1
|
Li J, Ding S, Li M, Zou B, Chu M, Gu G, Chen C, Liu YJ, Zheng K, Meng Z. LncRNA PVT1 promotes malignant progression by regulating the miR-7-5p/CDKL1 axis in oral squamous cell carcinoma. Mol Cell Probes 2024; 78:101995. [PMID: 39617072 DOI: 10.1016/j.mcp.2024.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common types of head and neck squamous cell carcinoma (HNSCC), is characterized by high incidence and mortality. PVT1 is a long non-coding RNA (lncRNA) that plays an oncogenic role in various cancer types. This study aims to reveal the role and underlying molecular mechanism of PVT1 in OSCC progression. The expression levels of PVT1, miR-7-5p, and CDKL1 mRNA were evaluated using qRT-PCR. Western blot and IHC analysis were conducted to determine the protein expression of CDKL1. The biological functions of PVT1, miR-7-5p, and CDKL1 in OSCC were investigated through CCK-8, transwell migration and invasion assays. In vivo experiments utilized a xenograft model to examine the impact of PVT1 on OSCC. Furthermore, the interaction among PVT1, miR-7-5p, and CDKL1 was explored using RNA pull down assay and luciferase reporter assays. We found that PVT1 enhanced cell proliferation, migration, and invasion by targeting CDKL1. In addition, PVT1 functions as a sponge to modulate miR-7-5p, thereby influencing the expression of CDKL1 and the progression of OSCC. In conclusion, this study illustrates that the "PVT1/miR-7-5p/CDKL1" pathway is capable of promoting the progression of OSCC and may serve as a promising target for developing treatment strategies for OSCC.
Collapse
Affiliation(s)
- Jun Li
- Chemical Engineering College, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China; Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Shuxin Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shangdong 261000, China
| | - Min Li
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Bo Zou
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Miaomiao Chu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Guohao Gu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Chen
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yu-Jiao Liu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ke Zheng
- Chemical Engineering College, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zhen Meng
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
2
|
Feng M, Qin B, Luo F, Zhu X, Liu K, Li K, Wu D, Chen G, Tang X. Qingjie Huagong decoction inhibits pancreatic acinar cell pyroptosis by regulating circHipk3/miR-193a-5p/NLRP3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155265. [PMID: 38422649 DOI: 10.1016/j.phymed.2023.155265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/04/2023] [Accepted: 12/06/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Safer and more effective drugs are needed for the treatment of acute pancreatitis (AP). Qingjie Huagong decoction (QJHGD) has been applied to treat AP for many years and has shown good clinical effects. However, the potential mechanism has not yet been determined. PURPOSE To investigate the role and underlying mechanism of the effects of QJHGD on AP both in vitro and in vivo. METHODS QJHGD was characterized by UHPLC-Q-Orbitrap-MS. The protective effect of QJHDG and the underlying mechanism were investigated in MPC-83 cells in vitro. A caerulein-induced AP model was established to evaluate the protective effect of QJHGD in mice. CCK-8 assays were used to detect cell viability. The contents of inflammatory mediators were determined by ELISA. Expression levels of circRNA, miRNA and mRNA were determined by qRT-PCR. Protein expression was determined using Western blot. Pancreatic tissues were assessed by hematoxylin and eosin staining as well as immunohistochemical and immunofluorescence analyses. Pull-down and luciferase activity assays were performed to determine the regulatory relationships of circHipk3, miR-193a-5p and NLRP3. RESULTS Our results confirmed that mmu-miR-193a-5p was sponged by mmu-circHipk3, and NLRP3 was a target of miR-193a-5p. In vitro experiments showed that QJHGD enhanced MPC-83 cell viability by regulating circHipk3 sponging mir-193a-5 targeting NLRP3 and inhibiting pyroptosis-related factors. Finally, we showed that QJHGD ameliorated pancreatic tissue injury in AP mice via this pathway. CONCLUSION This study demonstrate that QJHDG exerted its anti-AP effects via the circHipk3/miR-193a-5p/NLRP3 pathway, revealing a novel mechanism for the therapeutic effect of QJHDG on AP.
Collapse
Affiliation(s)
- MinChao Feng
- The First Clinical School of Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530000, China
| | - BaiJun Qin
- Department of Gastroenterology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Fang Luo
- The First Clinical School of Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530000, China
| | - XiaoDong Zhu
- The First Clinical School of Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530000, China
| | - KunRong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, 89-9 Dongge Road, Nanning 530023, China
| | - Kai Li
- The First Clinical School of Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530000, China
| | - DongYang Wu
- School of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning 530000, China
| | - GuoZhong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, 89-9 Dongge Road, Nanning 530023, China.
| | - XiPing Tang
- Endoscopy Center, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China.
| |
Collapse
|
3
|
Geng Z, Huang Y, Wu S, Zhu D, Li W. FUT8-AS1/miR-944/Fused in Sarcoma/Transcription Factor 4 Feedback Loop Participates in the Development of Oral Squamous Cell Carcinoma through Activation of Wnt/β-Catenin Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:233-245. [PMID: 36697118 DOI: 10.1016/j.ajpath.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
As a common type of head and neck squamous cell carcinoma, oral squamous cell carcinoma (OSCC) is a lethal and deforming disease. Long noncoding RNAs have emerged as critical modulators in different malignancies. However, the role of fucosyltransferase 8 antisense RNA 1 (FUT8-AS1) in OSCC still remains elusive. In this study, quantitative RT-PCR and Western blot were used for the measurement of RNAs and proteins. Mechanism assays explored the putative correlation among genes. In vitro assays evaluated the changes in OSCC cell malignant phenotype, whereas in vivo assays highlighted the influence of FUT8-AS1 on tumor growth. FUT8-AS1, aberrantly up-regulated in OSCC tissues and cells, could exacerbate OSCC cell malignant behaviors. The cancerogenic property of FUT8-AS1 in OSCC was further confirmed via animal experiments. Furthermore, FUT8-AS1 enhanced the expression of transcription factor 4 (TCF4) via sponging miR-944 and recruiting fused in sarcoma (FUS), thus affecting OSCC cell biological behaviors via modulation on Wnt/β-catenin signaling activity. In addition, TCF4 was validated as the transcriptional activator of FUT8-AS1. To conclude, TCF4-mediated FUT8-AS1 could exacerbate OSCC cell malignant behaviors and facilitate tumor growth via modulation on miR-944/FUS/TCF4.
Collapse
Affiliation(s)
- Zushi Geng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinzhen Huang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Wu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Dey Ghosh R, Guha Majumder S. Circulating Long Non-Coding RNAs Could Be the Potential Prognostic Biomarker for Liquid Biopsy for the Clinical Management of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:5590. [PMID: 36428681 PMCID: PMC9688117 DOI: 10.3390/cancers14225590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes, recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion, metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, progression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to provide advanced treatment strategies and clinical decisions. In this review, we report and discuss the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific lncRNA expression signature could act as an indicator for the early prediction of diagnosis and prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors (overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early prediction of prognosis in OSCC. Finally, the review provides information about the clinical significance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the development of differential prognostic outcomes in OSCC.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Molecular Biology Department, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | | |
Collapse
|
5
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
The association of long non-coding RNA in the prognosis of oral squamous cell carcinoma. Genes Genomics 2022; 44:327-342. [PMID: 35023067 DOI: 10.1007/s13258-021-01194-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oral cancer is considered one of the most prevalent cancers in India. This is mainly because India suffers from high usage of tobacco, which is one of the main causative agents of oral cancer, and lacks proper health and sexual hygiene in rural areas. DISCUSSION Non-coding RNAs are reported to be involved in the various mechanism and causality of cancer. Numerous reports have identified viable prospects connecting non-coding RNA (ncRNA) with cancer. Specific ncRNAs like long non-coding RNA or lncRNAs are recently being prioritized as potential associations in the cause of cancer. CONCLUSION This review aims at presenting a concise perspective on the basics and the recent advancements of the lncRNA research pertaining specifically to oral cancer, its recurrence, and the future possibilities of knowledge it might possess.
Collapse
|
7
|
Deshmukh A, Rao KN, Arora RD, Nagarkar NM, Singh A, Shetty OS. Molecular Insights into Oral Malignancy. Indian J Surg Oncol 2021; 13:267-280. [DOI: 10.1007/s13193-021-01431-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
|
8
|
LINC00152 acts as a potential marker in gliomas and promotes tumor proliferation and invasion through the LINC00152/miR-107/RAB10 axis. J Neurooncol 2021; 154:285-299. [PMID: 34478013 DOI: 10.1007/s11060-021-03836-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Aberrant expression of long noncoding RNAs plays a pivotal role in tumorigenesis. Recently, several studies have showed that the LINC00152 gene is upregulated in a variety of tumors and plays an oncogene role; however, its underlying molecular mechanisms in glioblastoma remain unclear. In this study, we prepare to investigate the biological role and underlying molecular mechanisms of LINC00152 in glioblastoma cells. METHODS Bioinformatics analysis to identify LINC00152 expression, Cell Counting kit-8 assay and Colony formation assay were used to evaluate proliferation, Flow cytometric analysis was used to evaluate apoptosis, Cell Matrigel invasion assay and Wound healing assay was used to evaluate invasion, Western blot analysis to check protein expression level, Mouse xenograft models was used to check cell proliferation in vivo. RESULTS In this study, we found that LINC00152 was upregulated in gliomas and its expression was significantly associated with high tumor aggressiveness and poor outcomes for glioma patients. Functionally, the knockdown of LINC00152 not only inhibited malignant behaviors of glioma, such as proliferation and invasion of glioma cells and induced apoptosis in vitro but also suppressed tumorigenesis in vivo. Mechanistically, results of the bioinformatics analysis and experimental studies confirmed that LINC00152 and RAB10 as the targets of miR-107, and LINC00152 might act as a sponge for miR-107 to regulate the expression of RAB10 in glioblastoma. Additionally, silencing miR-107 reversed the effects induced by LINC00152 knockdown on glioblastoma cells both in vitro and in vivo. CONCLUSION Our data suggested that LINC00152 is a candidate prognostic marker of glioma, and that the LINC00152/MIR-107/RAB10 axis plays a pivotal role in regulation of the glioma malignancy, and therefore, targeting the axis might be an effective therapeutic strategy to treat glioma.
Collapse
|
9
|
Li J, Xu X, Zhang D, Lv H, Lei X. LncRNA LHFPL3-AS1 Promotes Oral Squamous Cell Carcinoma Growth and Cisplatin Resistance Through Targeting miR-362-5p/CHSY1 Pathway. Onco Targets Ther 2021; 14:2293-2300. [PMID: 33833527 PMCID: PMC8020056 DOI: 10.2147/ott.s298679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a common oral cancer. The current study aims to elucidate the potential roles of long noncoding RNA (lncRNA) LHFPL3-AS1 in OSCC development. Methods Gene expression was measured by qRT-PCR in tumor tissues and cell lines. Loss-of-function assays were performed to analyze the effects of LHFPL3-AS1 on malignant behaviors. Bioinformatics analysis was conducted to explore the downstream signaling pathway of LHFPL3-AS1 in OSCC. Results LHFPL3-AS1 was highly expressed in OSCC tissues and cell lines. LHFPL3-AS1 was upregulated in cisplatin-resistant tumor cell lines. LHFPL3-AS1 level was correlated with survival rate. LHFPL3-AS1 knockdown suppressed OSCC proliferation, migration and invasion. LHFPL3-AS1 downregulation reduced cisplatin resistance of OSCC cells. LHFPL3-AS1 was the competing endogenous RNA (ceRNA) for miR-194-5p to enhance CHSY1 expression. Conclusion LHFPL3-AS1/miR-362-5p/CHSY1 signaling pathway plays essential roles in regulating OSCC development and cisplatin resistance.
Collapse
Affiliation(s)
- Jiandong Li
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Shenzhen, 518000, People's Republic of China
| | - Xiaohu Xu
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Shenzhen, 518000, People's Republic of China
| | - Dandan Zhang
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Shenzhen, 518000, People's Republic of China
| | - Han Lv
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Shenzhen, 518000, People's Republic of China
| | - Xin Lei
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Shenzhen, 518000, People's Republic of China
| |
Collapse
|
10
|
Santos ES, Rodrigues-Fernandes CI, Cabral JC, Fonseca FP, Leme AFP. Epigenetic alterations in ameloblastomas: A literature review. J Clin Exp Dent 2021; 13:e295-e302. [PMID: 33680332 PMCID: PMC7920560 DOI: 10.4317/jced.56191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Ameloblastoma is a locally aggressive tumor, originated from odontogenic epithelium, and affects the jawbones with an elevated recurrence rate. The molecular mechanisms involved with the pathogenesis of this tumor remain undetermined. This review aimed to describe the current data regarding epigenetic alterations in ameloblastoma. Material and Methods A systematized electronic search was performed in the English-language literature in three databases, combining the following keywords: ameloblastoma, epigenetic, methylation, noncoding RNA, histone acetylation. Results According to the gathered results of 11 studies in this review, epigenetic alterations could induce the development and progression of ameloblastoma. DNA methylation has been the most assessed mechanism in ameloblastomas. Conclusions Current literature data indicate that epigenetic events can be involved in the etiopathogenesis of ameloblastomas. Key words:Ameloblastoma, epigenetic, methylation, noncoding RNA, histone acetylation.
Collapse
Affiliation(s)
- Erison-Santana Santos
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Joab-Cabral Cabral
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Felipe-Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana-Franco-Paes Leme
- Brazilian Biosciences National Laboratory, The Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
11
|
Xiu C, Song R, Jiang J. TUG1 promotes retinoblastoma progression by sponging miR-516b-5p to upregulate H6PD expression. Transl Cancer Res 2021; 10:738-747. [PMID: 35116405 PMCID: PMC8799124 DOI: 10.21037/tcr-19-1480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
Background Retinoblastoma (RB), depicted as an aggressive eye cancer, mainly occurs in infancy and childhood and is followed by high mortality and poor prognosis. Increasing evidence has revealed that long noncoding RNA taurine upregulated gene 1 (TUG1) is closely linked to the progression of diverse cancers. Nonetheless, the specific function and molecular regulatory mechanism of TUG1 in RB still need to be explored. Methods To explore the specific role of TUG1 in RB. TUG1 expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2’-deoxyuridine (EdU), caspase-3, terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) and western blot assays were utilized to study the role of TUG1 in RB. The binding relation between miR-516b-5p and TUG1 or hexose-6-phosphate dehydrogenase/glucose 1-dehydrogenase (H6PD) was analyzed by luciferase reporter and RNA immunoprecipitation (RIP) assays. Results The expression of TUG1 was upregulated in RB cells. TUG1 knockdown repressed proliferation ability and promoted apoptosis ability of RB cells. Moreover, TUG1 could bind with miR-516b-5p, which targeted H6PD in RB. In addition, the expression of H6PD was negatively and positively regulated by miR-516b-5p and TUG1 in RB, respectively. Finally, H6PD overexpression could partially offset the effects of TUG1 deficiency on cell proliferation and apoptosis. Conclusions TUG1 promoted the development of RB by sponging miR-516b-5p to upregulate H6PD expression, which might provide a new thought for researching RB-related molecular mechanism.
Collapse
Affiliation(s)
- Caimei Xiu
- Department of Ophthalmology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ruiying Song
- Department of Ophthalmology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jing Jiang
- Department of Ophthalmology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
12
|
Long non‑coding RNA AFAP1‑AS1 facilitates the growth and invasiveness of oral squamous cell carcinoma by regulating the miR‑145/HOXA1 axis. Oncol Rep 2020; 45:1094-1104. [PMID: 33650645 PMCID: PMC7859981 DOI: 10.3892/or.2020.7908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNA (lncRNA) actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) has been reported to serve important roles in multiple types of cancer. However, the biological function and underlying mechanism of AFAP1-AS1 in oral squamous cell carcinoma (OSCC) remain largely unknown. The present study aimed to investigate the biological roles and clarify the potential mechanism of AFAP1-AS1 in OSCC. The expression levels of AFAP1-AS1 in OSCC tissues and cells were determined using reverse transcription-quantitative PCR. Cell proliferation, colony formation, migration and invasion were analyzed using Cell Counting Kit-8, colony formation, wound healing and Transwell invasion assays, respectively. The potential binding between AFAP1-AS1 and microRNA (miR)-145 was validated using dual luciferase reporter and RNA pull-down assays. A xenograft tumor model was established to evaluate the effect of AFAP1-AS1 in vivo. The results revealed that AFAP1-AS1 expression levels were markedly upregulated in OSCC tissues and cells. In addition, patients with OSCC with high expression levels of AFAP1-AS1 had a poor prognosis. Functionally, the knockdown of AFAP1-AS1 in OSCC cells significantly inhibited cell proliferation, migration and invasion in vitro. Similarly, in vivo AFAP1-AS1 knockdown prevented tumor growth and reduced tumor size and weight. Mechanistically, AFAP1-AS1 was discovered to regulate the expression levels of Homeobox A1 (HOXA1) by competing with miR-145. The inhibition of miR-145 partially attenuated the inhibitory effects of AFAP1-AS1 knockdown on OSCC cells. In conclusion, the findings of the present study suggested that AFAP1-AS1 may promote the progression of OSCC by regulating the miR-145/HOXA1 axis.
Collapse
|
13
|
Wang K, Wang XY, Gao GJ, Ren XW, Cai XY, Yu QK, Xing S, Zhu B. Multistimuli responsive RNA amphiphilic polymeric assembly constructed by calixpyridinium-based supramolecular interactions. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Wang T, Zhai R, Lv X, Wang K, Xu J. LINC02418 promotes malignant behaviors in lung adenocarcinoma cells by sponging miR-4677-3p to upregulate KNL1 expression. BMC Pulm Med 2020; 20:217. [PMID: 32795273 PMCID: PMC7427971 DOI: 10.1186/s12890-020-01229-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LAD) is a prevalent type of bronchogenic malignant tumor and one of the most critical factors related to human death. Long noncoding RNAs (lncRNAs) are involved in many complex biological processes and have been emerged as extremely important regulators of various cancers. LINC02418, a novel lncRNA, hasn’t been mentioned in previous studies on cancer development. Therefore, it’s important to define the potential function of LINC02418 in LAD. Methods Gene expression was examined by RT-qPCR or western blot. CCK-8, colony formation, TUNEL, and transwell assays were utilized to study the role of LINC02418 in LAD. The interaction of miR-4677-3p with LINC02418 (or KNL1) was verified through luciferase reporter, RIP and RNA pull-down assays. Results High expression of LINC02418 was observed in LAD specimens and cells. Downregulation of LINC02418 obstructed the proliferation and motility of LAD cells. Moreover, LINC02418 negatively modulated miR-4677-3p expression and miR-4677-3p overexpression could repress cell proliferation and migration. Moreover, kinetochore scaffold 1 (KNL1) expression was negatively modulated by miR-4677-3p but positively regulated by LINC02418. Furthermore, miR-4677-3p could bind with LINC02418 (or KNL1). Finally, KNL1 overexpression reversed the inhibitory function of LINC02418 deficiency in the malignant behaviors of LAD cells. Conclusions LINC02418 contributes to the malignancy in LAD via miR-4677-3p/KNL1 signaling, providing a probable therapeutic direction for LAD.
Collapse
Affiliation(s)
- Tao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Ruiren Zhai
- Department of Tumor Center, Sunshine Union Hospital, Weifang, 261000, Shandong, China
| | - Xiuhua Lv
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ke Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Junqing Xu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, No.1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
15
|
Zhang K, Qiu W, Wu B, Fang F. Long non‑coding RNAs are novel players in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma (Review). Int J Mol Med 2020; 46:535-545. [PMID: 32626947 PMCID: PMC7307862 DOI: 10.3892/ijmm.2020.4628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, a large number of studies have shown that the abnormal expression of long non‑coding (lnc)RNAs can lead to a variety of different diseases, including inflammatory disorders, cardiovascular disease, nervous system diseases, and cancers. Recent research has demonstrated the biological characteristics of lncRNAs and the important functions of lncRNAs in oral inflammation, precancerous lesions and cancers. The present review aims to explore and discuss the potential roles of candidate lncRNAs in oral diseases by summarizing multiple lncRNA profiles in diseased and healthy oral tissues to determine the altered lncRNA signatures. In addition, to highlight the exact regulatory mechanism of lncRNAs in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma. The detection of lncRNAs in oral samples has the potential to be used as a diagnostic and an early detection tool for oral diseases. Furthermore, lncRNAs are promising future therapeutic targets in oral diseases, and research in this field may expand in the future.
Collapse
Affiliation(s)
- Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
16
|
Li Z, Feng Y, Zhang Z, Cao X, Lu X. TMPO-AS1 promotes cell proliferation of thyroid cancer via sponging miR-498 to modulate TMPO. Cancer Cell Int 2020; 20:294. [PMID: 32669970 PMCID: PMC7346673 DOI: 10.1186/s12935-020-01334-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/09/2020] [Indexed: 01/14/2023] Open
Abstract
Background Thyroid cancer (TC) is the most frequent endocrine malignancy. Long noncoding RNAs (lncRNAs) have been confirmed to act as significant roles in tumor development. The role of lncRNA TMPO-AS1 in TC is still unclear, so it remains to be explored. The aim of the research is to investigate the role and regulatory mechanism of TMPO-AS1 in TC. Methods TMPO-AS1 and TMPO expression in TC tumors and cells was detected by TCGA database and QRT-PCR assay respectively. CCK-8, EDU, TUNEL and western blot assays were conducted to identify the biological functions of TMPO-AS1 in TC. Luciferase reporter and RNA pull down assays were conducted to measure the interaction among TMPO-AS1, TMPO and miR-498. Results TMPO-AS1 was overexpressed in TC tissues and cell lines. Knockdown of TMPO-AS1 suppressed cell growth and accelerated cell apoptosis in TC. Furthermore, downregulation of TMPO-AS1 suppressed TMPO expression in TC. The data suggested that TMPO expression was upregulated in TC tissues and cell lines and was positively correlated with TMPO-AS1 expression in TC. Furthermore, the expression of miR-498 presented low expression in TC cells. And miR-498 expression was negatively regulated by TMPO-AS1, meanwhile, TMPO expression was negatively regulated by miR-498 in TC cells. Besides, it was confirmed that TMPO-AS1 could bind with miR-498 and TMPO in TC cells. In addition, it was validated that TMPO-AS1 elevated the levels of TMPO via sponging miR-498 in TC cells. Conclusions TMPO-AS1 promotes cell proliferation in TC via sponging miR-498 to modulate TMPO.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhongyuan District, Zhengzhou, 450000 Henan China.,Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Yun Feng
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Zhen Zhang
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Xiaozhong Cao
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhongyuan District, Zhengzhou, 450000 Henan China
| |
Collapse
|
17
|
Jin J, Huang Z, Lu X, Wu S, Jia M, Li X, Li Z, He X. Bioinformatics analysis of aberrantly expressed exosomal lncRNAs in oral squamous cell carcinoma (CAL-27 vs. oral epithelial) cells. Oncol Lett 2020; 20:2378-2386. [PMID: 32782555 PMCID: PMC7400702 DOI: 10.3892/ol.2020.11764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent form of malignant tumour in the oral cavity and its early detection is critical for improving the prognosis of affected patients. The present study aimed to isolate and confirm exosomes derived from the supernatant of the OSCC cell line CAL-27 and human oral epithelial cells (HOECs), analyze long non-coding RNA (lncRNA) expression profiles and determine the diagnostic value based on bioinformatics analyses. The results indicated that the particles isolated from the supernatant of CAL-27 and HOECs were either round or oval, had a size range of 30–150 nm and were enriched with ALG-2 interacting protein X (ALIX) and tumour susceptibility 101 proteins (TSG101). These characteristics confirmed that these particles were exosomes. Three lncRNAs (NR-026892.1, NR-126435.1 and NR-036586.1) were selected as potential diagnostic biomarkers for OSCC. The expression levels of the selected lncRNAs were significantly different in CAL-27-exo vs. HOEC-exo, as well as in whole cells (CAL-27 vs. HOECs) (P<0.001). The expression levels of the three lncRNAs confirmed by quantitative PCR were consistent with the sequencing data. In conclusion, various lncRNAs were aberrantly expressed between cancerous and non-cancerous exosomes, suggesting that they may serve as biomarkers for cancer.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Stomatology, Xi'an Daxing Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zixiao Huang
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoyan Lu
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shengrong Wu
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Mei'E Jia
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xin Li
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhiyong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiangyi He
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Group of Molecular Biology, Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
18
|
Yuan L, Xu ZY, Ruan SM, Mo S, Qin JJ, Cheng XD. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer 2020; 19:96. [PMID: 32460771 PMCID: PMC7251695 DOI: 10.1186/s12943-020-01219-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is a deadly disease and remains the third leading cause of cancer-related death worldwide. The 5-year overall survival rate of patients with early-stage localized gastric cancer is more than 60%, whereas that of patients with distant metastasis is less than 5%. Surgical resection is the best option for early-stage gastric cancer, while chemotherapy is mainly used in the middle and advanced stages of this disease, despite the frequently reported treatment failure due to chemotherapy resistance. Therefore, there is an unmet medical need for identifying new biomarkers for the early diagnosis and proper management of patients, to achieve the best response to treatment. Long non-coding RNAs (lncRNAs) in body fluids have attracted widespread attention as biomarkers for early screening, diagnosis, treatment, prognosis, and responses to drugs due to the high specificity and sensitivity. In the present review, we focus on the clinical potential of lncRNAs as biomarkers in liquid biopsies in the diagnosis and prognosis of gastric cancer. We also comprehensively discuss the roles of lncRNAs and their molecular mechanisms in gastric cancer chemoresistance as well as their potential as therapeutic targets for gastric cancer precision medicine.
Collapse
Affiliation(s)
- Li Yuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
| | - Shan-Ming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Shaowei Mo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053 China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
| |
Collapse
|
19
|
Meng H, Zhao B, Wang Y. FOXM1-induced upregulation of lncRNA OR3A4 promotes the progression of diffuse large B-cell lymphoma via Wnt/β-catenin signaling pathway. Exp Mol Pathol 2020; 115:104451. [PMID: 32417392 DOI: 10.1016/j.yexmp.2020.104451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/28/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a leading cause of non-Hodgkin lymphomas. Existing researches have verified that long non-coding RNAs (lncRNAs) play crucial roles in the development of DLBCL, nevertheless, whether lncRNA OR3A4 has influences on the progression of DCBCL needs further exploration. In our study, it was revealed that the expression of OR3A4 was upregulated in DLBCL tumors and cell lines, and patients with high OR3A4 expression suffered from poor prognosis. Knockdown of OR3A4 suppressed cell proliferation and promoted cell apoptosis in DLBCL. Moreover, knockdown of OR3A4 inactivated Wnt/β-catenin signaling pathway, and Riluzole treatment could partially rescue the inhibitive effect of OR3A4 silencing on DLBCL cell proliferation. Furthermore, FOXM1 expression was discovered to be upregulated in DLBCL tissues, and it positively modulated the expression of OR3A4 at transcriptional leve. It was also revealed that FOXM1 knockdown inactivated Wnt/β-catenin signaling pathway. Finally, rescue assays confirmed that OR3A4 overexpression or the treatment of Riluzole could partially countervail the inhibitive effect of FOXM1 silencing on DLBCL progression. Taken together, FOXM1-induced upregulation of OR3A4 enhances the occurrence of DLBCL via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hongwei Meng
- Department of Hematology, Shanxian Central Hospital, Heze 274300, Shandong, China
| | - Bin Zhao
- Department of Vascular Surgery, Shanxian Central Hospital, Heze 274300, Shandong, China
| | - Yachao Wang
- Department of Pediatrics, The First People's Hospital of Xianyang, No.10 Biyuan Road, Qin Du District, Xianyang 712000, Shaanxi, China.
| |
Collapse
|
20
|
Chen Y, Ding Y. LINC00467 enhances head and neck squamous cell carcinoma progression and the epithelial-mesenchymal transition process via miR-299-5p/ubiquitin specific protease-48 axis. J Gene Med 2020; 22:e3184. [PMID: 32159247 DOI: 10.1002/jgm.3184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has attracted the attention of researchers as a result of its high incidence around the world. This malignancy occurs in the oral cavity, pharynx and larynx in most cases. A number of lncRNAs have been revealed to regulate the malignant neoplasia of several cancers. Nevertheless, the effects of lncRNA LINC00467 in HNSCC have not yet been reported. METHODS The expression of LINC00467, miR-299-5p and ubiquitin specific protease-48 (USP48) in HNSCC cells was quantified by a quantitative reverse transcriptase-polymerase chain reaction. The influences of LINC00467 deficiency on HNSCC progression were reflected by cell counting kit-8, colony formation, ethynyl-2-deoxyuridine, wound healing and western blot assays. RIP and luciferase reporter assays were conducted to confirm the interaction among LINC00467, miR-299-5p and USP48. RESULTS LINC00467 was considerably upregulated in HNSCC cells, and an absence of LINC00467 suppressed cell growth, cell migration and the epithelial-mesenchymal process in HNSCC. In addition, miR-299-5p expression was notably downregulated in HNSCC cells, and miR-299-5p could bind with LINC00467. Furthermore, USP48 was conspicuously overexpressed in HNSCC cells and capable of binding with miR-299-5p. LINC00467 could upregulate USP48 expression via sponging miR-299-5p. Finally, rescue assays proved that USP48 overexpression could compensate for the suppressive effects on HNSCC progression mediated by LINC00467 deficiency. CONCLUSIONS LINC00467 enhances HNSCC progression by serving as a sponge of miR-299-5p to increase USP48 expression.
Collapse
Affiliation(s)
- Ye Chen
- Department of Stomatology, The Affiliated Hanyang Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Yiying Ding
- Department of Outpatient Service, the Affiliated Hanyang Hospital of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Qiao Z, Yang D, Liu L, Liu Z, Wang J, He D, Wu H, Wang J, Ma Z. Genome-wide identification and characterization of long non-coding RNAs in MDCK cell lines with high and low tumorigenicities. Genomics 2020; 112:1077-1086. [DOI: 10.1016/j.ygeno.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
22
|
Yao C, Kong F, Zhang S, Wang G, She P, Zhang Q. Long non-coding RNA BANCR promotes proliferation and migration in oral squamous cell carcinoma via MAPK signaling pathway. J Oral Pathol Med 2020; 50:308-315. [PMID: 31654433 DOI: 10.1111/jop.12968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be aberrantly expressed in oral squamous cell carcinoma (OSCC), but the biological role and function of BRAF-activated long non-coding RNA (BANCR) in OSCC remain poorly understood. In this study, we found that the expression of BANCR was upregulated in OSCC tissues and cell lines compared to the negative control. The decreased expression of BANCR in vitro markedly inhibited OSCC cell proliferation, migration, and invasion while the opposite was observed for the overexpression of BANCR. The results also showed that the expression of MAPK signaling-related proteins (p-erk, p-akt, and p-p-38) was positively correlated with that of BANCR. Thus, BANCR may play an important role in the tumorigenesis of OSCC, as well as cell proliferation, migration, and invasion of OSCC, and it may be a potential therapeutic target and prognostic factor in OSCC patients.
Collapse
Affiliation(s)
- Chun Yao
- Department of Stomatology, Zhenjiang First people's Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Fanzhi Kong
- Department of Stomatology, Zhenjiang First people's Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Senlin Zhang
- Department of Stomatology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Guihua Wang
- Department of Stomatology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Peng She
- Department of Stomatology, Zhenjiang First people's Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Qingqing Zhang
- Department of Stomatology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Liu GM, Lu TC, Sun ML, Ji X, Zhao YA, Jia WY, Luo YG. RP11-874J12.4 promotes oral squamous cell carcinoma tumorigenesis via the miR-19a-5p/EBF1 axis. J Oral Pathol Med 2020; 49:645-654. [PMID: 32004389 DOI: 10.1111/jop.13000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) ranks as the fifth most frequent cancer worldwide, and the recurrence and migration of OSCC still pose large threats to patients. Long non-coding RNAs (lncRNAs) have recently emerged as crucial players in cancer development, and it is of great significance to understand the regulatory nexus of lncRNAs in OSCC. METHODS Here, we identified a novel lncRNA, RP11-874J12.4, which is ectopically expressed in OSCC and facilitates OSCC. RESULTS RP11-874J12.4 directly binds to and regulates miR-19a-5p. Interestingly, RP11-874J12.4 and miR-19a-5p form a negative regulatory loop that inhibits the expression of miR-19a-5p in OSCC. The expression of an oncogenic transcription factor, EBF1, is unleashed in OSCC due to the low expression of miR-19a-5p, which promotes the growth and migration of OSCC. CONCLUSION Our data illustrate a regulatory axis of RP11-874J12.4/miR-19a-5P/EBF1 and an inhibitory loop with RP11-874J12.4 and miR-19a-5p. These data provide insights into the tumorigenesis of OSCC and the novel drug targets for OSCC.
Collapse
Affiliation(s)
- Guo-Min Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China.,Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Cheng Lu
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Life Sciences College, Jilin Agricultural University, Changchun, China
| | - Mao-Lei Sun
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Xuan Ji
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Yi-An Zhao
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Wen-Yuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China.,Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China
| | - Yun-Gang Luo
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Liu D, Jian X, Xu P, Zhu R, Wang Y. Linc01234 promotes cell proliferation and metastasis in oral squamous cell carcinoma via miR-433/PAK4 axis. BMC Cancer 2020; 20:107. [PMID: 32041570 PMCID: PMC7011552 DOI: 10.1186/s12885-020-6541-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background Increasing studies have demonstrated that long non-coding RNAs (lncRNAs) play an important role in tumor progression. However, the potential biological functions and clinical importance of Linc01234 in oral squamous cell carcinoma (OSCC) remain unclear. Methods We evaluated the expression profile and prognostic value of Linc01234 in OSCC tissues by RT-qPCR. Then, functional in vitro experiments were performed to investigate the effects of Linc01234 on tumor growth, migration and invasion in OSCC. Mechanistically, RT-qPCR, bioinformatic analysis and dual luciferase reporter assays were performed to identify a competitive endogenous RNA (ceRNA) mechanism involving Linc01234, miR-433-3p and PAK4. Results We found that Linc01234 was clearly upregulated in OSCC tissues and cell lines, and its level was positively associated with T stage, lymph node metastasis, differentiation and poor prognosis of patients with OSCC. Our results shown that Linc01234 inhibited cell proliferation and metastatic abilities in CAL27 and SCC25 cells following its knockdown. Mechanistic analysis indicated that Linc01234 may act as a ceRNA (competing endogenous RNA) of miR-433-3p to relieve the repressive effect of miR-433-3p on its target PAK4. Conclusions Our results indicated that Linc01234 promotes OSCC progression through the Linc01234/miR-433/PAK4 axis and might be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Deyu Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Haikou Hospital, Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Xinchun Jian
- Department of Oral and Maxillofacial Surgery, Affiliated Haikou Hospital, Xiangya Medical College, Central South University, Haikou, 570208, China. .,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Pu Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Haikou Hospital, Xiangya Medical College, Central South University, Haikou, 570208, China.
| | - Rong Zhu
- Department of Oral and Maxillofacial Surgery, Affiliated Haikou Hospital, Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Yuan Wang
- Cancer Research Institute, Central South University, Changsha, 410008, China
| |
Collapse
|
25
|
Li M, Ning J, Li Z, Fei Q, Zhao C, Ge Y, Wang L. Long noncoding RNA OIP5-AS1 promotes the progression of oral squamous cell carcinoma via regulating miR-338-3p/NRP1 axis. Biomed Pharmacother 2019; 118:109259. [PMID: 31369989 DOI: 10.1016/j.biopha.2019.109259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a novel identified long noncoding RNA (lncRNA), has been suggested to serve as oncogene in multiple cancers. However, the functional involvement of OIP5-AS1 in oral squamous cell carcinoma (OSCC) was still unknown. The aims of this study were to investigate the functional role of OIP5-AS1 in OSCC and explore its potential mechanism. We found that OIP5-AS1 was up-regulated in OSCC tissues compared with adjacent non-tumor tissues. Loss-of-function experiments revealed that OIP5-AS1 knockdown significantly inhibited OSCC cell proliferation, migration and invasion in vitro, and retarded tumor growth in vivo. Mechanistically, OIP5-AS1 serves as a competing endogenous RNA of miR-338-3p and modulates the expression of neuropilin1 (NRP1), which has been identified as a downstream target gene of miR-338-3p in OSCC. Moreover, downregulation of miR-338-3p or overexpression of NRP1 partly reversed the inhibitory effect of OIP5-AS1 depletion on cell proliferation, migration and invasion. The current results provide evidences for the role of OIP5-AS1 in promoting OSCC progression by regulating miR-338-3p/NRP1 axis and suggest OIP5-AS1 as a potential therapy target for OSCC.
Collapse
Affiliation(s)
- Minghe Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Jun Ning
- Department of Gynaecology II, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Zhihong Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Qianyi Fei
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Cong Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yue Ge
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Lei Wang
- Departments of Periodontology, Hospital of Stomatology, Jilin University, Changchun, PR China.
| |
Collapse
|
26
|
Ma J, Xiao Y, Tian B, Chen S, Zhang B, Wu J, Wu Z, Li X, Tang J, Yang D, Zhou Y, Wang H, Su M, Wang W. Genome-wide analyses of long non-coding RNA expression profiles and functional network analysis in esophageal squamous cell carcinoma. Sci Rep 2019; 9:9162. [PMID: 31235759 PMCID: PMC6591223 DOI: 10.1038/s41598-019-45493-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer (EC) is a serious malignancy and that is the fifth leading cause of cancer-related death worldwide. Esophageal squamous cell carcinoma (ESCC) is the main subtype of EC in China. In recent years, long non-coding RNAs (lncRNAs) have demonstrated to be novel tumor-associated regulatory factors. However, the functions and mechanisms of lncRNAs in ESCC have not been fully understood. In this study, we attempted to construct Genome-wide expression profiles of lncRNAs and their potential functions in ESCC. By using microarray, we found a total of 2,366 lncRNAs (1,032 upregulated and 1,334 downregulated) and 3,052 mRNAs (1,477 upregulated and 1,575 downregulated) were differentially expressed between the paired five ESCC tumor tissues and adjacent normal esophageal tissues (fold change, FC ≥2.0 or ≤0.5, p ≤ 0.05). Eight lncRNAs were detected by qRT-PCR to verify the results of the microarray, and the clinicopathological parameters were analyzed in 53 patients with ESCC. GO analysis and KEGG pathway analysis showed that the main biological functions of these abnormal lncRNAs were related to immune response, extracellular vesicular exosome, and protein binding. At the same time, the cis and trans models were used to analyze the potential synergistic regulatory relationship between lncRNAs and their potential target genes. Related genes were the processes that affect cell growth, differentiation, and migration. Then we mapped the lncRNAs-mRNAs co-expression pattern by calculating the PCCs of each lncRNA and mRNA expression value. Furthermore, we investigated the function and potential mechanism of a novel highly expressed lncRNA, lnc-KIAA1244-2, and found that its expression is associated with tumor size, N classification and clinical stage. Knockdown of lnc-KIAA1244-2 inhibited the cell proliferation and inhibited the TNFAIP3 expression in Eca-109 cells. Taken together, the expression patterns of lncRNAs and mRNAs in ESCC tumor tissues are different from those in normal adjacent tissues, and some abnormal expressed lncRNAs may play important roles in the development and progression of ESCC. Lnc-KIAA1244-2 could promote the cell proliferation of ESCC cells and might be a potent therapeutic target for ESCC.
Collapse
Affiliation(s)
- Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China.,Hunan University of Medicine, Huaihua, Hunan, 418000, P.R. China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, P.R. China
| | - Bo Tian
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Shaolin Chen
- Hunan University of Medicine, Huaihua, Hunan, 418000, P.R. China
| | - Baihua Zhang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Jie Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Zhining Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Xu Li
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Jinming Tang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Desong Yang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China.
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China.
| |
Collapse
|
27
|
Zou T, Wang PL, Gao Y, Liang WT. Long noncoding RNA HOTTIP is a significant indicator of ovarian cancer prognosis and enhances cell proliferation and invasion. Cancer Biomark 2019; 25:133-139. [DOI: 10.3233/cbm-181727] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Zhang C, Bao C, Zhang X, Lin X, Pan D, Chen Y. Knockdown of lncRNA LEF1-AS1 inhibited the progression of oral squamous cell carcinoma (OSCC) via Hippo signaling pathway. Cancer Biol Ther 2019; 20:1213-1222. [PMID: 30983488 DOI: 10.1080/15384047.2019.1599671] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is verified that long non-coding RNAs (lncRNAs) play crucial roles in various cancers. LncRNA LEF1-AS1 is a reported oncogene in colorectal cancer and glioblastoma. In this study, we unveiled that LEF1-AS1 markedly increased in oral squamous cell carcinoma (OSCC) tissues and cell lines. Besides, OSCC patients with high levels of LEF1-AS1 were apt to poor prognosis. Functionally, LEF1-AS1 knockdown inhibited cell survival, proliferation and migration, whereas enhanced cell apoptosis and induced G0/G1 cell cycle arrest in vitro. Consistently, LEF1-AS1 silence hindered tumor growth in vivo. Moreover, LEF1-AS1 inhibition stimulated the activation of Hippo signaling pathway through directly interacting with LATS1. Furtherly, we disclosed that LEF1-AS1 silence abolished the interaction of LEF1-AS1 with LATS1 while enhanced the binding of LATS1 to MOB, therefore promoting YAP phosphorylation but impairing YAP1 nuclear translocation. Additionally, we demonstrated that LEF1-AS1 regulated YAP1 translocation via a LATS1-dependent manner. Furthermore, we also uncovered that YAP1 overexpression abolished the suppressive impact of LEF1-AS1 repression on the biological processes of OSCC cells. In a word, we concluded that LEF1-AS1 served an oncogenic part in OSCC through suppressing Hippo signaling pathway by interacting with LATS1, suggesting the therapeutic and prognostic potential of LEF1-AS1 in OSCC.
Collapse
Affiliation(s)
- Chanqiong Zhang
- Department of Pathology, Wenzhou People's Hospital , Wenzhou , Zhejiang , China
| | - Chunchun Bao
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xiuxing Zhang
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xinshi Lin
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Dan Pan
- Department of Pathology, Wenzhou People's Hospital , Wenzhou , Zhejiang , China
| | - Yangzong Chen
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|
29
|
Diniz MG, França JA, Vilas-Boas FA, de Souza FTA, Calin GA, Gomez RS, de Sousa SF, Gomes CC. The long noncoding RNA KIAA0125 is upregulated in ameloblastomas. Pathol Res Pract 2019; 215:466-469. [DOI: 10.1016/j.prp.2018.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/03/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023]
|
30
|
|
31
|
Gao P, Fan R, Ge T. SNHG20 serves as a predictor for prognosis and promotes cell growth in oral squamous cell carcinoma. Oncol Lett 2018; 17:951-957. [PMID: 30655853 PMCID: PMC6312994 DOI: 10.3892/ol.2018.9709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) serve important roles in various tumor types, including colorectal cancer and gastric cancer. The present study aimed to investigate the contribution of the lncRNA small nucleolar RNA host gene 20 (SNHG20) in oral squamous cell carcinoma (OSCC) progression. It was demonstrated that SNHG20 expression was significantly increased in OSCC tissue specimens, compared with in adjacent non-tumor tissue specimens. The increased SNHG20 expression in OSCC tissue specimens was associated with tumor differentiation and Tumor-Node-Metastasis stage. Kaplan-Meier analysis and log-rank tests indicated that Higher SNHG20 expression predicted a poor overall survival (OS) rate in patients with OSCC. Multivariate Cox proportional hazards regression analysis demonstrated that increased SNHG20 expression was an independent predictor for the OS of patients with OSCC. Knockdown of SNHG20 expression in OSCC cells suppressed proliferation. The cell proliferation-associated proteins proliferating cell nuclear antigen and Ki67 expression levels were reduced when SNHG20 was knocked down in OSCC cells; thus, the results indicated that SHNG20 may serve as a predictor and potential target for OSCC treatment.
Collapse
Affiliation(s)
- Pengjie Gao
- Department of Stomatology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Rui Fan
- Department of Stomatology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Tao Ge
- Department of Stomatology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
32
|
Zhou T, Zhong M, Zhang S, Wang Z, Xie R, Xiong C, Lv Y, Chen W, Yu J. LncRNA CASC2 expression is down- regulated in papillary thyroid cancer and promotes cell invasion by affecting EMT pathway. Cancer Biomark 2018; 23:185-191. [DOI: 10.3233/cbm-181198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
The role of long non-coding RNA AFAP1-AS1 in human malignant tumors. Pathol Res Pract 2018; 214:1524-1531. [PMID: 30173945 DOI: 10.1016/j.prp.2018.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) are a type Table of endogenous RNA longer than 200 nucleotides in length, and this kind of RNAs lack or possess limited ability of coding proteins. A large number of studies have demonstrated that lncRNAs could take part in massive biological processes, such as transcriptional activation and interference, cellular differentiation, proliferation, migration, invasion and apoptosis. The abnormal expression of lncRNAs has been clarified to play extremely important roles in various diseases, especially in human cancers. LncRNA actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) is a newly recognized cancer-related lncRNA deriving from the antisense strand of DNA at the AFAP1 coding gene locus. A slew of new studies suggest that AFAP1-AS1 is involved in many kinds of malignant tumors. Moreover, in recent years, the dysregulated expression of AFAP1-AS1 has been confirmed to be associated with oncogenesis and tumor progression. Evidence has increasingly shown that AFAP1-AS1 could probably serve as a novel potential molecular biomarker in tumor diagnosis and therapeutic target in tumor treatment. In this review, we sum up present stage new hottest research issues in respect of the biological functions and molecular mechanisms of AFAP1-AS1 in occurrence and progression of human tumors. MATERIALS AND METHODS In this review, we summarize the recent researches about the expression and molecular biological mechanisms of lncRNA AFAP1-AS1 in tumor development. Existing relevant studies are acquired and analyzed by searching Pubmed, BioMedNet, GEO database and Academic Search Elit systematically. RESULTS Long non-coding RNA AFAP1-AS1 is an important tumor-associated lncRNA and its aberrant expression has been found in many malignancies so far, including pancreatic ductal adenocarcinoma, cholangiocarcinoma, gallbladder cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, esophageal cancer, nasopharyngeal carcinoma, lung cancer, ovarian cancer, breast cancer, retinoblastoma, laryngeal cancer, tongue squamous cell carcinoma and thyroid cancer. In addition, the dysregulated expression of AFAP1-AS1 is related to carcinogensis, overall survival (OS), disease-free survival (DFS), progression-free survival (PFS) and tumor progression containing lymph node metastasis, distant metastasis, histological grade, tumor size and tumor stage. CONCLUSIONS A series of studies provide detailed information to understand lncRNA AFAP1-AS1 role in various human cancers. LncRNA AFAP1-AS1 is an oncogene in tumors that have been studied so far, and it may act as a useful tumor biomarker and therapeutic target.
Collapse
|
34
|
Hu X, Qiu Z, Zeng J, Xiao T, Ke Z, Lyu H. A novel long non-coding RNA, AC012456.4, as a valuable and independent prognostic biomarker of survival in oral squamous cell carcinoma. PeerJ 2018; 6:e5307. [PMID: 30128179 PMCID: PMC6095106 DOI: 10.7717/peerj.5307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major malignant cancer of the head and neck. Long non-coding RNAs (lncRNAs) have emerged as critical regulators during the development and progression of cancers. This study aimed to identify a lncRNA-related signature with prognostic value for evaluating survival outcomes and to explore the underlying molecular mechanisms of OSCC. Associations between overall survival (OS), disease-free survival (DFS) and candidate lncRNAs were evaluated by Kaplan–Meier survival analysis and univariate and multivariate Cox proportional hazards regression analyses. The robustness of the prognostic significance was shown via the Gene Expression Omnibus (GEO) database. A total of 2,493 lncRNAs were differentially expressed between OSCC and control samples (fold change >2, p < 0.05). We used Kaplan–Meier survival analysis to identify 21 lncRNAs for which the expression levels were associated with OS and DFS of OSCC patients (p < 0.05) and found that down-expression of lncRNA AC012456.4 especially contributed to poor DFS (p = 0.00828) and OS (p = 0.00987). Furthermore, decreased expression of AC012456.4 was identified as an independent prognostic risk factor through multivariate Cox proportional hazards regression analyses (DFS: p = 0.004, hazard ratio (HR) = 0.600, 95% confidence interval(CI) [0.423–0.851]; OS: p = 0.002, HR = 0.672, 95% CI [0.523–0.863). Gene Set Enrichment Analysis (GSEA) indicated that lncRNA AC012456.4 were significantly enriched in critical biological functions and pathways and was correlated with tumorigenesis, such as regulation of cell activation, and the JAK-STAT and MAPK signal pathway. Overall, these findings were the first to evidence that AC012456.4 may be an important novel molecular target with great clinical value as a diagnostic, therapeutic and prognostic biomarker for OSCC patients.
Collapse
Affiliation(s)
- Xuegang Hu
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Zailing Qiu
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Jianchai Zeng
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Tingting Xiao
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Zhihong Ke
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Key laboratory of Stomatology, Fujian Province University, Fuzhou, China
| | - Hongbing Lyu
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Fang XN, Yin M, Li H, Liang C, Xu C, Yang GW, Zhang HX. Comprehensive analysis of competitive endogenous RNAs network associated with head and neck squamous cell carcinoma. Sci Rep 2018; 8:10544. [PMID: 30002503 PMCID: PMC6043529 DOI: 10.1038/s41598-018-28957-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) can regulate gene expression directly or indirectly through interacting with microRNAs (miRNAs). However, the role of differentially expressed mRNAs, lncRNAs and miRNAs, and especially their related competitive endogenous RNAs (ceRNA) network in head and neck squamous cell carcinoma (HNSCC), is not fully comprehended. In this paper, the lncRNA, miRNA, and mRNA expression profiles of 546 HNSCC patients, including 502 tumor and 44 adjacent non-tumor tissues, from The Cancer Genome Atlas (TCGA) were analyzed. 82 miRNAs, 1197 mRNAs and 1041 lncRNAs were found to be differentially expressed in HNSCC samples (fold change ≥ 2; P < 0.01). Further bioinformatics analysis was performed to construct a lncRNA-miRNA-mRNA ceRNA network of HNSCC, which includes 8 miRNAs, 71 lncRNAs and 16 mRNAs. Through survival analysis based on the expression profiles of RNAs in the ceRNA network, we detected 1 mRNA, 1 miRNA and 13 lncRNA to have a significant impact on the overall survival of HNSCC patients (P < 0.05). Finally, some lncRNAs, which are more important for survival, were also predicted. Our research provides data to further understand the molecular mechanisms implicated in HNSCC.
Collapse
Affiliation(s)
- Xiao-Nan Fang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Key Laboratory of TCM Data Cloud Service in Universities of Shandong, School of Information Engineering, Shandong Management University, Jinan, 250357, China
| | - Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Cheng Liang
- School of Information Science & Engineering, Shandong Normal University, Jinan, 250358, China
| | - Cong Xu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Hua-Xiang Zhang
- School of Information Science & Engineering, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
36
|
LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via miR-211-5p mediated Ezrin/Fak/Src signaling. Cell Death Dis 2018; 9:742. [PMID: 29970910 PMCID: PMC6030066 DOI: 10.1038/s41419-018-0793-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/23/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
Abstract
Numerous findings have demonstrated that long noncoding RNA (lncRNA) dysregulation plays a key role in many human neoplasms, including tongue squamous cell carcinoma (TSCC), yet the potential mechanisms of lncRNAs in chemo-resistance remain elusive. Our research showed that the lncRNA KCNQ1OT1 was upregulated in chemo-insensitive TSCC tissues compared with chemo-sensitive TSCC specimens. Meanwhile, high KCNQ1OT1 expression was closely correlated with poor prognosis. Furthermore, KCNQ1OT1 promoted TSCC proliferation and conferred TSCC resistance to cisplatin-induced apoptosis in vitro and in vivo. Using online database analysis, we predicted that the lncRNA KCNQ1OT1 facilitates tumor growth and chemo-resistance by acting as a competing endogenous RNA (ceRNA) to modulate the expression of miR-211-5p. And miR-211-5p upregulation significantly impaired TSCC proliferation and resumed TSCC chemo-sensitivity, which is contrary to the function of lncRNA KCNQ1OT1. Luciferase experiments confirmed that miR-211-5p harbor binding sites for the 3'-UTRof Ezrin mRNA, and Ezrin/Fak/Src signaling was activated in cisplatin-resistant TSCC cells. Finally, miR-211-5p inhibition in sh-KCNQ1OT1-expressing TSCC cells rescued the suppressed cell proliferation and cisplatin resistance induced by KCNQ1OT1 knockdown. In summary, our study has elucidated the role of the oncogenic lncRNA KCNQ1OT1 in TSCC growth and chemo-resistance, which may serve as a new target for TSCC therapy.
Collapse
|
37
|
Peng J, Hou F, Feng J, Xu SX, Meng XY. Long non-coding RNA BCYRN1 promotes the proliferation and metastasis of cervical cancer via targeting microRNA-138 in vitro and in vivo. Oncol Lett 2018; 15:5809-5818. [PMID: 29552212 DOI: 10.3892/ol.2018.8015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Cervical cancer is one of the most malignant types of tumor and the fourth leading cause of cancer-associated mortality in females worldwide. High expression of brain cytoplasmic RNA 1 (BCYRN1) has been detected in various tumors. The present study aimed to investigate the effect of BCYRN1 in the viability and motility of cervical cancer, and the relevant mechanism. The results demonstrated that BCYRN1 was upregulated in cervical cancer tissues compared with normal tissues. Elevated levels of BCYRN1 were also detected in three human cervical cancer cell lines (SiHa, HeLa and CaSki) compared with non-cancerous ectocervical epithelial cell line (Ect1/E6E7). The expression of BCYRN1 was suppressed following transfection with small interfering RNA (siRNA) in HeLa cells. The silence of BCYRN1 significantly reduced cell viability and motility. Furthermore, microRNA (miR)-138 was predicted as a direct target of BCYRN1 and the expression of miR-138 was elevated in HeLa cells transfected with BCYRN1 siRNA. Subsequently, elevated levels of miR-138 were suppressed by transfection with miR-138 inhibitor in HeLa cells pretreated with BCYRN1 siRNA. The targeting association between BCYRN1 and miR-138 was supported by luciferase reporter assays. Additionally, BCYRN1 siRNA partially counteracted the effect of miR-138 inhibitor on promoting cell viability and mobility in HeLa cells. Finally, the in vivo experiment verified that BCYRN1 siRNA was able to prevent tumor growth, and reduced the expression of migration marker proteins metalloproteinase 2 and vascular endothelial cell growth factor, with enhanced expression levels of miR-138. These results suggest that lncRNA BCYRN1 promotes the proliferation and invasion of cervical cancer via targeting miR-138.
Collapse
Affiliation(s)
- Jie Peng
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Fang Hou
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jun Feng
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Shui-Xian Xu
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Xiao-Yan Meng
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| |
Collapse
|
38
|
Rivandi M, Khorrami MS, Fiuji H, Shahidsales S, Hasanzadeh M, Jazayeri MH, Hassanian SM, Ferns GA, Saghafi N, Avan A. The 9p21 locus: A potential therapeutic target and prognostic marker in breast cancer. J Cell Physiol 2018; 233:5170-5179. [PMID: 29240242 DOI: 10.1002/jcp.26332] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022]
Abstract
Breast cancer is an important cause of cancer related mortality in women. Despite extensive efforts to identify valid biomarkers for risk stratification, there are relatively few with proven clinical utility. It is recognized that genetic factors play a major role in determining susceptibility to breast cancer. Recent genome-wide-association-studies and gene expression analysis have demonstrated that a locus on chromosome 9p21, which contains three genes; CDKN2B (encoding p15ink4b), CDKN2A (encoding p16ink4a and p14ARF) and the 3' end of CDKN2BAS (an antisense noncoding RNA in the INK4 locus [ANRIL]) are associated with an increased risk of this malignancy. ANRIL has a post transcriptional modulatory activity, which has been shown to perturb the expression of nearby genes and may play an important role in coordinating tissue remodeling through regulation of cell proliferation, apoptosis, aging, extra-cellular matrix remodeling, and inflammatory response. However, the role of ANRIL is not well understood in breast cancer. Hypermethylation of the p14ARF and p16INK4a genes is found in some tumor types. Nevertheless, further studies are necessary to confirm the clinical utility of these putative markers in risk stratification, or assessing prognosis. In this review, we have summarized the prognostic and therapeutic potential of the p14ARF and p16INK4a genes in patients with breast cancer.
Collapse
Affiliation(s)
- Mahdi Rivandi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Sadegh Khorrami
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee of Department of modern Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mir Hadi Jazayeri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, UK
| | - Nafiseh Saghafi
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Wang ZY, Hu M, Dai MH, Xiong J, Zhang S, Wu HJ, Zhang SS, Gong ZJ. Upregulation of the long non-coding RNA AFAP1-AS1 affects the proliferation, invasion and survival of tongue squamous cell carcinoma via the Wnt/β-catenin signaling pathway. Mol Cancer 2018; 17:3. [PMID: 29310682 PMCID: PMC5757289 DOI: 10.1186/s12943-017-0752-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNA (lncRNA) actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) is oriented in an antisense direction to the protein-coding gene AFAP1 in the opposite strand. Previous studies showed that lncRNA AFAP1-AS1 was upregulated and acted as an oncogene in a variety of tumors. However, the expression and biological functions of lncRNA AFAP1-AS1 in tongue squamous cell carcinoma (TSCC) are still unknown. Methods The expression level of AFAP1-AS1 was measured in 103 pairs of human TSCC tissues and corresponding adjacent normal tongue mucous tissues. The correlation between AFAP1-AS1 and the clinicopathological features was evaluated using the chi-square test. The effects of AFAP1-AS1 on TSCC cells were determined via a CCK-8 assay, clone formation assay, flow cytometry, wound healing assay and transwell assay. Furthermore, the effect of AFAP1-AS1 knockdown on the activation of the Wnt/β-catenin signaling pathway was investigated. Finally, CAL-27 cells with AFAP1-AS1 knockdown were subcutaneously injected into nude mice to evaluate the effect of AFAP1-AS1 on tumor growth in vivo. Results In this study, we found that lncRNA AFAP1-AS1 was increased in TSCC tissues and that patients with high AFAP1-AS1 expression had a shorter overall survival. Short hairpin RNA (shRNA)-mediated AFAP1-AS1 knockdown significantly decreased the proliferation of TSCC cells. Furthermore, AFAP1-AS1 silencing partly inhibited cell migration and invasion. Inhibition of AFAP1-AS1 decreased the activity of the Wnt/β-catenin pathway and suppressed the expression of EMT-related genes (SLUG, SNAIL1, VIM, CADN, ZEB1, ZEB2, SMAD2 and TWIST1) in TSCC cells. In addition, CAL-27 cells with AFAP1-AS1 knockdown were injected into nude mice to investigate the effect of AFAP1-AS1 on tumorigenesis in vivo. Downregulation of AFAP1-AS1 suppressed tumor growth and inhibited the expression of EMT-related genes (SLUG, SNIAL1, VIM, ZEB1, NANOG, SMAD2, NESTIN and SOX2) in vivo. Conclusions Taken together, our findings present a road map for targeting the newly identified lncRNA AFAP1-AS1 to suppress TSCC progression, and these results elucidate a novel potential therapeutic strategy for TSCC.
Collapse
Affiliation(s)
- Ze-You Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min-Hui Dai
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuai Zhang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350100, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Han-Jiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shan-Shan Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zhao-Jian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
40
|
Gomes CC, Guimarães LM, Diniz MG, Gomez RS. Molecular alterations in odontogenic keratocysts as potential therapeutic targets. J Oral Pathol Med 2017; 46:877-882. [DOI: 10.1111/jop.12591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Carolina Cavalieri Gomes
- Department of Pathology; Basic Sciences Institute; Universidade Federal de Minas Gerais-UFMG; Belo Horizonte Brazil
| | - Letícia Martins Guimarães
- Department of Oral Surgery and Pathology; School of Dentistry; Universidade Federal de Minas Gerais-UFMG; Belo Horizonte Brazil
| | - Marina Gonçalves Diniz
- Department of Oral Surgery and Pathology; School of Dentistry; Universidade Federal de Minas Gerais-UFMG; Belo Horizonte Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology; School of Dentistry; Universidade Federal de Minas Gerais-UFMG; Belo Horizonte Brazil
| |
Collapse
|
41
|
de Lena PG, Paz-Gallardo A, Paramio JM, García-Escudero R. Clusterization in head and neck squamous carcinomas based on lncRNA expression: molecular and clinical correlates. Clin Epigenetics 2017; 9:36. [PMID: 28405244 PMCID: PMC5385094 DOI: 10.1186/s13148-017-0334-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have emerged as key players in a remarkably variety of biological processes and pathologic conditions, including cancer. Next-generation sequencing technologies and bioinformatics procedures predict the existence of tens of thousands of lncRNAs, from which we know the functions of only a handful of them, and very little is known in cancer types such as head and neck squamous cell carcinomas (HNSCCs). RESULTS Here, we use RNAseq expression data from The Cancer Genome Atlas (TCGA) and various statistic and software tools in order to get insight about the lncRNome in HNSCC. Based on lncRNA expression across 426 samples, we discover five distinct tumor clusters that we compare with reported clusters based on various genomic/genetic features. Results demonstrate significant associations between lncRNA-based clustering and DNA methylation, TP53 mutation, and human papillomavirus infection. Using "guilt-by-association" procedures, we infer the possible biological functions of representative lncRNAs of each cluster. Furthermore, we found that lncRNA clustering is correlated with some important clinical and pathologic features, including patient survival after treatment, tumor grade, or sub-anatomical location. CONCLUSIONS We present a landscape of lncRNAs in HNSCC and provide associations with important genotypic and phenotypic features that may help to understand the disease.
Collapse
Affiliation(s)
- Pelayo G de Lena
- Molecular Oncology Unit, CIEMAT, Ave Complutense 40 (ed70A), 28040 Madrid, Spain
| | | | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT, Ave Complutense 40 (ed70A), 28040 Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT, Ave Complutense 40 (ed70A), 28040 Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| |
Collapse
|