse
Affiliation(s)
- Meripet Polat Yamanaka
- Laboratory of Global Infectious Diseases Control Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Susumu Saito
- Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yukiko Hara
- Division of Department of Breast and Endocrine Surgery, Department of Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan.,Department of Food and Nutrition, Jumonji University, Saitama, 352-8510, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-8640, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rika A Furuta
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, 135-8521, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,Viral Infectious Diseases Unit, RIKEN, Saitama, 351-0198, Japan. .,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| |
Collapse
|
10
|
Olaya-Galán NN, Blume S, Tong K, Shen H, Gutierrez MF, Buehring GC. In vitro Susceptibility of Human Cell Lines Infection by Bovine Leukemia Virus. Front Microbiol 2022; 13:793348. [PMID: 35359744 PMCID: PMC8964291 DOI: 10.3389/fmicb.2022.793348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
Evidence of the presence of bovine leukemia virus (BLV) in human beings and its association with breast cancer has been published in the literature, proposing it as a zoonotic infection. However, not enough evidence exists about transmission pathways nor biological mechanisms in human beings. This study was aimed at gathering experimental evidence about susceptibility of human cell lines to BLV infection. Malignant and non-malignant human cell lines were co-cultured with BLV-infected FLK cells using a cell-to-cell model of infection. Infected human cell lines were harvested and cultured for 3 to 6 months to determine stability of infection. BLV detection was performed through liquid-phase PCR and visualized through in situ PCR. Seven out of nine cell lines were susceptible to BLV infection as determined by at least one positive liquid-phase PCR result in the 3-month culture period. iSLK and MCF7 cell lines were able to produce a stable infection throughout the 3-month period, with both cytoplasmic and/or nuclear BLV-DNA visualized by IS-PCR. Our results support experimental evidence of BLV infection in humans by demonstrating the susceptibility of human cells to BLV infection, supporting the hypothesis of a natural transmission from cattle to humans.
Collapse
Affiliation(s)
- Nury N Olaya-Galán
- Ph.D. Program in Biomedical and Biological Sciences, School of Medicine and Human Health, Universidad del Rosario, Bogotá, Colombia.,Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Skyler Blume
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Kan Tong
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - HuaMin Shen
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Maria F Gutierrez
- Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gertrude C Buehring
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|