1
|
Macrae C. Managing risk and resilience in autonomous and intelligent systems: Exploring safety in the development, deployment, and use of artificial intelligence in healthcare. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:910-927. [PMID: 38246857 PMCID: PMC12032380 DOI: 10.1111/risa.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Autonomous and intelligent systems (AIS) are being developed and deployed across a wide range of sectors and encompass a variety of technologies designed to engage in different forms of independent reasoning and self-directed behavior. These technologies may bring considerable benefits to society but also pose a range of risk management challenges, particularly when deployed in safety-critical sectors where complex interactions between human, social, and technical processes underpin safety and resilience. Healthcare is one safety-critical sector at the forefront of efforts to develop and deploy intelligent technologies, such as through artificial intelligence (AI) systems intended to automate key aspects of healthcare tasks such as reading medical images to identify signs of pathology. This article develops a qualitative analysis of the sociotechnical sources of risk and resilience associated with the development, deployment, and use of AI in healthcare, drawing on 40 in-depth interviews with participants involved in the development, management, and regulation of AI. Qualitative template analysis is used to examine sociotechnical sources of risk and resilience, drawing on and elaborating Macrae's (2022, Risk Analysis, 42(9), 1999-2025) SOTEC framework that integrates structural, organizational, technological, epistemic, and cultural sources of risk in AIS. This analysis explores an array of sociotechnical sources of risk associated with the development, deployment, and use of AI in healthcare and identifies an array of sociotechnical patterns of resilience that may counter those risks. In doing so, the SOTEC framework is elaborated and translated to define key sources of both risk and resilience in AIS.
Collapse
Affiliation(s)
- Carl Macrae
- Nottingham University Business School, University of NottinghamNottinghamUK
- School of Health and WelfareHalmstad UniversityHalmstadSweden
| |
Collapse
|
2
|
Pandav K, Almahfouz Nasser S, Kimball KH, Higgins K, Madabhushi A. Opportunities for Artificial Intelligence in Oncology: From the Lens of Clinicians and Patients. JCO Oncol Pract 2025:OP2400797. [PMID: 40080779 DOI: 10.1200/op-24-00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
Much work has been published on artificial intelligence (AI) and oncology, with many focusing on an algorithm perspective. However, very few perspective articles have explicitly discussed the role of AI in oncology from the perspectives of the stakeholders-the clinicians and the patients. In this article, we delve into the opportunities of AI in oncology from the clinician's and patient's lens. From the clinician's perspective, we discuss reducing burnout, enhancing decision making, and leveraging vast data sets to provide evidence-based recommendations, eventually affecting diagnostic accuracy and treatment planning. From the patient's perspective, we discuss AI virtual concierge, which could improve the cancer care journey by facilitating patient education, mental health support, and personalized lifestyle wellness recommendations promoting a holistic approach to care. We aim to highlight the stakeholders' unmet needs and guide institutions to create innovative AI solutions in oncology. By addressing these perspectives, our article aims to bridge the gap between technological research advancements and their real-world AI-focused clinical applications in cancer care. Understanding and prioritizing the needs of the stakeholders will foster the development of impactful AI tools and intentional utilization of such technology, with an aim for clinical implementation and integration into workflows.
Collapse
|
3
|
Al-Raeei M. The Future of Oral Oncology: How Artificial Intelligence is Redefining Surgical Procedures and Patient Management. Int Dent J 2025; 75:109-116. [PMID: 39395899 PMCID: PMC11806312 DOI: 10.1016/j.identj.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
INTRODUCTION AND AIMS The future of oral oncology is significantly influenced by the incorporation of artificial intelligence (AI) technologies, such as surgical robotics and early histopathological diagnosis and detection of diseases. This article aims to explore the transformative effects of AI on the identification and diagnosis of oral cancer, emphasising the potential improvements in patient outcomes and the effectiveness of treatment options. METHODS An overview of the integration of AI technologies in surgical robotics and remote monitoring systems was conducted. This included an examination of AI algorithms used in surgical procedures for oral cancer, as well as the functionalities of AI-powered remote monitoring tools in disease management and patient care. RESULTS The application of AI in surgical robotics has led to increased precision and accuracy in oral cancer procedures, resulting in significantly improved patient outcomes with fewer complications. Furthermore, AI-driven remote monitoring systems facilitated personalised care and timely medical interventions, which contributed to better disease management. Notable positive results observed include decreased procedure durations, reduced complications, and accelerated recovery times for patients. CONCLUSION The integration of AI technologies in oral oncology care has demonstrated significant potential for enhancing the quality of care, improving treatment outcomes, and streamlining clinical workflows. By leveraging AI, healthcare professionals can offer tailored treatment plans and improve long-term disease management for patients with oral cancer. CLINICAL RELEVANCE The implementation of AI in oral oncology represents an innovative approach to early detection and efficient management of oral cancer, ultimately enhancing the quality of life of the affected individuals. The findings underscore the importance of continuing to explore and adopt AI technologies to further advance healthcare delivery in oncology.
Collapse
Affiliation(s)
- Marwan Al-Raeei
- Damascus University, Damascus, Syrian Arab Republic; International University for Science and Technology, Ghabagheb, Syrian Arab Republic.
| |
Collapse
|
4
|
Damilakis J, Stratakis J. Descriptive overview of AI applications in x-ray imaging and radiotherapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:041001. [PMID: 39681008 DOI: 10.1088/1361-6498/ad9f71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Artificial intelligence (AI) is transforming medical radiation applications by handling complex data, learning patterns, and making accurate predictions, leading to improved patient outcomes. This article examines the use of AI in optimising radiation doses for x-ray imaging, improving radiotherapy outcomes, and briefly addresses the benefits, challenges, and limitations of AI integration into clinical workflows. In diagnostic radiology, AI plays a pivotal role in optimising radiation exposure, reducing noise, enhancing image contrast, and lowering radiation doses, especially in high-dose procedures like computed tomography (CT). Deep learning (DL)-powered CT reconstruction methods have already been incorporated into clinical routine. Moreover, AI-powered methodologies have been developed to provide real-time, patient-specific radiation dose estimates. These AI-driven tools have the potential to streamline workflows and potentially become integral parts of imaging practices. In radiotherapy, AI's ability to automate and enhance the precision of treatment planning is emphasised. Traditional methods, such as manual contouring, are time-consuming and prone to variability. AI-driven techniques, particularly DL models, are automating the segmentation of organs and tumours, improving the accuracy of radiation delivery, and minimising damage to healthy tissues. Moreover, AI supports adaptive radiotherapy, allowing continuous optimisation of treatment plans based on changes in a patient's anatomy over time, ensuring the highest accuracy in radiation delivery and better therapeutic outcomes. Some of these methods have been validated and integrated into radiation treatment systems, while others are not yet ready for routine clinical use mainly due to challenges in validation, particularly ensuring reliability across diverse patient populations and clinical settings. Despite the potential of AI, there are challenges in fully integrating these technologies into clinical practice. Issues such as data protection, privacy, data quality, model validation, and the need for large and diverse datasets are crucial to ensuring the reliability of AI systems.
Collapse
Affiliation(s)
- John Damilakis
- School of Medicine, University of Crete, Heraklion, Greece
- University Hospital of Heraklion, Crete, Greece
| | | |
Collapse
|
5
|
Wu IC, Chen YC, Karmakar R, Mukundan A, Gabriel G, Wang CC, Wang HC. Advancements in Hyperspectral Imaging and Computer-Aided Diagnostic Methods for the Enhanced Detection and Diagnosis of Head and Neck Cancer. Biomedicines 2024; 12:2315. [PMID: 39457627 PMCID: PMC11504349 DOI: 10.3390/biomedicines12102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Head and neck cancer (HNC), predominantly squamous cell carcinoma (SCC), presents a significant global health burden. Conventional diagnostic approaches often face challenges in terms of achieving early detection and accurate diagnosis. This review examines recent advancements in hyperspectral imaging (HSI), integrated with computer-aided diagnostic (CAD) techniques, to enhance HNC detection and diagnosis. Methods: A systematic review of seven rigorously selected studies was performed. We focused on CAD algorithms, such as convolutional neural networks (CNNs), support vector machines (SVMs), and linear discriminant analysis (LDA). These are applicable to the hyperspectral imaging of HNC tissues. Results: The meta-analysis findings indicate that LDA surpasses other algorithms, achieving an accuracy of 92%, sensitivity of 91%, and specificity of 93%. CNNs exhibit moderate performance, with an accuracy of 82%, sensitivity of 77%, and specificity of 86%. SVMs demonstrate the lowest performance, with an accuracy of 76% and sensitivity of 48%, but maintain a high specificity level at 89%. Additionally, in vivo studies demonstrate superior performance when compared to ex vivo studies, reporting higher accuracy (81%), sensitivity (83%), and specificity (79%). Conclusion: Despite these promising findings, challenges persist, such as HSI's sensitivity to external conditions, the need for high-resolution and high-speed imaging, and the lack of comprehensive spectral databases. Future research should emphasize dimensionality reduction techniques, the integration of multiple machine learning models, and the development of extensive spectral libraries to enhance HSI's clinical utility in HNC diagnostics. This review underscores the transformative potential of HSI and CAD techniques in revolutionizing HNC diagnostics, facilitating more accurate and earlier detection, and improving patient outcomes.
Collapse
Affiliation(s)
- I-Chen Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Rd., Sanmin Dist., Kaohsiung City 80756, Taiwan;
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Tzyou 1st Rd., Sanmin Dist., Kaohsiung City 80756, Taiwan
| | - Yen-Chun Chen
- Department of Gastroenterology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi 62247, Taiwan;
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan; (R.K.); (A.M.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan; (R.K.); (A.M.)
| | - Gahiga Gabriel
- Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, No. 42, Avadi-Vel Tech Road Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India;
| | - Chih-Chiang Wang
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st Rd., Lingya District, Kaohsiung City 80284, Taiwan
- School of Medicine, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City 11490, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan; (R.K.); (A.M.)
- Hitspectra Intelligent Technology Co., Ltd., 8F. 11-1, No. 25, Chenggong 2nd Rd., Qianzhen Dist., Kaohsiung City 80661, Taiwan
| |
Collapse
|
6
|
Dong F, Yan J, Zhang X, Zhang Y, Liu D, Pan X, Xue L, Liu Y. Artificial intelligence-based predictive model for guidance on treatment strategy selection in oral and maxillofacial surgery. Heliyon 2024; 10:e35742. [PMID: 39170321 PMCID: PMC11336844 DOI: 10.1016/j.heliyon.2024.e35742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Application of deep learning (DL) and machine learning (ML) is rapidly increasing in the medical field. DL is gaining significance for medical image analysis, particularly, in oral and maxillofacial surgeries. Owing to the ability to accurately identify and categorize both diseased and normal soft- and hard-tissue structures, DL has high application potential in the diagnosis and treatment of tumors and in orthognathic surgeries. Moreover, DL and ML can be used to develop prediction models that can aid surgeons to assess prognosis by analyzing the patient's medical history, imaging data, and surgical records, develop more effective treatment strategies, select appropriate surgical modalities, and evaluate the risk of postoperative complications. Such prediction models can play a crucial role in the selection of treatment strategies for oral and maxillofacial surgeries. Their practical application can improve the utilization of medical staff, increase the treatment accuracy and efficiency, reduce surgical risks, and provide an enhanced treatment experience to patients. However, DL and ML face limitations, such as data drift, unstable model results, and vulnerable social trust. With the advancement of social concepts and technologies, the use of these models in oral and maxillofacial surgery is anticipated to become more comprehensive and extensive.
Collapse
Affiliation(s)
- Fanqiao Dong
- School of Stomatology, China Medical University, Shenyang, China
| | - Jingjing Yan
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiyue Zhang
- School of Stomatology, China Medical University, Shenyang, China
| | - Yikun Zhang
- School of Stomatology, China Medical University, Shenyang, China
| | - Di Liu
- School of Stomatology, China Medical University, Shenyang, China
| | - Xiyun Pan
- School of Stomatology, China Medical University, Shenyang, China
| | - Lei Xue
- School of Stomatology, China Medical University, Shenyang, China
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yu Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Teng L, Wang B, Xu X, Zhang J, Mei L, Feng Q, Shen D. Beam-wise dose composition learning for head and neck cancer dose prediction in radiotherapy. Med Image Anal 2024; 92:103045. [PMID: 38071865 DOI: 10.1016/j.media.2023.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Automatic and accurate dose distribution prediction plays an important role in radiotherapy plan. Although previous methods can provide promising performance, most methods did not consider beam-shaped radiation of treatment delivery in clinical practice. This leads to inaccurate prediction, especially on beam paths. To solve this problem, we propose a beam-wise dose composition learning (BDCL) method for dose prediction in the context of head and neck (H&N) radiotherapy plan. Specifically, a global dose network is first utilized to predict coarse dose values in the whole-image space. Then, we propose to generate individual beam masks to decompose the coarse dose distribution into multiple field doses, called beam voters, which are further refined by a subsequent beam dose network and reassembled to form the final dose distribution. In particular, we design an overlap consistency module to keep the similarity of high-level features in overlapping regions between different beam voters. To make the predicted dose distribution more consistent with the real radiotherapy plan, we also propose a dose-volume histogram (DVH) calibration process to facilitate feature learning in some clinically concerned regions. We further apply an edge enhancement procedure to enhance the learning of the extracted feature from the dose falloff regions. Experimental results on a public H&N cancer dataset from the AAPM OpenKBP challenge show that our method achieves superior performance over other state-of-the-art approaches by significant margins. Source code is released at https://github.com/TL9792/BDCLDosePrediction.
Collapse
Affiliation(s)
- Lin Teng
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China; School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Bin Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Xuanang Xu
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jiadong Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Lanzhuju Mei
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200230, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
8
|
Tripathi S, Tabari A, Mansur A, Dabbara H, Bridge CP, Daye D. From Machine Learning to Patient Outcomes: A Comprehensive Review of AI in Pancreatic Cancer. Diagnostics (Basel) 2024; 14:174. [PMID: 38248051 PMCID: PMC10814554 DOI: 10.3390/diagnostics14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes.
Collapse
Affiliation(s)
- Satvik Tripathi
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Arian Mansur
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Harika Dabbara
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Christopher P. Bridge
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
10
|
Franzese C, Dei D, Lambri N, Teriaca MA, Badalamenti M, Crespi L, Tomatis S, Loiacono D, Mancosu P, Scorsetti M. Enhancing Radiotherapy Workflow for Head and Neck Cancer with Artificial Intelligence: A Systematic Review. J Pers Med 2023; 13:946. [PMID: 37373935 DOI: 10.3390/jpm13060946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNC) is characterized by complex-shaped tumors and numerous organs at risk (OARs), inducing challenging radiotherapy (RT) planning, optimization, and delivery. In this review, we provided a thorough description of the applications of artificial intelligence (AI) tools in the HNC RT process. METHODS The PubMed database was queried, and a total of 168 articles (2016-2022) were screened by a group of experts in radiation oncology. The group selected 62 articles, which were subdivided into three categories, representing the whole RT workflow: (i) target and OAR contouring, (ii) planning, and (iii) delivery. RESULTS The majority of the selected studies focused on the OARs segmentation process. Overall, the performance of AI models was evaluated using standard metrics, while limited research was found on how the introduction of AI could impact clinical outcomes. Additionally, papers usually lacked information about the confidence level associated with the predictions made by the AI models. CONCLUSIONS AI represents a promising tool to automate the RT workflow for the complex field of HNC treatment. To ensure that the development of AI technologies in RT is effectively aligned with clinical needs, we suggest conducting future studies within interdisciplinary groups, including clinicians and computer scientists.
Collapse
Affiliation(s)
- Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Damiano Dei
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicola Lambri
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Maria Ausilia Teriaca
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Marco Badalamenti
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Leonardo Crespi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
- Centre for Health Data Science, Human Technopole, 20157 Milan, Italy
| | - Stefano Tomatis
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Daniele Loiacono
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Mancosu
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
11
|
Artificial intelligence-supported applications in head and neck cancer radiotherapy treatment planning and dose optimisation. Radiography (Lond) 2023; 29:496-502. [PMID: 36889022 DOI: 10.1016/j.radi.2023.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
INTRODUCTION The aim of this review is to describe how various AI-supported applications are used in head and neck cancer radiotherapy treatment planning, and the impact on dose management in regards to target volume and nearby organs at risk (OARs). METHODS Literature searches were conducted in databases and publisher portals Pubmed, Science Direct, CINAHL, Ovid, and ProQuest to peer reviewed studies published between 2015 and 2021. RESULTS Out of 464 potential ones, ten articles covering the topic were selected. The benefit of using deep learning-based methods to automatically segment OARs is that it makes the process more efficient producing clinically acceptable OAR doses. In some cases automated treatment planning systems can outperform traditional systems in dose prediction. CONCLUSIONS Based on the selected articles, in general AI-based systems produced time savings. Also, AI-based solutions perform at the same level or better than traditional planning systems considering auto-segmentation, treatment planning and dose prediction. However, their clinical implementation into routine standard of care should be carefully validated IMPLICATIONS TO PRACTICE: AI has a primary benefit in reducing treatment planning time and improving plan quality allowing dose reduction to the OARs thereby enhancing patients' quality of life. It has a secondary benefit of reducing radiation therapists' time spent annotating thereby saving their time for e.g. patient encounters.
Collapse
|
12
|
Synergy between artificial intelligence and precision medicine for computer-assisted oral and maxillofacial surgical planning. Clin Oral Investig 2023; 27:897-906. [PMID: 36323803 DOI: 10.1007/s00784-022-04706-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aim of this review was to investigate the application of artificial intelligence (AI) in maxillofacial computer-assisted surgical planning (CASP) workflows with the discussion of limitations and possible future directions. MATERIALS AND METHODS An in-depth search of the literature was undertaken to review articles concerned with the application of AI for segmentation, multimodal image registration, virtual surgical planning (VSP), and three-dimensional (3D) printing steps of the maxillofacial CASP workflows. RESULTS The existing AI models were trained to address individual steps of CASP, and no single intelligent workflow was found encompassing all steps of the planning process. Segmentation of dentomaxillofacial tissue from computed tomography (CT)/cone-beam CT imaging was the most commonly explored area which could be applicable in a clinical setting. Nevertheless, a lack of generalizability was the main issue, as the majority of models were trained with the data derived from a single device and imaging protocol which might not offer similar performance when considering other devices. In relation to registration, VSP and 3D printing, the presence of inadequate heterogeneous data limits the automatization of these tasks. CONCLUSION The synergy between AI and CASP workflows has the potential to improve the planning precision and efficacy. However, there is a need for future studies with big data before the emergent technology finds application in a real clinical setting. CLINICAL RELEVANCE The implementation of AI models in maxillofacial CASP workflows could minimize a surgeon's workload and increase efficiency and consistency of the planning process, meanwhile enhancing the patient-specific predictability.
Collapse
|
13
|
Araújo ALD, da Silva VM, Kudo MS, de Souza ESC, Saldivia-Siracusa C, Giraldo-Roldán D, Lopes MA, Vargas PA, Khurram SA, Pearson AT, Kowalski LP, de Carvalho ACPDLF, Santos-Silva AR, Moraes MC. Machine learning concepts applied to oral pathology and oral medicine: A convolutional neural networks' approach. J Oral Pathol Med 2023; 52:109-118. [PMID: 36599081 DOI: 10.1111/jop.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Artificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets oral pathologists, oral medicinists, and head and neck surgeons to provide them with a theoretical and conceptual foundation of artificial intelligence-based diagnostic approaches, with a special focus on convolutional neural networks, the state-of-the-art in artificial intelligence and deep learning. METHODS The authors conducted a literature review, and the convolutional neural network's conceptual foundations and functionality were illustrated based on a unique interdisciplinary point of view. CONCLUSION The development of artificial intelligence-based models and computer vision methods for pattern recognition in clinical and histopathological image analysis of head and neck cancer has the potential to aid diagnosis and prognostic prediction.
Collapse
Affiliation(s)
- Anna Luíza Damaceno Araújo
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil.,Head and Neck Surgery Department and LIM 28, University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Viviane Mariano da Silva
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| | - Maíra Suzuka Kudo
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| | | | - Cristina Saldivia-Siracusa
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Daniela Giraldo-Roldán
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Marcio Ajudarte Lopes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Pablo Agustin Vargas
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Syed Ali Khurram
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Alexander T Pearson
- Section of Hemathology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA.,University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department and LIM 28, University of São Paulo Medical School, São Paulo, São Paulo, Brazil.,Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | | | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Matheus Cardoso Moraes
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
14
|
Luvhengo T, Molefi T, Demetriou D, Hull R, Dlamini Z. Use of Artificial Intelligence in Implementing Mainstream Precision Medicine to Improve Traditional Symptom-driven Practice of Medicine: Allowing Early Interventions and Tailoring better-personalised Cancer Treatments. ARTIFICIAL INTELLIGENCE AND PRECISION ONCOLOGY 2023:49-72. [DOI: 10.1007/978-3-031-21506-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Marschner S, Datarb M, Gaasch A, Xu Z, Grbic S, Chabin G, Geiger B, Rosenman J, Corradini S, Niyazi M, Heimann T, Möhler C, Vega F, Belka C, Thieke C. A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation. Radiat Oncol 2022; 17:129. [PMID: 35869525 PMCID: PMC9308364 DOI: 10.1186/s13014-022-02102-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
Background We describe and evaluate a deep network algorithm which automatically contours organs at risk in the thorax and pelvis on computed tomography (CT) images for radiation treatment planning. Methods The algorithm identifies the region of interest (ROI) automatically by detecting anatomical landmarks around the specific organs using a deep reinforcement learning technique. The segmentation is restricted to this ROI and performed by a deep image-to-image network (DI2IN) based on a convolutional encoder-decoder architecture combined with multi-level feature concatenation. The algorithm is commercially available in the medical products “syngo.via RT Image Suite VB50” and “AI-Rad Companion Organs RT VA20” (Siemens Healthineers). For evaluation, thoracic CT images of 237 patients and pelvic CT images of 102 patients were manually contoured following the Radiation Therapy Oncology Group (RTOG) guidelines and compared to the DI2IN results using metrics for volume, overlap and distance, e.g., Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD95). The contours were also compared visually slice by slice. Results We observed high correlations between automatic and manual contours. The best results were obtained for the lungs (DSC 0.97, HD95 2.7 mm/2.9 mm for left/right lung), followed by heart (DSC 0.92, HD95 4.4 mm), bladder (DSC 0.88, HD95 6.7 mm) and rectum (DSC 0.79, HD95 10.8 mm). Visual inspection showed excellent agreements with some exceptions for heart and rectum. Conclusions The DI2IN algorithm automatically generated contours for organs at risk close to those by a human expert, making the contouring step in radiation treatment planning simpler and faster. Few cases still required manual corrections, mainly for heart and rectum.
Collapse
|
16
|
Tryggestad E, Anand A, Beltran C, Brooks J, Cimmiyotti J, Grimaldi N, Hodge T, Hunzeker A, Lucido JJ, Laack NN, Momoh R, Moseley DJ, Patel SH, Ridgway A, Seetamsetty S, Shiraishi S, Undahl L, Foote RL. Scalable radiotherapy data curation infrastructure for deep-learning based autosegmentation of organs-at-risk: A case study in head and neck cancer. Front Oncol 2022; 12:936134. [PMID: 36106100 PMCID: PMC9464982 DOI: 10.3389/fonc.2022.936134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
In this era of patient-centered, outcomes-driven and adaptive radiotherapy, deep learning is now being successfully applied to tackle imaging-related workflow bottlenecks such as autosegmentation and dose planning. These applications typically require supervised learning approaches enabled by relatively large, curated radiotherapy datasets which are highly reflective of the contemporary standard of care. However, little has been previously published describing technical infrastructure, recommendations, methods or standards for radiotherapy dataset curation in a holistic fashion. Our radiation oncology department has recently embarked on a large-scale project in partnership with an external partner to develop deep-learning-based tools to assist with our radiotherapy workflow, beginning with autosegmentation of organs-at-risk. This project will require thousands of carefully curated radiotherapy datasets comprising all body sites we routinely treat with radiotherapy. Given such a large project scope, we have approached the need for dataset curation rigorously, with an aim towards building infrastructure that is compatible with efficiency, automation and scalability. Focusing on our first use-case pertaining to head and neck cancer, we describe our developed infrastructure and novel methods applied to radiotherapy dataset curation, inclusive of personnel and workflow organization, dataset selection, expert organ-at-risk segmentation, quality assurance, patient de-identification, data archival and transfer. Over the course of approximately 13 months, our expert multidisciplinary team generated 490 curated head and neck radiotherapy datasets. This task required approximately 6000 human-expert hours in total (not including planning and infrastructure development time). This infrastructure continues to evolve and will support ongoing and future project efforts.
Collapse
Affiliation(s)
- E. Tryggestad
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
- *Correspondence: E. Tryggestad,
| | - A. Anand
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - C. Beltran
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - J. Brooks
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - J. Cimmiyotti
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - N. Grimaldi
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - T. Hodge
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - A. Hunzeker
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - J. J. Lucido
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - N. N. Laack
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - R. Momoh
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - D. J. Moseley
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - S. H. Patel
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - A. Ridgway
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - S. Seetamsetty
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - S. Shiraishi
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - L. Undahl
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - R. L. Foote
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| |
Collapse
|
17
|
Hegde S, Ajila V, Zhu W, Zeng C. Review of the Use of Artificial Intelligence in Early Diagnosis and Prevention of Oral Cancer. Asia Pac J Oncol Nurs 2022; 9:100133. [PMID: 36389623 PMCID: PMC9664349 DOI: 10.1016/j.apjon.2022.100133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
The global occurrence of oral cancer (OC) has increased in recent years. OC that is diagnosed in its advanced stages results in morbidity and mortality. The use of technology may be beneficial for early detection and diagnosis and thus help the clinician with better patient management. The advent of artificial intelligence (AI) has the potential to improve OC screening. AI can precisely analyze an enormous dataset from various imaging modalities and provide assistance in the field of oncology. This review focused on the applications of AI in the early diagnosis and prevention of OC. A literature search was conducted in the PubMed and Scopus databases using the search terminology “oral cancer” and “artificial intelligence.” Further information regarding the topic was collected by scrutinizing the reference lists of selected articles. Based on the information obtained, this article reviews and discusses the applications and advantages of AI in OC screening, early diagnosis, disease prediction, treatment planning, and prognosis. Limitations and the future scope of AI in OC research are also highlighted.
Collapse
|
18
|
Mohyedin MZ, Zin HM, Adenan MZ, Abdul Rahman AT. A Review of PRESAGE Radiochromic Polymer and the Compositions for Application in Radiotherapy Dosimetry. Polymers (Basel) 2022; 14:2887. [PMID: 35890665 PMCID: PMC9320230 DOI: 10.3390/polym14142887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Recent advances in radiotherapy technology and techniques have allowed a highly conformal radiation to be delivered to the tumour target inside the body for cancer treatment. A three-dimensional (3D) dosimetry system is required to verify the accuracy of the complex treatment delivery. A 3D dosimeter based on the radiochromic response of a polymer towards ionising radiation has been introduced as the PRESAGE dosimeter. The polyurethane dosimeter matrix is combined with a leuco-dye and a free radical initiator, whose colour changes in proportion to the radiation dose. In the previous decade, PRESAGE gained improvement and enhancement as a 3D dosimeter. Notably, PRESAGE overcomes the limitations of its predecessors, the Fricke gel and the polymer gel dosimeters, which are challenging to fabricate and read out, sensitive to oxygen, and sensitive to diffusion. This article aims to review the characteristics of the radiochromic dosimeter and its clinical applications. The formulation of PRESAGE shows a delicate balance between the number of radical initiators, metal compounds, and catalysts to achieve stability, optimal sensitivity, and water equivalency. The applications of PRESAGE in advanced radiotherapy treatment verifications are also discussed.
Collapse
Affiliation(s)
- Muhammad Zamir Mohyedin
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
- Centre of Astrophysics & Applied Radiation, Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Hafiz Mohd Zin
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13700, Penang, Malaysia;
| | - Mohd Zulfadli Adenan
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Selangor Campus of Puncak Alam, Puncak Alam 42300, Selangor, Malaysia;
| | - Ahmad Taufek Abdul Rahman
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
- Centre of Astrophysics & Applied Radiation, Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
19
|
Rahman AU, Alqahtani A, Aldhafferi N, Nasir MU, Khan MF, Khan MA, Mosavi A. Histopathologic Oral Cancer Prediction Using Oral Squamous Cell Carcinoma Biopsy Empowered with Transfer Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:3833. [PMID: 35632242 PMCID: PMC9146317 DOI: 10.3390/s22103833] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
Oral cancer is a dangerous and extensive cancer with a high death ratio. Oral cancer is the most usual cancer in the world, with more than 300,335 deaths every year. The cancerous tumor appears in the neck, oral glands, face, and mouth. To overcome this dangerous cancer, there are many ways to detect like a biopsy, in which small chunks of tissues are taken from the mouth and tested under a secure and hygienic microscope. However, microscope results of tissues to detect oral cancer are not up to the mark, a microscope cannot easily identify the cancerous cells and normal cells. Detection of cancerous cells using microscopic biopsy images helps in allaying and predicting the issues and gives better results if biologically approaches apply accurately for the prediction of cancerous cells, but during the physical examinations microscopic biopsy images for cancer detection there are major chances for human error and mistake. So, with the development of technology deep learning algorithms plays a major role in medical image diagnosing. Deep learning algorithms are efficiently developed to predict breast cancer, oral cancer, lung cancer, or any other type of medical image. In this study, the proposed model of transfer learning model using AlexNet in the convolutional neural network to extract rank features from oral squamous cell carcinoma (OSCC) biopsy images to train the model. Simulation results have shown that the proposed model achieved higher classification accuracy 97.66% and 90.06% of training and testing, respectively.
Collapse
Affiliation(s)
- Atta-ur Rahman
- Department of Computer Science (CS), College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdullah Alqahtani
- Department of Computer Information Systems (CIS), College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.A.); (N.A.)
| | - Nahier Aldhafferi
- Department of Computer Information Systems (CIS), College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.A.); (N.A.)
| | - Muhammad Umar Nasir
- Faculty of Computing, Riphah School of Computing and Innovation, Riphah International University, Lahore Campus, Lahore 54000, Pakistan;
| | - Muhammad Farhan Khan
- Department of Forensic Sciences, University of Health Sciences, Lahore 54000, Pakistan;
| | | | - Amir Mosavi
- John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary;
- Institute of Information Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, 81107 Bratislava, Slovakia
- Faculty of Civil Engineering, TU-Dresden, 01062 Dresden, Germany
| |
Collapse
|
20
|
Mody MD, Rocco JW, Yom SS, Haddad RI, Saba NF. Head and neck cancer. Lancet 2021; 398:2289-2299. [PMID: 34562395 DOI: 10.1016/s0140-6736(21)01550-6] [Citation(s) in RCA: 419] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Head and neck cancer is the seventh most common type of cancer worldwide and comprise of a diverse group of tumours affecting the upper aerodigestive tract. Although many different histologies exist, the most common is squamous cell carcinoma. Predominant risk factors include tobacco use, alcohol abuse, and oncogenic viruses, including human papillomavirus and Epstein-Barr virus. Head and neck malignancies remain challenging to treat, requiring a multidisciplinary approach, with surgery, radiotherapy, and systemic therapy serving as key components of the treatment of locally advanced disease. Although many treatment principles overlap, treatment is generally site-specific and histology-specific. This Seminar outlines the current understanding of head and neck cancer and focuses on treatment principles, while also discussing future directions to improve the outcomes of patients with these malignancies.
Collapse
Affiliation(s)
- Mayur D Mody
- Department of Hematology and Medical Oncology, The Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - James W Rocco
- The Ohio State University Comprehensive Cancer Center-James, Columbus, OH, USA
| | - Sue S Yom
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Robert I Haddad
- Harvard Medical School and Dana Farber Cancer Institute, Boston, MA, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Hu T, Xie L, Zhang L, Li G, Yi Z. Deep Multimodal Neural Network Based on Data-Feature Fusion for Patient-Specific Quality Assurance. Int J Neural Syst 2021; 32:2150055. [PMID: 34895106 DOI: 10.1142/s0129065721500556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Patient-specific quality assurance (QA) for Volumetric Modulated Arc Therapy (VMAT) plans is routinely performed in the clinical. However, it is labor-intensive and time-consuming for medical physicists. QA prediction models can address these shortcomings and improve efficiency. Current approaches mainly focus on single cancer and single modality data. They are not applicable to clinical practice. To assess the accuracy of QA results for VMAT plans, this paper presents a new model that learns complementary features from the multi-modal data to predict the gamma passing rate (GPR). According to the characteristics of VMAT plans, a feature-data fusion approach is designed to fuse the features of imaging and non-imaging information in the model. In this study, 690 VMAT plans are collected encompassing more than ten diseases. The model can accurately predict the most VMAT plans at all three gamma criteria: 2%/2 mm, 3%/2 mm and 3%/3 mm. The mean absolute error between the predicted and measured GPR is 2.17%, 1.16% and 0.71%, respectively. The maximum deviation between the predicted and measured GPR is 3.46%, 4.6%, 8.56%, respectively. The proposed model is effective, and the features of the two modalities significantly influence QA results.
Collapse
Affiliation(s)
- Ting Hu
- Department of Computer Science and Technology, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan, P. R. China
| | - Lizhang Xie
- Department of Computer Science and Technology, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan, P. R. China
| | - Lei Zhang
- Department of Computer Science and Technology, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan, P. R. China
| | - Guangjun Li
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zhang Yi
- Department of Computer Science and Technology, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan, P. R. China
| |
Collapse
|
22
|
Plachouris D, Tzolas I, Gatos I, Papadimitroulas P, Spyridonidis T, Apostolopoulos D, Papathanasiou N, Visvikis D, Plachouri KM, Hazle JD, Kagadis GC. A deep-learning-based prediction model for the biodistribution of 90 Y microspheres in liver radioembolization. Med Phys 2021; 48:7427-7438. [PMID: 34628667 DOI: 10.1002/mp.15270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radioembolization with 90 Y microspheres is a treatment approach for liver cancer. Currently, employed dosimetric calculations exhibit low accuracy, lacking consideration of individual patient, and tissue characteristics. PURPOSE The purpose of the present study was to employ deep learning (DL) algorithms to differentiate patterns of pretreatment distribution of 99m Tc-macroaggregated albumin on SPECT/CT and post-treatment distribution of 90 Y microspheres on PET/CT and to accurately predict how the 90 Y-microspheres will be distributed in the liver tissue by radioembolization therapy. METHODS Data for 19 patients with liver cancer (10 with hepatocellular carcinoma, 5 with intrahepatic cholangiocarcinoma, 4 with liver metastases) who underwent radioembolization with 90 Y microspheres were used for the DL training. We developed a 3D voxel-based variation of the Pix2Pix model, which is a special type of conditional GANs designed to perform image-to-image translation. SPECT and CT scans along with the clinical target volume for each patient were used as inputs, as were their corresponding post-treatment PET scans. The real and predicted absorbed PET doses for the tumor and the whole liver area were compared. Our model was evaluated using the leave-one-out method, and the dose calculations were measured using a tissue-specific dose voxel kernel. RESULTS The comparison of the real and predicted PET/CT scans showed an average absorbed dose difference of 5.42% ± 19.31% and 0.44% ± 1.64% for the tumor and the liver area, respectively. The average absorbed dose differences were 7.98 ± 31.39 Gy and 0.03 ± 0.25 Gy for the tumor and the non-tumor liver parenchyma, respectively. Our model had a general tendency to underpredict the dosimetric results; the largest differences were noticed in one case, where the model underestimated the dose to the tumor area by 56.75% or 72.82 Gy. CONCLUSIONS The proposed deep-learning-based pretreatment planning method for liver radioembolization accurately predicted 90 Y microsphere biodistribution. Its combination with a rapid and accurate 3D dosimetry method will render it clinically suitable and could improve patient-specific pretreatment planning.
Collapse
Affiliation(s)
- Dimitris Plachouris
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Ioannis Tzolas
- School of Electrical and Computer Engineering, University of Patras, Rion, Greece
| | - Ilias Gatos
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Panagiotis Papadimitroulas
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,R&D Department, Bioemission Technology Solutions, Athens, Greece
| | - Trifon Spyridonidis
- Department of Nuclear Medicine, School of Medicine, University of Patras, Rion, Greece
| | | | | | | | | | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George C Kagadis
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Foo LL, Ng WY, Lim GYS, Tan TE, Ang M, Ting DSW. Artificial intelligence in myopia: current and future trends. Curr Opin Ophthalmol 2021; 32:413-424. [PMID: 34310401 DOI: 10.1097/icu.0000000000000791] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Myopia is one of the leading causes of visual impairment, with a projected increase in prevalence globally. One potential approach to address myopia and its complications is early detection and treatment. However, current healthcare systems may not be able to cope with the growing burden. Digital technological solutions such as artificial intelligence (AI) have emerged as a potential adjunct for myopia management. RECENT FINDINGS There are currently four significant domains of AI in myopia, including machine learning (ML), deep learning (DL), genetics and natural language processing (NLP). ML has been demonstrated to be a useful adjunctive for myopia prediction and biometry for cataract surgery in highly myopic individuals. DL techniques, particularly convoluted neural networks, have been applied to various image-related diagnostic and predictive solutions. Applications of AI in genomics and NLP appear to be at a nascent stage. SUMMARY Current AI research is mainly focused on disease classification and prediction in myopia. Through greater collaborative research, we envision AI will play an increasingly critical role in big data analysis by aggregating a greater variety of parameters including genomics and environmental factors. This may enable the development of generalizable adjunctive DL systems that could help realize predictive and individualized precision medicine for myopic patients.
Collapse
Affiliation(s)
- Li Lian Foo
- Singapore National Eye Centre, Singapore Eye Research Institute
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Wei Yan Ng
- Singapore National Eye Centre, Singapore Eye Research Institute
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | | | - Tien-En Tan
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Marcus Ang
- Singapore National Eye Centre, Singapore Eye Research Institute
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Daniel Shu Wei Ting
- Singapore National Eye Centre, Singapore Eye Research Institute
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Almangush A, Alabi RO, Mäkitie AA, Leivo I. Machine learning in head and neck cancer: Importance of a web-based prognostic tool for improved decision making. Oral Oncol 2021; 124:105452. [PMID: 34266743 DOI: 10.1016/j.oraloncology.2021.105452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Biomedicine, Pathology, University of Turku, Turku, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya.
| | - Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Antti A Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland; Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
25
|
Zhong Y, Yu L, Zhao J, Fang Y, Yang Y, Wu Z, Wang J, Hu W. Clinical Implementation of Automated Treatment Planning for Rectum Intensity-Modulated Radiotherapy Using Voxel-Based Dose Prediction and Post-Optimization Strategies. Front Oncol 2021; 11:697995. [PMID: 34249757 PMCID: PMC8264432 DOI: 10.3389/fonc.2021.697995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose This study aims to demonstrate the feasibility of clinical implementation of automated treatment planning (ATP) using voxel-based dose prediction and post-optimization strategies for rectal cancer on uRT (United Imaging Healthcare, Shanghai, China) treatment planning system. Methods A total of 180 previously treated rectal cancer cases were enrolled in this study, including 160 cases for training, 10 for validation and 10 for testing. Using CT image data, planning target volumes (PTVs) and contour delineation of the organs at risk (OARs) as input and three-dimensional (3D) dose distribution as output, a 3D-Uet DL model was developed. Based on the voxel-wise prediction dose distribution, intensity-modulated radiation therapy (IMRT) plans were then generated automatedly using post-optimization strategies, including a complex clinical dose target metrics homogeneity index (HI) and conformation index (CI). To evaluate the performance of the proposed ATP approach, the dose-volume histogram (DVH) parameters of OARs and PTV and the 3D dose distributions of the plan were compared with those of manual plans. Results By combining clinical post-optimization strategies, the automatically generated treatment plan can achieve better homogeneous PTV coverage and dose sparing for OARs except the mean dose for femoral-head compared with the use of the mean square error objective function alone. Compared with the manual plan, no statistically significant differences in HI, CI or global maximum dose were found. The manual plans perform slightly better than plans with post-optimization strategies in other dosimetric indexes, but these plans are still within clinical requirements. Conclusions With the help of clinical post-optimization strategies, the proposed new ATP solution can generate IMRT plans that are within clinically acceptable levels and comparable to plans manually generated by dosimetrists.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Lei Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jun Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yingtao Fang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yanju Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhiqiang Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
26
|
Victor Mugabe K. Barriers and facilitators to the adoption of artificial intelligence in radiation oncology: A New Zealand study. Tech Innov Patient Support Radiat Oncol 2021; 18:16-21. [PMID: 33981867 PMCID: PMC8085695 DOI: 10.1016/j.tipsro.2021.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Advances in computing capabilities and automated data collection have led to an increase in the use of Artificial Intelligence (AI) in radiation therapy. This has implications to workflow and workforce planning in radiation oncology departments. A survey was conducted in New Zealand to determine the likelihood of departments adopting AI into their practice. Survey responses were used to determine barriers and facilitators to the adoption of AI. MATERIALS AND METHODS An online electronic survey was sent to all ten radiation therapy centres in New Zealand. The survey was sent to radiation oncologists, medical physicists and senior radiation therapists involved in treatment planning. Descriptive analysis, factor analysis, analysis of variance and hierarchical multiple regression were used to analyse the data. RESULTS AI usage was low across the country and there was middling expertise. Most respondents found AI had a lot of perceived benefits. On the whole, respondents reported a high likelihood to adopt AI. There were significant differences on the Expertise factor between the staff groupsp = 0.016 with radiation therapists reporting more expertise than oncologists. Innovation factors (Perceived Benefit) on their own accounted for over 51 % of total variance and was the biggest predictor of likelihood to adopt AI ( p < 0.001 ) . Organisational factors (Expertise) was a moderate predictor ( p < 0.059 ) . CONCLUSION The survey results have been used to investigate the barriers and facilitators to the adoption of AI. These results demonstrate that respondents are likely to adopt AI in their practice. Perceived benefits were a facilitator as high scores were correlated with high likelihood of adoption of AI. Low expertise on the other hand was a barrier to adoption as the low scores were linked to lower likelihood of adoption.
Collapse
Affiliation(s)
- Koki Victor Mugabe
- Waikato Hospital, Regional Cancer Centre Selwyn Street Level 1 Lomas Street Hamilton, Waikato 3240 New Zealand
| |
Collapse
|
27
|
Khanagar SB, Naik S, Al Kheraif AA, Vishwanathaiah S, Maganur PC, Alhazmi Y, Mushtaq S, Sarode SC, Sarode GS, Zanza A, Testarelli L, Patil S. Application and Performance of Artificial Intelligence Technology in Oral Cancer Diagnosis and Prediction of Prognosis: A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11061004. [PMID: 34072804 PMCID: PMC8227647 DOI: 10.3390/diagnostics11061004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022] Open
Abstract
Oral cancer (OC) is a deadly disease with a high mortality and complex etiology. Artificial intelligence (AI) is one of the outstanding innovations in technology used in dental science. This paper intends to report on the application and performance of AI in diagnosis and predicting the occurrence of OC. In this study, we carried out data search through an electronic search in several renowned databases, which mainly included PubMed, Google Scholar, Scopus, Embase, Cochrane, Web of Science, and the Saudi Digital Library for articles that were published between January 2000 to March 2021. We included 16 articles that met the eligibility criteria and were critically analyzed using QUADAS-2. AI can precisely analyze an enormous dataset of images (fluorescent, hyperspectral, cytology, CT images, etc.) to diagnose OC. AI can accurately predict the occurrence of OC, as compared to conventional methods, by analyzing predisposing factors like age, gender, tobacco habits, and bio-markers. The precision and accuracy of AI in diagnosis as well as predicting the occurrence are higher than the current, existing clinical strategies, as well as conventional statistics like cox regression analysis and logistic regression.
Collapse
Affiliation(s)
- Sanjeev B. Khanagar
- Preventive Dental Science Department, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Sachin Naik
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.N.); (A.A.A.K.)
| | - Abdulaziz Abdullah Al Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.N.); (A.A.A.K.)
| | - Satish Vishwanathaiah
- Department of Preventive Dental Sciences, Division of Pedodontics, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.V.); (P.C.M.)
| | - Prabhadevi C. Maganur
- Department of Preventive Dental Sciences, Division of Pedodontics, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.V.); (P.C.M.)
| | - Yaser Alhazmi
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Shazia Mushtaq
- College of Applied Medical Sciences, Dental Health Department, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Sachin C. Sarode
- Department of Oral and Maxillofacial Pathology, Dr. D.Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India; (S.C.S.); (G.S.S.)
| | - Gargi S. Sarode
- Department of Oral and Maxillofacial Pathology, Dr. D.Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India; (S.C.S.); (G.S.S.)
| | - Alessio Zanza
- Department of Maxillo and Oro-Facial Sciences, University of Rome La Sapienza, 00185 Rome, Italy; (A.Z.); (L.T.)
| | - Luca Testarelli
- Department of Maxillo and Oro-Facial Sciences, University of Rome La Sapienza, 00185 Rome, Italy; (A.Z.); (L.T.)
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
- Correspondence:
| |
Collapse
|
28
|
Banegas-Luna AJ, Peña-García J, Iftene A, Guadagni F, Ferroni P, Scarpato N, Zanzotto FM, Bueno-Crespo A, Pérez-Sánchez H. Towards the Interpretability of Machine Learning Predictions for Medical Applications Targeting Personalised Therapies: A Cancer Case Survey. Int J Mol Sci 2021; 22:4394. [PMID: 33922356 PMCID: PMC8122817 DOI: 10.3390/ijms22094394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Artificial Intelligence is providing astonishing results, with medicine being one of its favourite playgrounds. Machine Learning and, in particular, Deep Neural Networks are behind this revolution. Among the most challenging targets of interest in medicine are cancer diagnosis and therapies but, to start this revolution, software tools need to be adapted to cover the new requirements. In this sense, learning tools are becoming a commodity but, to be able to assist doctors on a daily basis, it is essential to fully understand how models can be interpreted. In this survey, we analyse current machine learning models and other in-silico tools as applied to medicine-specifically, to cancer research-and we discuss their interpretability, performance and the input data they are fed with. Artificial neural networks (ANN), logistic regression (LR) and support vector machines (SVM) have been observed to be the preferred models. In addition, convolutional neural networks (CNNs), supported by the rapid development of graphic processing units (GPUs) and high-performance computing (HPC) infrastructures, are gaining importance when image processing is feasible. However, the interpretability of machine learning predictions so that doctors can understand them, trust them and gain useful insights for the clinical practice is still rarely considered, which is a factor that needs to be improved to enhance doctors' predictive capacity and achieve individualised therapies in the near future.
Collapse
Affiliation(s)
- Antonio Jesús Banegas-Luna
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (J.P.-G.); (A.B.-C.)
| | - Jorge Peña-García
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (J.P.-G.); (A.B.-C.)
| | - Adrian Iftene
- Faculty of Computer Science, Universitatea Alexandru Ioan Cuza (UAIC), 700505 Jashi, Romania;
| | - Fiorella Guadagni
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Roma, 00166 Rome, Italy; (F.G.); (P.F.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Patrizia Ferroni
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Roma, 00166 Rome, Italy; (F.G.); (P.F.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Noemi Scarpato
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Fabio Massimo Zanzotto
- Dipartimento di Ingegneria dell’Impresa “Mario Lucertini”, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Andrés Bueno-Crespo
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (J.P.-G.); (A.B.-C.)
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (J.P.-G.); (A.B.-C.)
| |
Collapse
|
29
|
r-UNet: Leaf Position Reconstruction in Upstream Radiotherapy Verification. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.2994648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Cilla S, Deodato F, Romano C, Ianiro A, Macchia G, Re A, Buwenge M, Boldrini L, Indovina L, Valentini V, Morganti AG. Personalized automation of treatment planning in head-neck cancer: A step forward for quality in radiation therapy? Phys Med 2021; 82:7-16. [PMID: 33508633 DOI: 10.1016/j.ejmp.2020.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To perform a comprehensive dosimetric and clinical evaluation of the new Pinnacle Personalized automated planning system for complex head-and-neck treatments. METHODS Fifteen consecutive head-neck patients were enrolled. Radiotherapy was prescribed using VMAT with simultaneous integrated boost strategy. Personalized planning integrates the Feasibility engine able to supply an "a priori" DVH prediction of the achievability of planning goals. Comparison between clinically accepted manually-generated (MP) and automated (AP) plans was performed using dose-volume histograms and a blinded clinical evaluation by two radiation oncologists. Planning time between MP and AP was compared. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array. RESULTS For similar targets coverage, AP plans reported less irradiation of healthy tissue, with significant dose reduction for spinal cord, brainstem and parotids. On average, the mean dose to parotids and maximal doses to spinal cord and brainstem were reduced by 13-15% (p < 0.001), 9% (p < 0.001) and 16% (p < 0.001), respectively. The integral dose was reduced by 16% (p < 0.001). The dose conformity for the three PTVs was significantly higher with AP plans (p < 0.001). The two oncologists chose AP plans in more than 80% of cases. Overall planning times were reduced to <30 min for automated optimization. All AP plans passed the 3%/2 mm γ-analysis by more than 95%. CONCLUSION Complex head-neck plans created using Personalized automated engine provided an overall increase of plan quality, in terms of dose conformity and sparing of normal tissues. The Feasibility module allowed OARs dose sparing well beyond the clinical objectives.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy.
| | - Francesco Deodato
- Radiation Oncology Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Carmela Romano
- Medical Physics Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Anna Ianiro
- Medical Physics Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Alessia Re
- Radiation Oncology Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Milly Buwenge
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; DIMES, Alma Mater Studiorum Bologna University, Italy
| | - Luca Boldrini
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luca Indovina
- Medical Physics Unit, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Valentini
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessio G Morganti
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; DIMES, Alma Mater Studiorum Bologna University, Italy
| |
Collapse
|
31
|
Sibolt P, Andersson LM, Calmels L, Sjöström D, Bjelkengren U, Geertsen P, Behrens CF. Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 17:1-7. [PMID: 33898770 PMCID: PMC8057957 DOI: 10.1016/j.phro.2020.12.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Background and purpose Studies have demonstrated the potential of online adaptive radiotherapy (oART). However, routine use has been limited due to resource demanding solutions. This study reports on experiences with oART in the pelvic region using a novel cone-beam computed tomography (CBCT)-based, artificial intelligence (AI)-driven solution. Material and methods Automated pre-treatment planning for thirty-nine pelvic cases (bladder, rectum, anal, and prostate), and one hundred oART simulations were conducted in a pre-clinical release of Ethos (Varian Medical Systems, Palo Alto, CA). Plan quality, AI-segmentation accuracy, oART feasibility and an integrated calculation-based quality assurance solution were evaluated. Experiences from the first five clinical oART patients (three bladder, one rectum and one sarcoma) are reported. Results Auto-generated pre-treatment plans demonstrated similar planning target volume (PTV) coverage and organs at risk doses, compared to institution reference. More than 75% of AI-segmentations during simulated oART required none or minor editing and the adapted plan was superior in 88% of cases. Limitations in AI-segmentation correlated to cases where AI model training was lacking. The five first treated patients complied well with the median adaptive procedure duration of 17.6 min (from CBCT acceptance to treatment delivery start). The treated bladder patients demonstrated a 42% median primary PTV reduction, indicating a 24%-30% reduction in V45Gy to the bowel cavity, compared to non-ART. Conclusions A novel commercial oART solution was demonstrated feasible for various pelvic sites. Clinically acceptable AI-segmentation and auto-planning enabled adaptation within reasonable timeslots. Possibilities for reduced PTVs observed for bladder cancer indicated potential for toxicity reductions.
Collapse
Affiliation(s)
- Patrik Sibolt
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Lina M Andersson
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Lucie Calmels
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - David Sjöström
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Ulf Bjelkengren
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Poul Geertsen
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Claus F Behrens
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
32
|
Tseng M, Ho F, Leong YH, Wong LC, Tham IW, Cheo T, Lee AW. Emerging radiotherapy technologies and trends in nasopharyngeal cancer. Cancer Commun (Lond) 2020; 40:395-405. [PMID: 32745354 PMCID: PMC7494066 DOI: 10.1002/cac2.12082] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Technology has always driven advances in radiotherapy treatment. In this review, we describe the main technological advances in radiotherapy over the past decades for the treatment of nasopharyngeal cancer (NPC) and highlight some of the pressing issues and challenges that remain. We aim to identify emerging trends in radiation medicine. These include advances in personalized medicine and advanced imaging modalities, standardization of planning and delineation, assessment of treatment response and adaptive re‐planning, impact of particle therapy, and role of artificial intelligence or automation in clinical care. In conclusion, we expect significant improvement in the therapeutic ratio of radiotherapy treatment for NPC over the next decade.
Collapse
Affiliation(s)
- Michelle Tseng
- Radiation Oncology Centre, Mt Elizabeth Novena Hospital, Singapore, 329563, Singapore
| | - Francis Ho
- Radiation Oncology Centre, Mt Elizabeth Novena Hospital, Singapore, 329563, Singapore
| | - Yiat Horng Leong
- Radiation Oncology Centre, Mt Elizabeth Novena Hospital, Singapore, 329563, Singapore
| | - Lea Choung Wong
- Radiation Oncology Centre, Mt Elizabeth Novena Hospital, Singapore, 329563, Singapore
| | - Ivan Wk Tham
- Radiation Oncology Centre, Mt Elizabeth Novena Hospital, Singapore, 329563, Singapore
| | - Timothy Cheo
- Radiation Oncology Centre, Mt Elizabeth Novena Hospital, Singapore, 329563, Singapore
| | - Anne Wm Lee
- Department of Clinical Oncology, the University of Hong Kong-Shenzhen Hospital, the University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
33
|
Vrtovec T, Močnik D, Strojan P, Pernuš F, Ibragimov B. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods. Med Phys 2020; 47:e929-e950. [PMID: 32510603 DOI: 10.1002/mp.14320] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is one of the basic treatment modalities for cancer of the head and neck (H&N), which requires a precise spatial description of the target volumes and organs at risk (OARs) to deliver a highly conformal radiation dose to the tumor cells while sparing the healthy tissues. For this purpose, target volumes and OARs have to be delineated and segmented from medical images. As manual delineation is a tedious and time-consuming task subjected to intra/interobserver variability, computerized auto-segmentation has been developed as an alternative. The field of medical imaging and RT planning has experienced an increased interest in the past decade, with new emerging trends that shifted the field of H&N OAR auto-segmentation from atlas-based to deep learning-based approaches. In this review, we systematically analyzed 78 relevant publications on auto-segmentation of OARs in the H&N region from 2008 to date, and provided critical discussions and recommendations from various perspectives: image modality - both computed tomography and magnetic resonance image modalities are being exploited, but the potential of the latter should be explored more in the future; OAR - the spinal cord, brainstem, and major salivary glands are the most studied OARs, but additional experiments should be conducted for several less studied soft tissue structures; image database - several image databases with the corresponding ground truth are currently available for methodology evaluation, but should be augmented with data from multiple observers and multiple institutions; methodology - current methods have shifted from atlas-based to deep learning auto-segmentation, which is expected to become even more sophisticated; ground truth - delineation guidelines should be followed and participation of multiple experts from multiple institutions is recommended; performance metrics - the Dice coefficient as the standard volumetric overlap metrics should be accompanied with at least one distance metrics, and combined with clinical acceptability scores and risk assessments; segmentation performance - the best performing methods achieve clinically acceptable auto-segmentation for several OARs, however, the dosimetric impact should be also studied to provide clinically relevant endpoints for RT planning.
Collapse
Affiliation(s)
- Tomaž Vrtovec
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Domen Močnik
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Primož Strojan
- Institute of Oncology Ljubljana, Zaloška cesta 2, Ljubljana, SI-1000, Slovenia
| | - Franjo Pernuš
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Bulat Ibragimov
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia.,Department of Computer Science, University of Copenhagen, Universitetsparken 1, Copenhagen, D-2100, Denmark
| |
Collapse
|
34
|
Kearney V, Chan JW, Wang T, Perry A, Descovich M, Morin O, Yom SS, Solberg TD. DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation. Sci Rep 2020; 10:11073. [PMID: 32632116 PMCID: PMC7338467 DOI: 10.1038/s41598-020-68062-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/27/2020] [Indexed: 11/08/2022] Open
Abstract
Deep learning algorithms have recently been developed that utilize patient anatomy and raw imaging information to predict radiation dose, as a means to increase treatment planning efficiency and improve radiotherapy plan quality. Current state-of-the-art techniques rely on convolutional neural networks (CNNs) that use pixel-to-pixel loss to update network parameters. However, stereotactic body radiotherapy (SBRT) dose is often heterogeneous, making it difficult to model using pixel-level loss. Generative adversarial networks (GANs) utilize adversarial learning that incorporates image-level loss and is better suited to learn from heterogeneous labels. However, GANs are difficult to train and rely on compromised architectures to facilitate convergence. This study suggests an attention-gated generative adversarial network (DoseGAN) to improve learning, increase model complexity, and reduce network redundancy by focusing on relevant anatomy. DoseGAN was compared to alternative state-of-the-art dose prediction algorithms using heterogeneity index, conformity index, and various dosimetric parameters. All algorithms were trained, validated, and tested using 141 prostate SBRT patients. DoseGAN was able to predict more realistic volumetric dosimetry compared to all other algorithms and achieved statistically significant improvement compared to all alternative algorithms for the V100 and V120 of the PTV, V60 of the rectum, and heterogeneity index.
Collapse
Affiliation(s)
- Vasant Kearney
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA.
| | - Jason W Chan
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Tianqi Wang
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Alan Perry
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Martina Descovich
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Olivier Morin
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Timothy D Solberg
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| |
Collapse
|
35
|
Werth K, Ledbetter L. Artificial Intelligence in Head and Neck Imaging: A Glimpse into the Future. Neuroimaging Clin N Am 2020; 30:359-368. [PMID: 32600636 DOI: 10.1016/j.nic.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Artificial intelligence, specifically machine learning and deep learning, is a rapidly developing field in imaging sciences with the potential to improve the efficiency and effectiveness of radiologists. This review covers common technical terms and basic concepts in imaging artificial intelligence and briefly reviews the application of these techniques to general imaging as well as head and neck imaging. Artificial intelligence has the potential to contribute improvements to all areas of patient care, including image acquisition, processing, segmentation, automated detection of findings, integration of clinical information, quality improvement, and research. Numerous challenges remain, however, before widespread imaging clinical adoption and integration occur.
Collapse
Affiliation(s)
- Kyle Werth
- Department of Radiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mailstop 4032, Kansas City, KS 66160, USA
| | - Luke Ledbetter
- Department of Radiology, David Geffen School of Medicine at UCLA, 757 Westwood Plaza, Suite 1621D, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Kearney V, Ziemer BP, Perry A, Wang T, Chan JW, Ma L, Morin O, Yom SS, Solberg TD. Attention-Aware Discrimination for MR-to-CT Image Translation Using Cycle-Consistent Generative Adversarial Networks. Radiol Artif Intell 2020; 2:e190027. [PMID: 33937817 DOI: 10.1148/ryai.2020190027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/11/2022]
Abstract
Purpose To suggest an attention-aware, cycle-consistent generative adversarial network (A-CycleGAN) enhanced with variational autoencoding (VAE) as a superior alternative to current state-of-the-art MR-to-CT image translation methods. Materials and Methods An attention-gating mechanism is incorporated into a discriminator network to encourage a more parsimonious use of network parameters, whereas VAE enhancement enables deeper discrimination architectures without inhibiting model convergence. Findings from 60 patients with head, neck, and brain cancer were used to train and validate A-CycleGAN, and findings from 30 patients were used for the holdout test set and were used to report final evaluation metric results using mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). Results A-CycleGAN achieved superior results compared with U-Net, a generative adversarial network (GAN), and a cycle-consistent GAN. The A-CycleGAN averages, 95% confidence intervals (CIs), and Wilcoxon signed-rank two-sided test statistics are shown for MAE (19.61 [95% CI: 18.83, 20.39], P = .0104), structure similarity index metric (0.778 [95% CI: 0.758, 0.798], P = .0495), and PSNR (62.35 [95% CI: 61.80, 62.90], P = .0571). Conclusion A-CycleGANs were a superior alternative to state-of-the-art MR-to-CT image translation methods.© RSNA, 2020.
Collapse
Affiliation(s)
- Vasant Kearney
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| | - Benjamin P Ziemer
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| | - Alan Perry
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| | - Tianqi Wang
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| | - Jason W Chan
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| | - Lijun Ma
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| | - Olivier Morin
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| | - Sue S Yom
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| | - Timothy D Solberg
- Department of Radiation Oncology, University of California, 1600 Divisidero St, San Francisco, CA 94115
| |
Collapse
|
37
|
Poortmans PMP, Takanen S, Marta GN, Meattini I, Kaidar-Person O. Winter is over: The use of Artificial Intelligence to individualise radiation therapy for breast cancer. Breast 2020; 49:194-200. [PMID: 31931265 PMCID: PMC7375562 DOI: 10.1016/j.breast.2019.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
Artificial intelligence demonstrated its value for automated contouring of organs at risk and target volumes as well as for auto-planning of radiation dose distributions in terms of saving time, increasing consistency, and improving dose-volumes parameters. Future developments include incorporating dose/outcome data to optimise dose distributions with optimal coverage of the high-risk areas, while at the same time limiting doses to low-risk areas. An infinite gradient of volumes and doses to deliver spatially-adjusted radiation can be generated, allowing to avoid unnecessary radiation to organs at risk. Therefore, data about patient-, tumour-, and treatment-related factors have to be combined with dose distributions and outcome-containing databases.
Collapse
Affiliation(s)
| | - Silvia Takanen
- Institut Curie, Department of Radiation Oncology, Paris, France
| | - Gustavo Nader Marta
- Department of Radiation Oncology - Hospital Sírio-Libanês, Brazil; Department of Radiology and Oncology - Radiation Oncology, Instituto Do Câncer Do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy; Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Orit Kaidar-Person
- Radiation Oncology Unit, Breast Radiation Unit, Sheba Tel Ha'shomer, Ramat Gan, Israel
| |
Collapse
|
38
|
Sheikh K, Lee SH, Cheng Z, Lakshminarayanan P, Peng L, Han P, McNutt TR, Quon H, Lee J. Predicting acute radiation induced xerostomia in head and neck Cancer using MR and CT Radiomics of parotid and submandibular glands. Radiat Oncol 2019; 14:131. [PMID: 31358029 PMCID: PMC6664784 DOI: 10.1186/s13014-019-1339-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To analyze baseline CT/MR-based image features of salivary glands to predict radiation-induced xerostomia 3-months after head-and-neck cancer (HNC) radiotherapy. METHODS A retrospective analysis was performed on 266 HNC patients who were treated using radiotherapy at our institution between 2009 and 2018. CT and T1 post-contrast MR images along with NCI-CTCAE xerostomia grade (3-month follow-up) were prospectively collected at our institution. CT and MR images were registered on which parotid/submandibular glands were contoured. Image features were extracted for ipsilateral/contralateral parotid and submandibular glands relative to the location of the primary tumor. Dose-volume-histogram (DVH) parameters were also acquired. Features were pre-selected based on Spearman correlation before modelling by examining the correlation with xerostomia (p < 0.05). A shrinkage regression analysis of the pre-selected features was performed using LASSO. The internal validity of the variable selection was estimated by repeating the entire variable selection procedure using a leave-one-out-cross-validation. The most frequently selected variables were considered in the final model. A generalized linear regression with repeated ten-fold cross-validation was developed to predict radiation-induced xerostomia at 3-months after radiotherapy. This model was tested in an independent dataset (n = 50) of patients who were treated at the same institution in 2017-2018. We compared the prediction performances under eight conditions (DVH-only, CT-only, MR-only, CT + MR, DVH + CT, DVH + CT + MR, Clinical+CT + MR, and Clinical+DVH + CT + MR) using the area under the receiver operating characteristic curve (ROC-AUC). RESULTS Among extracted features, 7 CT, 5 MR, and 2 DVH features were selected. The internal cohort (n = 216) ROC-AUC values for DVH, CT, MR, and Clinical+DVH + CT + MR features were 0.73 ± 0.01, 0.69 ± 0.01, 0.70 ± 0.01, and 0.79 ± 0.01, respectively. The validation cohort (n = 50) ROC-AUC values for DVH, CT, MR, and Clinical+DVH + CT + MR features were 0.63, 0.57, 0.66, and 0.68, respectively. The DVH-ROC was not significantly different than the CT-ROC (p = 0.8) or MR-ROC (p = 0.4). However, the CT + MR-ROC was significantly different than the CT-ROC (p = 0.03), but not the Clinical+DVH + CT + MR model (p = 0.5). CONCLUSION Our results suggest that baseline CT and MR image features may reflect baseline salivary gland function and potential risk for radiation injury. The integration of baseline image features into prediction models has the potential to improve xerostomia risk stratification with the ultimate goal of truly personalized HNC radiotherapy.
Collapse
Affiliation(s)
- Khadija Sheikh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| | - Sang Ho Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| | - Zhi Cheng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| | - Pranav Lakshminarayanan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| | - Luke Peng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| | - Peijin Han
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| | - Todd R. McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21287-5678 USA
| |
Collapse
|
39
|
Chan JW, Kearney V, Haaf S, Wu S, Bogdanov M, Reddick M, Dixit N, Sudhyadhom A, Chen J, Yom SS, Solberg TD. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning. Med Phys 2019; 46:2204-2213. [PMID: 30887523 DOI: 10.1002/mp.13495] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023] Open
Abstract
PURPOSE This study suggests a lifelong learning-based convolutional neural network (LL-CNN) algorithm as a superior alternative to single-task learning approaches for automatic segmentation of head and neck (OARs) organs at risk. METHODS AND MATERIALS Lifelong learning-based convolutional neural network was trained on twelve head and neck OARs simultaneously using a multitask learning framework. Once the weights of the shared network were established, the final multitask convolutional layer was replaced by a single-task convolutional layer. The single-task transfer learning network was trained on each OAR separately with early stoppage. The accuracy of LL-CNN was assessed based on Dice score and root-mean-square error (RMSE) compared to manually delineated contours set as the gold standard. LL-CNN was compared with 2D-UNet, 3D-UNet, a single-task CNN (ST-CNN), and a pure multitask CNN (MT-CNN). Training, validation, and testing followed Kaggle competition rules, where 160 patients were used for training, 20 were used for internal validation, and 20 in a separate test set were used to report final prediction accuracies. RESULTS On average contours generated with LL-CNN had higher Dice coefficients and lower RMSE than 2D-UNet, 3D-Unet, ST- CNN, and MT-CNN. LL-CNN required ~72 hrs to train using a distributed learning framework on 2 Nvidia 1080Ti graphics processing units. LL-CNN required 20 s to predict all 12 OARs, which was approximately as fast as the fastest alternative methods with the exception of MT-CNN. CONCLUSIONS This study demonstrated that for head and neck organs at risk, LL-CNN achieves a prediction accuracy superior to all alternative algorithms.
Collapse
Affiliation(s)
- Jason W Chan
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Vasant Kearney
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Samuel Haaf
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Susan Wu
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Madeleine Bogdanov
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Mariah Reddick
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Nayha Dixit
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Josephine Chen
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| | - Timothy D Solberg
- Department of Radiation Oncology, University of California, San Francisco, CA, 94115, USA
| |
Collapse
|
40
|
Kokol P, Blažun Vošner H, Završnik J, Turčin M. How 'smart' is smart dentistry? F1000Res 2019; 8:183. [PMID: 31448097 PMCID: PMC6696613 DOI: 10.12688/f1000research.17972.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Latest advances in information and health technologies enabled dentistry to follow the paradigm shift occurring in medicine - the transition to so called smart medicine. Consequently, the aim of this paper is to assess how 'smart' is smart dentistry as of the end of 2018. Methods: We analysed the state of the art in smart dentistry, performing bibliometric mapping on a corpus of smart dentistry papers found in the Scopus bibliographical database. Results: The search resulted in a corpus of 3451 papers, revealing that smart dentistry research is following the progress in smart medicine; however, there are some gaps in some specific areas like gamification and use of holistic smart dentistry systems. Conclusions: Smart dentistry is smart; however, it must become smarter.
Collapse
Affiliation(s)
- Peter Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, 2000, Slovenia
| | - Helena Blažun Vošner
- Community Healthcare Center Dr. Adolf Drolc, Maribor, 2000, Slovenia
- Faculty of Health and Social Sciences Slovenj Gradec, Slovenj Gradec, Slovenia
| | - Jernej Završnik
- Community Healthcare Center Dr. Adolf Drolc, Maribor, 2000, Slovenia
| | - Marko Turčin
- Community Healthcare Center Dr. Adolf Drolc, Maribor, 2000, Slovenia
| |
Collapse
|
41
|
Kokol P, Blažun Vošner H, Završnik J, Turčin M. How 'smart' is smart dentistry? F1000Res 2019; 8:183. [PMID: 31448097 PMCID: PMC6696613 DOI: 10.12688/f1000research.17972.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 07/20/2024] Open
Abstract
Background: Latest advances in information and health technologies enabled dentistry to follow the paradigm shift occurring in medicine - the transition to so called smart medicine. Consequently, the aim of this paper is to assess how 'smart' is smart dentistry as of the end of 2018. Methods: We analysed the state of the art in smart dentistry, performing bibliometric mapping on a corpus of smart dentistry papers found in the Scopus bibliographical database. Results: The search resulted in a corpus of 3451 papers, revealing that smart dentistry research is following the progress in smart medicine; however, there are some gaps in some specific areas like gamification and use of holistic smart dentistry systems. Conclusions: Smart dentistry is smart; however, it must become smarter.
Collapse
Affiliation(s)
- Peter Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, 2000, Slovenia
| | - Helena Blažun Vošner
- Community Healthcare Center Dr. Adolf Drolc, Maribor, 2000, Slovenia
- Faculty of Health and Social Sciences Slovenj Gradec, Slovenj Gradec, Slovenia
| | - Jernej Završnik
- Community Healthcare Center Dr. Adolf Drolc, Maribor, 2000, Slovenia
| | - Marko Turčin
- Community Healthcare Center Dr. Adolf Drolc, Maribor, 2000, Slovenia
| |
Collapse
|
42
|
Standardizing Normal Tissue Contouring for Radiation Therapy Treatment Planning: An ASTRO Consensus Paper. Pract Radiat Oncol 2018; 9:65-72. [PMID: 30576843 DOI: 10.1016/j.prro.2018.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The comprehensive identification and delineation of organs at risk (OARs) are vital to the quality of radiation therapy treatment planning and the safety of treatment delivery. This guidance aims to improve the consistency of ontouring OARs in external beam radiation therapy treatment planning by providing a single standardized resource for information regarding specific OARs to be contoured for each disease site. The guidance is organized in table format as a quality assurance tool for practices and a training resource for residents and other radiation oncology students (see supplementary materials). METHODS AND MATERIALS The Task Force formulated recommendations based on clinical practice and consensus. The draft manuscript was peer reviewed by 16 reviewers, the American Society for Radiation Oncology (ASTRO) legal counsel, and ASTRO's Multidisciplinary Quality Assurance Subcommittee and revised accordingly. The recommendations were posted on the ASTRO website for public comment in June 2018 for a 6-week period. The final document was approved by the ASTRO Board of Directors in August 2018. RESULTS Standardization improves patient safety, efficiency, and accuracy in radiation oncology treatment. This consensus guidance represents an ASTRO quality initiative to provide recommendations for the standardization of normal tissue contouring that is performed during external beam treatment planning for each anatomic treatment site. Table 1 defines 2 sets of structures for anatomic sites: Those that are recommended in all adult definitive cases and may assist with organ selection for palliative cases, and those that should be considered on a case-by-case basis depending on the specific clinical scenario. Table 2 outlines some of the resources available to define the parameters of general OAR tissue delineation. CONCLUSIONS Using this paper in conjunction with resources that define tissue parameters and published dose constraints will enable practices to develop a consistent approach to normal tissue evaluation and dose documentation.
Collapse
|
43
|
Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD. DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys Med Biol 2018; 63:235022. [PMID: 30511663 DOI: 10.1088/1361-6560/aaef74] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The goal of this study is to demonstrate the feasibility of a novel fully-convolutional volumetric dose prediction neural network (DoseNet) and test its performance on a cohort of prostate stereotactic body radiotherapy (SBRT) patients. DoseNet is suggested as a superior alternative to U-Net and fully connected distance map-based neural networks for non-coplanar SBRT prostate dose prediction. DoseNet utilizes 3D convolutional downsampling with corresponding 3D deconvolutional upsampling to preserve memory while simultaneously increasing the receptive field of the network. DoseNet was implemented on 2 Nvidia 1080 Ti graphics processing units and utilizes a 3 phase learning protocol to help achieve convergence and improve generalization. DoseNet was trained, validated, and tested with 151 patients following Kaggle completion rules. The dosimetric quality of DoseNet was evaluated by comparing the predicted dose distribution with the clinically approved delivered dose distribution in terms of conformity index, heterogeneity index, and various clinically relevant dosimetric parameters. The results indicate that the DoseNet algorithm is a superior alternative to U-Net and fully connected methods for prostate SBRT patients. DoseNet required ~50.1 h to train, and ~0.83 s to make a prediction on a 128 × 128 × 64 voxel image. In conclusion, DoseNet is capable of making accurate volumetric dose predictions for non-coplanar SBRT prostate patients, while simultaneously preserving computational efficiency.
Collapse
|