1
|
Silva-Henao JD, Pahr DH, Reisinger AG. Predicting osteosynthesis screw failure by peri-implant bone morphology in multiple loading conditions. J Mech Behav Biomed Mater 2025; 168:107043. [PMID: 40334349 DOI: 10.1016/j.jmbbm.2025.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Osteosynthesis screws are critical in orthopaedic surgery for stabilizing and aligning bone fracture fragments. Despite their importance, screw failure remains a significant complication, often due to excessive movement at the implant-bone interface resulting from both physiological loading and external mechanical forces. This study aims to enhance understanding of screw failure mechanisms by investigating the relationship between peri-implant CT-based trabecular bone morphology and screw failure under axial-, shear-, and mixed loading conditions, including the effect of plate elevation. Using high-resolution micro-computed tomography (micro-CT) and mechanical testing, 100 porcine epiphyseal bone samples were extracted and analysed to measure key CT-based trabecular morphometric indices and correlate them with mechanical failure. The study tested screws under ten different loading configurations. Statistical analyses revealed that bone volume (BV) and bone volume over total volume (BV/TV) are strong predictors of screw failure force, explaining 70-90 % of the variance in failure forces across different loading scenarios. The findings suggest that BV and BV/TV can be used to determine optimal screw implantation sites based on local bone morphology, potentially improving surgical outcomes and reducing postoperative complications. This research contributes to a more comprehensive understanding of orthopaedic screw behaviour and offers a predictive model for clinical use.
Collapse
Affiliation(s)
- Juan D Silva-Henao
- Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Division Biomechanics, Dr. Karl-Dorrek-straße 30, 3500, Krems, Austria; Institute of Lightweight Design and Structural Biomechanics, Technische Universität Wien, Vienna, Austria
| | - Dieter H Pahr
- Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Division Biomechanics, Dr. Karl-Dorrek-straße 30, 3500, Krems, Austria; Institute of Lightweight Design and Structural Biomechanics, Technische Universität Wien, Vienna, Austria
| | - Andreas G Reisinger
- Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Division Biomechanics, Dr. Karl-Dorrek-straße 30, 3500, Krems, Austria; Institute of Lightweight Design and Structural Biomechanics, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
2
|
Rodriguez AB, Kripfgans OD, Kozloff KM, Samal A, Woo J, Shehabeldin M, Chan H. Ultrasound-based jawbone surface quality evaluation after alveolar ridge preservation. J Periodontol 2024; 95:1150-1159. [PMID: 38742564 PMCID: PMC11708450 DOI: 10.1002/jper.23-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Bone readiness for implant placement is typically evaluated by bone quality/density on 2-dimensional radiographs and cone beam computed tomography at an arbitrary time between 3 and 6 months after tooth extraction and alveolar ridge preservation (ARP). The aim of this study is to investigate if high-frequency ultrasound (US) can classify bone readiness in humans, using micro-CT as a reference standard to obtain bone mineral density (BMD) and bone volume fraction (BVTV) of healed sockets receiving ARP in humans. METHODS A total of 27 bone cores were harvested during the implant surgery from 24 patients who received prior extraction with ARP. US images were taken immediately before the implant surgery at a site co-registered with the tissue biopsy collection location, made possible with a specially designed guide, and then classified into 3 tiers using B-mode image criteria (1) favorable, (2) questionable, and (3) unfavorable. Bone mineral density (hydroxyapatite) and BVTV were obtained from micro-CT as the gold standard. RESULTS Hydroxyapatite and BVTV were evaluated within the projected US slice plane and thresholded to favorable (>2200 mg/cm3; >0.45 mm3/mm3), questionable (1500-2200 mg/cm3; 0.4-0.45 mm3/mm3), and unfavorable (<1500 mg/cm3; <0.4 mm3/mm3). The present US B-mode classification inversely scales with BMD. Regression analysis showed a significant relation between US classification and BMD as well as BVTV. T-test analysis demonstrated a significant correlation between US reader scores and the gold standard. When comparing Tier 1 with the combination of Tier 2 and 3, US achieved a significant group differentiation relative to mean BMD (p = 0.004, true positive 66.7%, false positive 0%, true negative 100%, false negative 33.3%, specificity 100%, sensitivity 66.7%, receiver operating characteristics area under the curve 0.86). Similar results were found between US-derived tiers and BVTV. CONCLUSION Preliminary data suggest US could classify jawbone surface quality that correlates with BMD/BVTV and serve as the basis for future development of US-based socket healing evaluation after ARP.
Collapse
Affiliation(s)
- Amanda B. Rodriguez
- Department of Periodontics and Oral MedicineSchool of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Oliver D. Kripfgans
- Department of RadiologyMichigan MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Kenneth M. Kozloff
- Department of Biomedical EngineeringUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Orthopedic SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Ankita Samal
- Department of RadiologyMichigan MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Jae‐man Woo
- Department of RadiologyMichigan MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Mostafa Shehabeldin
- Department of Periodontics and Oral MedicineSchool of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Hsun‐Liang Chan
- Department of Periodontics and Oral MedicineSchool of DentistryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Liu F, Wang X, He Y, Han R, Wang T, Guo Y. Jaw osteoporosis: Challenges to oral health and emerging perspectives of treatment. Biomed Pharmacother 2024; 177:116995. [PMID: 38917761 DOI: 10.1016/j.biopha.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.
Collapse
Affiliation(s)
- Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Cui B, Bai T, Wu Q, Hu Y, Liu Y. Pre-implantation teriparatide administration improves initial implant stability and accelerates the osseointegration process in osteoporotic rats. Int J Implant Dent 2024; 10:18. [PMID: 38625587 PMCID: PMC11021383 DOI: 10.1186/s40729-024-00536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE Osteoporotic individuals who have dental implants usually require a prolonged healing time for osseointegration due to the shortage of bone mass and the lack of initial stability. Although studies have shown that intermittent teriparatide administration can promote osseointegration, there is little data to support the idea that pre-implantation administration is necessary and beneficial. METHODS Sixty-four titanium implants were placed in the bilateral proximal tibial metaphysis in 32 female SD rats. Bilateral ovariectomy (OVX) was used to induce osteoporosis. Four major groups (n = 8) were created: PRE (OVX + pre-implantation teriparatide administration), POST (OVX + post-implantation administration), OP (OVX + normal saline (NS)) and SHAM (sham rats + NS). Half of rats (n = 4) in each group were euthanized respectively at 4 weeks or 8 weeks after implantation surgery, and four major groups were divided into eight subgroups (PRE4 to SHAM8). Tibiae were collected for micro-CT morphometry, biomechanical test and undecalcified sections analysis. RESULTS Compared to OP group, rats in PRE and SHAM groups had a higher value of insertion torque (p < 0.05). The micro-CT analysis, biomechanical test, and histological data showed that peri-implant trabecular growth, implants fixation and bone-implant contact (BIC) were increased after 4 or 8 weeks of teriparatide treatment (p < 0.05). There was no statistically difference in those parameters between PRE4 and POST8 subgroups (p > 0.05). CONCLUSIONS In osteoporotic rats, post-implantation administration of teriparatide enhanced peri-implant bone formation and this effect was stronger as the medicine was taken longer. Pre-implantation teriparatide treatment improved primary implant stability and accelerated the osseointegration process.
Collapse
Affiliation(s)
- Boyu Cui
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Tianyi Bai
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Qiyou Wu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yibo Hu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yihong Liu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
5
|
Putri A, Pramanik F, Azhari A. Micro Computed Tomography and Immunohistochemistry Analysis of Dental Implant Osseointegration in Animal Experimental Model: A Scoping Review. Eur J Dent 2023; 17:623-628. [PMID: 36977479 PMCID: PMC10569876 DOI: 10.1055/s-0042-1757468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Osseointegration is a complex process that involves the interaction of dental implants, bone, and the immune system. Preclinical testing was carried out to develop a better understanding of the mechanism. Micro-computed tomography (micro-CT) imaging techniques and immunohistochemistry are excellent tools for this objective as both enable quantitative assessment of bone microarchitecture and intercellular interaction. An extensive literature search was conducted using the databases PubMed, Science Direct, Wiley Online, Proquest and Ebscohost from January 2011 to January 2021. Among the publications retrieved, the rat model was the most frequently used experimental protocol, with the tibia being the most frequently implanted site. The region of interest demonstrates a high degree of homogeneity as measured by trabecula but varies in size and shape. The most frequently mentioned micro-CT bone parameter and immunohistochemistry bone markers were bone volume per total volume (BV/TV) and runt-related transcription factors (RUNX). Animal models, micro-CT analysis methods, and immunohistochemistry biomarkers yielded a variety of results in the studies. Understanding bone architecture and the remodeling process will aid in the selection of a viable model for a specific research topic.
Collapse
Affiliation(s)
- Annisa Putri
- Dentomaxillofacial Radiology Residency Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Farina Pramanik
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Azhari Azhari
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Feng L, Chen H, Chen Z, Chen Y, Gu X. Associations between cortical bone-to-implant contact and microstructure derived from CBCT and implant primary stability. Clin Oral Implants Res 2023; 34:243-253. [PMID: 36727924 DOI: 10.1111/clr.14037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/25/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To evaluate the associations between the cortical bone-to-implant contact (CBIC), bone microstructure derived from cone-beam computed tomography (CBCT), and the primary stability of the implant. MATERIALS AND METHODS Twenty-two patients with 65 implants were enrolled in this study. The peak insertion torque values (ITVs) were measured during implant insertion, and the implant stability quotient (ISQ) values were measured immediately after implant placement and 3 months after surgery. The profiles of the peri-implant bone structure were outlined using the volumetric reconstruction of the CBCTs and superimposition of the virtual models, and the features of CBIC and bone microstructure parameters were measured. The linear mixed effects model and generalized estimating equation were used to explore the predictors for implant primary stability. RESULTS The average ITV, baseline, and secondary ISQ values were 31.44 ± 6.54 N·cm, 73.34 ± 7.39, and 80.32 ± 4.58, respectively. Statistically significant correlations were found between ITV and surface area of CBIC (r = .340, p = .006), bone volume fraction (r = .294, p = .017), and bone surface fraction (r = -.278, p = .039). Implants with buccolingual CBIC had a higher ITV than implants without CBIC (p = .016). None of the parameters were associated with baseline and secondary ISQ values in generalized estimating equation analysis (all p > .05). CONCLUSIONS Within the limitations of the study, preoperative CBCT measurements might enable the prediction of ITV and therefore of implant primary stability values.
Collapse
Affiliation(s)
- Lan Feng
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haida Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ziyun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|