1
|
Wang Y, Sun Y, Tan M, Lin X, Tai P, Huang X, Jin Q, Yuan D, Xu T, He B. Association Between Polymorphisms in DNA Damage Repair Pathway Genes and Female Breast Cancer Risk. DNA Cell Biol 2024; 43:219-231. [PMID: 38634815 DOI: 10.1089/dna.2023.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Breast cancer risk have been discussed to be associated with polymorphisms in genes as well as abnormal DNA damage repair function. This study aims to assess the relationship between genes single nucleotide polymorphisms (SNPs) related to DNA damage repair and female breast cancer risk in Chinese population. A case-control study containing 400 patients and 400 healthy controls was conducted. Genotype was identified using the sequence MassARRAY method and expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissues was analyzed by immunohistochemistry assay. The results revealed that ATR rs13091637 decreased breast cancer risk influenced by ER, PR (CT/TT vs. CC: adjusted odds ratio [OR] = 1.54, 95% confidence interval [CI]: 1.04-2.27, p = 0.032; CT/TT vs. CC: adjusted OR = 1.63, 95%CI: 1.14-2.35, p = 0.008) expression. Stratified analysis revealed that PALB2 rs16940342 increased breast cancer risk in response to menstrual status (AG/GG vs. AA: adjusted OR = 1.72, 95%CI: 1.13-2.62, p = 0.011) and age of menarche (AG/GG vs. AA: adjusted OR = 1.54, 95%CI: 1.03-2.31, p = 0.037), whereas ATM rs611646 and Ku70 rs132793 were associated with reduced breast cancer risk influenced by menarche (GA/AA vs. GG: adjusted OR = 0.50, 95%CI: 0.30-0.95, p = 0.033). In a summary, PALB2 rs16940342, ATR rs13091637, ATM rs611646, and Ku70 rs132793 were associated with breast cancer risk.
Collapse
Affiliation(s)
- Ying Wang
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yalan Sun
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjuan Tan
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Lin
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ping Tai
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Huang
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Jin
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Yuan
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bangshun He
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Prime SS, Darski P, Hunter KD, Cirillo N, Parkinson EK. A Review of the Repair of DNA Double Strand Breaks in the Development of Oral Cancer. Int J Mol Sci 2024; 25:4092. [PMID: 38612901 PMCID: PMC11012950 DOI: 10.3390/ijms25074092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Piotr Darski
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Keith D. Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, VIC 3053, Australia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
3
|
Butkiewicz D, Krześniak M, Gdowicz-Kłosok A, Składowski K, Rutkowski T. DNA Double-Strand Break Response and Repair Gene Polymorphisms May Influence Therapy Results and Prognosis in Head and Neck Cancer Patients. Cancers (Basel) 2023; 15:4972. [PMID: 37894339 PMCID: PMC10605140 DOI: 10.3390/cancers15204972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and cisplatin-based chemotherapy belong to the main treatment modalities for head and neck squamous cell carcinoma (HNSCC) and induce cancer cell death by generating DNA damage, including the most severe double-strand breaks (DSBs). Alterations in DSB response and repair genes may affect individual DNA repair capacity and treatment sensitivity, contributing to the therapy resistance and poor prognosis often observed in HNSCC. In this study, we investigated the association of a panel of single-nucleotide polymorphisms (SNPs) in 20 DSB signaling and repair genes with therapy results and prognosis in 505 HNSCC patients treated non-surgically with DNA damage-inducing therapies. In the multivariate analysis, there were a total of 14 variants associated with overall, locoregional recurrence-free or metastasis-free survival. Moreover, we identified 10 of these SNPs as independent predictors of therapy failure and unfavorable prognosis in the whole group or in two treatment subgroups. These were MRE11 rs2155209, XRCC5 rs828907, RAD51 rs1801321, rs12593359, LIG4 rs1805388, CHEK1 rs558351, TP53 rs1042522, ATM rs1801516, XRCC6 rs2267437 and NBN rs2735383. Only CHEK1 rs558351 remained statistically significant after correcting for multiple testing. These results suggest that specific germline variants related to DSB response and repair may be potential genetic modifiers of therapy effects and disease progression in HNSCC treated with radiotherapy and cisplatin-based chemoradiation.
Collapse
Affiliation(s)
- Dorota Butkiewicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Krzysztof Składowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Tomasz Rutkowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
4
|
Tsai CW, Shih LC, Chang WS, Hsu CL, He JL, Hsia TC, Wang YC, Gu J, Bau DT. Non-Homologous End-Joining Pathway Genotypes Significantly Associated with Nasopharyngeal Carcinoma Susceptibility. Biomedicines 2023; 11:1648. [PMID: 37371742 DOI: 10.3390/biomedicines11061648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Defects in the non-homologous end-joining (NHEJ) DNA repair pathway lead to genomic instability and carcinogenesis. However, the roles of individual NHEJ genes in nasopharyngeal carcinoma (NPC) etiology are not well-understood. The aim of this study was to assess the contribution of NHEJ genotypes, including XRCC4 (rs6869366, rs3734091, rs28360071, rs28360317, rs1805377), XRCC5 (rs828907, rs11685387, rs9288518), XRCC6 (rs5751129, rs2267437, rs132770, rs132774), XRCC7 rs7003908, and Ligase4 rs1805388, to NPC risk, with 208 NPC patients and 416 controls. Genotype-phenotype correlations were also investigated by measuring mRNA and protein expression in adjacent normal tissues and assessing the NHEJ repair capacity in blood lymphocytes from 43 NPC patients. The results showed significant differences in the distributions of variant genotypes at XRCC4 rs3734091, rs28360071, and XRCC6 rs2267437 between the cases and controls. The variant genotypes of these three polymorphisms were associated with significantly increased NPC risks. NPC patients with the risk genotypes at XRCC6 rs2267437 had significantly reduced expression levels of both mRNA and protein, as well as a lower NHEJ repair capacity, than those with the wild-type genotype. In conclusion, XRCC4 rs3734091, rs28360071, and XRCC6 rs2267437 in the NHEJ pathway were associated with NPC susceptibility. XRCC6 rs2267437 can modulate mRNA and protein expression and the NHEJ repair capacity.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Liang-Chun Shih
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Che-Lun Hsu
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Jie-Long He
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 413305, Taiwan
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
5
|
Lei H, He A, Jiang Y, Ruan M, Han N. Targeting DNA damage response as a potential therapeutic strategy for head and neck squamous cell carcinoma. Front Oncol 2022; 12:1031944. [PMID: 36338767 PMCID: PMC9634729 DOI: 10.3389/fonc.2022.1031944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/20/2023] Open
Abstract
Cells experience both endogenous and exogenous DNA damage daily. To maintain genome integrity and suppress tumorigenesis, individuals have evolutionarily acquired a series of repair functions, termed DNA damage response (DDR), to repair DNA damage and ensure the accurate transmission of genetic information. Defects in DNA damage repair pathways may lead to various diseases, including tumors. Accumulating evidence suggests that alterations in DDR-related genes, such as somatic or germline mutations, single nucleotide polymorphisms (SNPs), and promoter methylation, are closely related to the occurrence, development, and treatment of head and neck squamous cell carcinoma (HNSCC). Despite recent advances in surgery combined with radiotherapy, chemotherapy, or immunotherapy, there has been no substantial improvement in the survival rate of patients with HNSCC. Therefore, targeting DNA repair pathways may be a promising treatment for HNSCC. In this review, we summarized the sources of DNA damage and DNA damage repair pathways. Further, the role of DNA damage repair pathways in the development of HNSCC and the application of small molecule inhibitors targeting these pathways in the treatment of HNSCC were focused.
Collapse
Affiliation(s)
- Huimin Lei
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Ading He
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yingying Jiang
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Min Ruan
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Nannan Han
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. Pharmacol Ther 2020; 215:107617. [PMID: 32610116 DOI: 10.1016/j.pharmthera.2020.107617] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
The DNA-PK holoenzyme is a fundamental element of the DNA damage response machinery (DDR), which is responsible for cellular genomic stability. Consequently, and predictably, over the last decades since its identification and characterization, numerous pre-clinical and clinical studies reported observations correlating aberrant DNA-PK status and activity with cancer onset, progression and responses to therapeutic modalities. Notably, various studies have established in recent years the role of DNA-PK outside the DDR network, corroborating its role as a pleiotropic complex involved in transcriptional programs that operate biologic processes as epithelial to mesenchymal transition (EMT), hypoxia, metabolism, nuclear receptors signaling and inflammatory responses. In particular tumor entities as prostate cancer, immense research efforts assisted mapping and describing the overall signaling networks regulated by DNA-PK that control metastasis and tumor progression. Correspondingly, DNA-PK emerges as an obvious therapeutic target in cancer and data pertaining to various pharmacological approaches have been published, largely in context of combination with DNA-damaging agents (DDAs) that act by inflicting DNA double strand breaks (DSBs). Currently, new generation inhibitors are tested in clinical trials. Several excellent reviews have been published in recent years covering the biology of DNA-PK and its role in cancer. In the current article we are aiming to systematically describe the main findings on DNA-PK signaling in major cancer types, focusing on both preclinical and clinical reports and present a detailed current status of the DNA-PK inhibitors repertoire.
Collapse
|
7
|
Chang WS, Shen TC, Liao JM, Tsai YT, Hsia TC, Wu HC, Tsai CW, Bau DT. Significant Contribution of DNA Repair Human 8-Oxoguanine DNA N-Glycosylase 1 Genotypes to Renal Cell Carcinoma. Onco Targets Ther 2020; 13:1583-1591. [PMID: 32110055 PMCID: PMC7039087 DOI: 10.2147/ott.s231733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/06/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction DNA repair systems play essential roles in genomic stability and carcinogenesis. Therefore, genotypes at DNA repair loci may contribute to the determination of personal susceptibility to cancers. The contribution of human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) genotypes to renal cell carcinoma (RCC) is largely unknown. This study aimed to evaluate the contributions of hOGG1 rs1052133 genotypes to the RCC risk. Methods We evaluated the contribution of hOGG1 rs1052133 (G/C) genotypes among 118 cases and 590 controls and analyzed the interactions of hOGG1 genotypes with smoking, alcohol drinking, hypertension, and diabetes status. Results The hOGG1 rs1052133 CC genotype was significantly associated with a decreased RCC risk compared with that of the GG genotype (odds ratio [OR] = 0.25, 95% confidence interval [CI] = 0.09–0.72, p = 0.0049). The frequency of the rs1052133 C allele was significantly low in the RCC group (22.5% vs 31.2%; OR = 0.64; 95% CI = 0.46–0.89, p = 0.0074). Stratifying the analysis according to smoking, alcohol drinking, and diabetes status revealed no difference in the rs1052133 genotype distribution among these subgroups. A significant differential distribution of rs1052133 genotypes was observed among subjects with hypertension. Conclusion The CC genotype of rs1052133 may play a role in determining RCC susceptibility among Taiwanese people and may serve as a biomarker of RCC, particularly in patients with hypertension.
Collapse
Affiliation(s)
- Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Te-Chun Shen
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yueh-Ting Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Te-Chun Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsi-Chin Wu
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
9
|
Liu JC, Shen WC, Shih TC, Tsai CW, Chang WS, Cho DY, Tsai CH, Bau DT. The current progress and future prospects of personalized radiogenomic cancer study. Biomedicine (Taipei) 2015; 5:2. [PMID: 25705582 PMCID: PMC4328115 DOI: 10.7603/s40681-015-0002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022] Open
Abstract
During the last twenty years, mounting studies have supported the hypothesis that there is a genetic component that plays an important role in clinically observed variability in individual tissue/organ toxicity after radiotherapy. We propose the term “Personalized Radiogenomics” for the translational study of individual genetic variations that may associate with or contribute to the responses of tissues to radiation therapy used in the treatment of all types of cancer. The missions of personalized radiogenomic research are 1) to reveal the related genes, proteins, and biological pathways responsible for non-tumor or tumor tissue toxicity resulting from radiotherapy that could be targeted with radio-sensitizing and/or radio-protective agents, and 2) to identify specific genetic markers that can be used in risk prediction and evaluation models before and after clinical cancer surgery. For the members of the Terry Fox Cancer Research Lab in China Medical University and Hospital, the long-term goal is to develop SNP-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. Worldwide, the field has evolved over the last two decades in parallel with rapid advances in genetic and genomic technology, moving step by step from narrowly focused candidate gene studies to large-scale, collaborative genome-wide association studies. This article will summarize the candidate gene association studies published so far from the Terry Fox Cancer Research Lab as well as worldwide on the risk of radiation-related cancers and highlight some wholegenome association studies showing feasibility in fulfilling the dream of personalized radiogenomic cancer therapy.
Collapse
Affiliation(s)
- Juhn-Cherng Liu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| | - Wu-Chung Shen
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Tzu-Ching Shih
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Der-Yang Cho
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Chang-Hai Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| |
Collapse
|
10
|
Nagel ZD, Chaim IA, Samson LD. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst) 2014; 19:199-213. [PMID: 24780560 DOI: 10.1016/j.dnarep.2014.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Genome stability pathways in head and neck cancers. Int J Genomics 2013; 2013:464720. [PMID: 24364026 PMCID: PMC3834617 DOI: 10.1155/2013/464720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022] Open
Abstract
Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies.
Collapse
|
12
|
Wang CH, Lin WD, Bau DT, Chou IC, Tsai CH, Tsai FJ. Appearance of acanthosis nigricans may precede obesity: An involvement of the insulin/IGF receptor signaling pathway. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
13
|
Wang M, Chu H, Zhang Z, Wei Q. Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer. J Biomed Res 2013; 27:179-92. [PMID: 23720673 PMCID: PMC3664724 DOI: 10.7555/jbr.27.20130034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022] Open
Abstract
Although tobacco and alcohol consumption are two common risk factors of head and neck cancer (HNC), other specific etiologic causes, such as viral infection and genetic susceptibility factors, remain to be understood. Human DNA is often damaged by numerous endogenous and exogenous mutagens or carcinogens, and genetic variants in interaction with environmental exposure to these agents may explain interindividual differences in HNC risk. Single nucleotide polymorphisms (SNPs) in genes involved in the DNA damage-repair response are reported to be risk factors for various cancer types, including HNC. Here, we reviewed epidemiological studies that have assessed the associations between HNC risk and SNPs in DNA repair genes involved in base-excision repair, nucleotide-excision repair, mismatch repair, double-strand break repair and direct reversion repair pathways. We found, however, that only a few SNPs in DNA repair genes were found to be associated with significantly increased or decreased risk of HNC, and, in most cases, the effects were moderate, depending upon locus-locus interactions among the risk SNPs in the pathways. We believe that, in the presence of exposure, additional pathway-based analyses of DNA repair genes derived from genome-wide association studies (GWASs) in HNC are needed.
Collapse
Affiliation(s)
- Meilin Wang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; ; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | | | | | | |
Collapse
|
14
|
Balaji L, Krishna BS, Bhaskar LVKS. An unlikely role for the NAT2 genotypes and haplotypes in the oral cancer of south Indians. Arch Oral Biol 2012; 57:513-518. [PMID: 22137356 DOI: 10.1016/j.archoralbio.2011.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/20/2011] [Accepted: 10/30/2011] [Indexed: 11/18/2022]
Abstract
UNLABELLED The arylamine N-acetyltransferase 2 (NAT2) enzyme detoxifies a wide spectrum of naturally occurring xenobiotics including carcinogens and drugs. Acetylation catalysed by the NAT2 is an important process in metabolic activation of arylamines to electrophilic intermediates that initiate carcinogenesis. Polymorphism in N-acetyltransferase 2 gene was reported to be associated with the susceptibility of various cancers. OBJECTIVE The aim of our study was to determine whether there is any association between the susceptibility to oral cancer amongst the variations of NAT2 genotypes. DESIGN This study was carried out in 157 patients with oral cancer. The control group consisted of 132 healthy volunteers. The most common polymorphisms rs1799929, rs1799930 and rs1799931 on the NAT2 gene were screened for the genotypes using TaqMan allelic discrimination. RESULTS All the three SNPs were polymorphic with minor allele frequency of 0.339, 0.372 and 0.061 for rs1799929, rs1799930 and rs1799931, respectively. None of the polymorphic site deviated from HWE in controls. There were no significant differences in genotype or allele frequencies of three SNPs between controls and cases with oral cancer. Risk of oral cancer development for the carriers of the individual deduced phenotypes was also not statistically significant. Of the 3 studied polymorphisms, 2 were in strong LD and form one haplotype block. None of the haplotype had shown significant association with the oral cancer. CONCLUSIONS Our study concludes that the NAT2 genotypes, phenotypes and haplotypes are not involved in the susceptibility to oral cancer in South Indian subjects.
Collapse
Affiliation(s)
- Lakshmi Balaji
- Department of Endodontics, Sri Ramachandra Dental College and Hospital, Sri Ramachandra University, Chennai, India
| | | | | |
Collapse
|
15
|
Bau DT, Lin CC, Chiu CF, Tsai MH. Role of nonhomologous end-joining in oral cancer and personalized pharmacogenomics. Biomedicine (Taipei) 2012. [DOI: 10.1016/j.biomed.2011.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
16
|
Yang MD, Tsai CW, Chang WS, Tsou YA, Wu CN, Bau DT. Predictive role of XRCC5/ XRCC6 genotypes in digestive system cancers. World J Gastrointest Oncol 2011; 3:175-81. [PMID: 22224172 PMCID: PMC3251741 DOI: 10.4251/wjgo.v3.i12.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/06/2011] [Accepted: 10/14/2011] [Indexed: 02/05/2023] Open
Abstract
Cancers are a worldwide concern; oral, esophageal and gastrointestinal cancers represent important causes of cancer-related mortality and contribute to a significant burden of human health. The DNA repair systems are the genome caretakers, playing a critical role in the initiation and progression of cancers. However, the association between the genomic variations of DNA repair genes and cancer susceptibility is not well understood. This review focuses on the polymorphic genotypes of the non-homologous end-joining DNA repair system, highlighting the role of two genes of this pathway, XRCC5 and XRCC6, in the susceptibility to digestive system cancers and discussing their potential contributions to personalized medicine.
Collapse
Affiliation(s)
- Mei-Due Yang
- Mei-Due Yang, Chia-Wen Tsai, Wen-Shin Chang, Yung-An Tsou, Cheng-Nan Wu, Da-Tian Bau, Terry Fox Cancer Research Laboratory, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40402, Taiwan, China
| | | | | | | | | | | |
Collapse
|
17
|
Bau DT, Tsai CW, Lin CC, Tsai RY, Tsai MH. Association of alpha B-crystallin genotypes with oral cancer susceptibility, survival, and recurrence in Taiwan. PLoS One 2011; 6:e16374. [PMID: 21915251 PMCID: PMC3168435 DOI: 10.1371/journal.pone.0016374] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 12/18/2010] [Indexed: 12/16/2022] Open
Abstract
Background Alpha B-crystallin (CRYAB) is a protein that functions as “molecular chaperone” in preserving intracellular architecture and cell membrane. Also, CRYAB is highly antiapoptotic. Abnormal CRYAB expression is a prognostic biomarker for oral cancer, while its genomic variations and the association with carcinogenesis have never been studied. Methodology/Finding Therefore, we hypothesized that CRYAB single nucleotide polymorphisms may be associated with oral cancer risk. In this hospital-based study, the association of CRYAB A-1215G (rs2228387), C-802G (rs14133) and intron2 (rs2070894) polymorphisms with oral cancer in a Taiwan population was investigated. In total, 496 oral cancer patients and 992 age- and gender-matched healthy controls were genotyped and analyzed. A significantly different frequency distribution was found in CRYAB C-802G genotypes, but not in A-1215G and intron2 genotypes, between the oral cancer and control groups. The CRYAB C-802G G allele conferred an increased risk of oral cancer (P = 1.49×10−5). Patients carrying CG/GG at CRYAB C-802G were of lower 5-year survival and higher recurrence rate than those of CC (P<0.05). Conclusion/Significance Our results provide the first evidence that the G allele of CRYAB C-802G is correlated with oral cancer risk and this polymorphism may be a useful marker for oral cancer recurrence and survival prediction for clinical reference.
Collapse
Affiliation(s)
- Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (D-TB); (M-HT)
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Lin
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ru-Yin Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsui Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (D-TB); (M-HT)
| |
Collapse
|
18
|
Al-Hadyan KS, Al-Harbi NM, Al-Qahtani SS, Alsbeih GA. Involvement of single-nucleotide polymorphisms in predisposition to head and neck cancer in Saudi Arabia. Genet Test Mol Biomarkers 2011; 16:95-101. [PMID: 21877955 DOI: 10.1089/gtmb.2011.0126] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM Individuals differ in their inherited tendency to develop cancer. This has been suggested to be due to genetic variations between individuals. Single-nucleotide polymorphisms (SNPs) are the most common form of genetic variations found in the human population. The aim of this study was to investigate the association between 10 SNPs in genes involved in cell cycle control and DNA repair (p21 C31A, p53 G72C, ATM G1853A, XRCC1 G399A, XRCC3 C241T, Ku80 A2790G, DNA Ligase IV C9T, DNA-PKcs A3434G, TGF-beta T10C, MDM2 promoter T309G) and the risk to develop head and neck cancer. MATERIALS AND METHODS A cohort of 407 individuals (156 cancer patients and 251 controls) was included. DNA was extracted from peripheral blood. SNPs were genotyped by direct sequencing. RESULTS Data showed significant allelic associations for p21 C31A (p=0.04; odds ratio [OR]=1.44; confidence interval [CI]: 1.02-2.03), Ku80 A2790G (p=0.04; OR=1.5; CI: 1.01-2.23), and MDM2 T309G (p=0.0003; OR=0.58; CI: 0.43-0.78) and head and neck cancer occurrence. Both cancer cases and controls were in Hardy-Weinberg equilibrium. CONCLUSION SNPs can be associated with head and neck cancer in the Saudi population. The p21 C31A, Ku80 A2790G, and MDM2 T309G SNPs could be used as genetic biomarkers to screen individuals at high cancer risk.
Collapse
Affiliation(s)
- Khaled S Al-Hadyan
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
19
|
Li JQ, Chen J, Liu NN, Yang L, Zeng Y, Wang B, Wang XR. Ku80 gene G-1401T promoter polymorphism and risk of gastric cancer. World J Gastroenterol 2011; 17:2131-6. [PMID: 21547134 PMCID: PMC3084400 DOI: 10.3748/wjg.v17.i16.2131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/20/2010] [Accepted: 01/27/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the possible relationship between the Ku80 gene polymorphism and the risk of gastric cancer in China.
METHODS: In this hospital-based case-control study of gastric cancer in Jiangsu Province, China, we investigated the association of the Ku80 G-1401T (rs828907) polymorphism with gastric cancer risk. A total of 241 patients with gastric cancer and 273 age- and sex-matched control subjects were genotyped and analyzed by polymerase chain reaction-restriction fragment length polymorphism.
RESULTS: The frequencies of genotypes GG, GT and TT were 65.6%, 22.8% and 11.6% in gastric cancer cases, respectively, and 75.8%, 17.6% and 6.6% in controls, respectively. There were significant differences between gastric cancer and control groups in the distribution of their genotypes (P = 0.03) and allelic frequencies (P = 0.002) in the Ku80 promoter G-1401T polymorphism.
CONCLUSION: The T allele of Ku80 G-1401T may be associated with the development of gastric cancer.
Collapse
|
20
|
Bau DT, Tsai CW, Wu CN. Role of the XRCC5/XRCC6 dimer in carcinogenesis and pharmacogenomics. Pharmacogenomics 2011; 12:515-34. [PMID: 21521024 DOI: 10.2217/pgs.10.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Over the past few decades, the incidence of cancer has rapidly increased all over the world and cancer remains a major threat to public health. It is believed that cancer results from a series of genetic alterations that lead to the progressive disorder of the normal mechanisms controlling cell proliferation, differentiation, death and/or genomic stability. The response of the cell to genetic injury and its ability to maintain genomic stability by means of a variety of DNA repair mechanisms are therefore essential in preventing tumor initiation and progression. From the same viewpoint, the relative role of DNA repair as a biomarker for prognosis, predictor of drug and therapy responses or indeed as a target for novel gene therapy, is very promising. In this article, we have summarized the studies investigating the association between the XRCC5/XRCC6 dimer and the susceptibility to multiple cancers and discuss its role in carcinogenesis and its potential application to anticancer drug discovery.
Collapse
Affiliation(s)
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404 Taiwan, Republic of China
| | - Cheng-Nan Wu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404 Taiwan, Republic of China
- Department of Medical Laboratory Science & Biotechnology, Central-Taiwan University of Science & Technology, Taichung, Taiwan, Republic of China
| |
Collapse
|
21
|
Bau DT, Tsai MH, Tsou YA, Wang CH, Tsai CW, Sun SS, Hua CH, Shyue SK, Tsai RY. The Association of Caveolin-1 Genotypes with Oral Cancer Susceptibility in Taiwan. Ann Surg Oncol 2011; 18:1431-8. [DOI: 10.1245/s10434-010-1483-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Indexed: 01/29/2023]
|
22
|
Bau DT, Chang CH, Tsai MH, Chiu CF, Tsou YA, Wang RF, Tsai CW, Tsai RY. Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility. Laryngoscope 2010; 120:2417-22. [DOI: 10.1002/lary.21009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Yang MD, Tsai RY, Liu CS, Chang CH, Wang HC, Tsou YA, Wang CH, Lin CC, Shyue SK, Bau DT. Association of Caveolin-1 polymorphisms with colorectal cancer susceptibility in Taiwan. World J Gastrointest Oncol 2010; 2:326-31. [PMID: 21160894 PMCID: PMC2999679 DOI: 10.4251/wjgo.v2.i8.326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/04/2010] [Accepted: 08/09/2010] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the association of Caveolin-1 (Cav-1) polymorphisms with colorectal cancer (CRC) risk in a central Taiwanese population.
METHODS: Three hundred and sixty-two patients with colorectal cancer and the same number of recruited age- and gender-matched healthy controls were genotyped. And only those matches with all single nucleotide polymorphisms data (case/control = 362/362) were selected for final analyzing.
RESULTS: There were significant differences between CRC and control groups in the distributions of their genotypes (P = 1.6 × 10-12 and 3.0 × 10-4) and allelic frequencies (P = 2.3 × 10-13 and 4.0 × 10-5) in the Cav-1 G14713A (rs3807987) and T29107A (rs7804372) polymorphisms respectively. As for the haplotype analysis, those who had GG/AT or GG/AA at Cav-1 G14713A/T29107A showed a 0.68-fold (95% CI: 0.48-0.98) decreased risk of CRC compared to those with GG/TT, while those of any other combinations were of increased risk. There were joint effects of Cav-1 G14713A and T29107A genotype with smoking status on individual CRC susceptibility.
CONCLUSION: This is the first report providing evidence of Cav-1 being involved in CRC and it may be novel useful genomic markers for early detection of CRC.
Collapse
Affiliation(s)
- Mei-Due Yang
- Mei-Due Yang, Chao-Hsiang Chang, Hwei-Chung Wang, Department of Surgery, China Medical University Hospital, 2 Yuh-Der Road, Taichung 404, Taiwan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|