1
|
Choi YJ, Saravanakumar K, Joo JH, Nam B, Park Y, Lee S, Park S, Li Z, Yao L, Kim Y, Irfan N, Cho N. Metabolomics and network pharmacology approach to identify potential bioactive compounds from Trichoderma sp. against oral squamous cell carcinoma. Comput Biol Chem 2025; 115:108348. [PMID: 39864356 DOI: 10.1016/j.compbiolchem.2025.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/28/2025]
Abstract
This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake. ADME-Tox analysis indicated limited inhibition of cytochrome P450 enzymes, low renal clearance, which are favorable for maintaining therapeutic levels. Toxicity predictions revealed some compounds with potential mutagenicity, but low hepatotoxicity and skin sensitization risks. Network pharmacology identified MAPK1 as a key target for oral cancer, and molecular docking and induced fit docking studies demonstrated strong binding affinities of Trichoderma metabolites, including stachyose and harzianol, to MAPK1. In addition, molecular dynamics (MD) simulations confirmed stable interactions. In vitro studies on NIH3T3 and YD-10B cells showed significant cytotoxicity, particularly with extracts CNU-05-001 (IC50:10.15 µg/mL) and CNU-02-009 (10.00 µg/mL) against YD-10B cells. These findings underscore the potential of Trichoderma metabolites in drug discovery, particularly for cancer therapies.
Collapse
Affiliation(s)
- Young Ji Choi
- Division of bioresources bank, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do 58762, Republic of Korea.
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jae-Hyoung Joo
- Division of bioresources bank, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do 58762, Republic of Korea.
| | - Bomi Nam
- Division of bioresources bank, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do 58762, Republic of Korea.
| | - Yuna Park
- Division of bioresources bank, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do 58762, Republic of Korea.
| | - Soyeon Lee
- Division of bioresources bank, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do 58762, Republic of Korea.
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea.
| | - Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Lulu Yao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yunyeong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Navabshan Irfan
- Crescent School of Pharmacy, B.S Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Elicure, 12, Gyeongyeol-ro 17 beon-gil, Seo-gu, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Wang C, Wu Z, Zhou J, Cheng B, Huang Y. Semaglutide, a glucagon-like peptide-1 receptor agonist, inhibits oral squamous cell carcinoma growth through P38 MAPK signaling pathway. J Cancer Res Clin Oncol 2025; 151:103. [PMID: 40055197 PMCID: PMC11889073 DOI: 10.1007/s00432-025-06154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/12/2025]
Abstract
AIMS Researches have shown that diabetes mellitus (DM) can promote the risk and progression of oral squamous cell carcinoma (OSCC). Semaglutide, a glucagon-like peptide-1 receptor agonist, is currently employed to treat type 2 diabetes mellitus (T2DM) and obesity. This study intends to explore the potential effects and mechanism of Semaglutide on OSCC. METHODS The expression of GLP-1R in OSCC cells and tissues was evaluated by qRT-PCR, western blot and immunohistochemistry assays. Cell proliferation, invasion, migration and apoptosis abilities were determined by relevant experiments. Western blot was employed to verify the expression of relevant proteins and examine the effect of Semaglutide on the MAPK signaling pathway. The xenograft transplantation model of OSCC was established to examine the anti-cancer effects of Semaglutide in vivo and immunohistochemistry assays were performed on tumor tissues. RESULTS GLP-1R expression was elevated in OSCC cells and tissues as compared with that in normal. Semaglutide effectively inhibited the proliferation, migration and invasion of OSCC cells while concurrently promoting apoptosis. Moreover, Semaglutide specifically activated the P38 MAPK signaling pathway without significant influence on ERK1/2 or SAPK/JNK, and its pro-apoptotic effects in OSCC cells was related to P38 pathway activation. Animal experiments verified the inhibitory effect of Semaglutide on OSCC tumors in mice. CONCLUSIONS Semaglutide exerts inhibitory actions on OSCC and may induce apoptosis in OSCC cells via the P38 MAPK signaling pathway. This study has significant implications for the treatment of patients with diabetes who are also afflicted by OSCC.
Collapse
Affiliation(s)
- Can Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Zhengzheng Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Jiaying Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China.
| | - Yulei Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
3
|
Bai LY, Dokla EME, Chu PC, Feng CH, Hu JL, Wang LJ, Weng JR. A synthetic molecule targeting STAT3 against human oral squamous cell carcinoma cells. Int J Med Sci 2025; 22:1081-1091. [PMID: 40027184 PMCID: PMC11866527 DOI: 10.7150/ijms.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common cancers in Taiwan, needs new therapeutic agents and treatments. The aim of this study was to investigate the anti-proliferative activity of {N-[3-chloro-4-[5-[3-[[[4-[(cyclopropylcarbonyl)-amino]3-(trifluoromethyl)phenylamino]carbonyl]amino]phenyl]-1,2,4-oxadiazol-3-yl]phenyl]-3-pyridine-carboxamide} (COC), a synthetic molecule, in OSCC cells. COC exhibits potent tumor-suppressive efficacy with IC50 values of 195 nM and 204 nM toward SCC2095 and SCC4 OSCC cells, respectively. Our data revealed that COC caused caspase-dependent apoptosis and downregulated the MAPK signaling pathway. In addition, COC modulated the levels of E-cadherin and β-catenin and inhibited migration. COC also decreased p-STAT3 levels, and the overexpression of STAT3 partially attenuated COC-induced cytotoxicity. Therefore, our findings suggest the use of COC as a new approach to oral cancer treatment.
Collapse
Affiliation(s)
- Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Eman M. E. Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 115, Egypt
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 404, Taiwan
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jing-Lan Hu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Liang-Jun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Li C, Dong X, Li B. Tumor microenvironment in oral squamous cell carcinoma. Front Immunol 2024; 15:1485174. [PMID: 39744628 PMCID: PMC11688467 DOI: 10.3389/fimmu.2024.1485174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly aggressive and malignant tumor of oral cavity with a poor prognosis and high mortality due to the limitations of existing therapies. The significant role of tumor microenvironment (TME) in the initiation, development, and progression of OSCC has been widely recognized. Various cells in TME, including tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), T lymphocytes, tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs), form a complicated and important cellular network to modulate OSCC proliferation, invasion, migration, and angiogenesis by secreting RNAs, proteins, cytokines, and metabolites. Understanding the interactions among cells in TME provides the foundation for advanced clinical diagnosis and therapies. This review summarizes the current literature that describes the role of various cellular components and other TME factors in the progression of OSCC, hoping to provide new ideas for the novel OSCC treatment strategies targeting the complicated cellular network and factors that mediate the interactive loops among cells in TME.
Collapse
Affiliation(s)
| | | | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral
Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
5
|
Wu L, Zhao Z, Shin YJ, Yin Y, Raju A, Vaiyapuri TS, Idzham K, Son M, Lee Y, Sa JK, Chua JYH, Unal B, Zhai Y, Fan W, Huang L, Hu H, Gunaratne J, Nam DH, Jiang T, Tergaonkar V. Tumour microenvironment programming by an RNA-RNA-binding protein complex creates a druggable vulnerability in IDH-wild-type glioblastoma. Nat Cell Biol 2024; 26:1003-1018. [PMID: 38858501 PMCID: PMC11178504 DOI: 10.1038/s41556-024-01428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Patients with IDH-wild-type glioblastomas have a poor five-year survival rate along with limited treatment efficacy due to immune cell (glioma-associated microglia and macrophages) infiltration promoting tumour growth and resistance. To enhance therapeutic options, our study investigated the unique RNA-RNA-binding protein complex LOC-DHX15. This complex plays a crucial role in driving immune cell infiltration and tumour growth by establishing a feedback loop between cancer and immune cells, intensifying cancer aggressiveness. Targeting this complex with blood-brain barrier-permeable small molecules improved treatment efficacy, disrupting cell communication and impeding cancer cell survival and stem-like properties. Focusing on RNA-RNA-binding protein interactions emerges as a promising approach not only for glioblastomas without the IDH mutation but also for potential applications beyond cancer, offering new avenues for developing therapies that address intricate cellular relationships in the body.
Collapse
Affiliation(s)
- Lele Wu
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yong Jae Shin
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yiyun Yin
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Anandhkumar Raju
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Thamil Selvan Vaiyapuri
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Khaireen Idzham
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Miseol Son
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yeri Lee
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joelle Yi Heng Chua
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Bilal Unal
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - You Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenhua Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijie Huang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Huimin Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jayantha Gunaratne
- Laboratory of Translational Biomedical Proteomics, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Do-Hyun Nam
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Seoul, Republic of Korea
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Republic of Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Republic of Singapore.
| |
Collapse
|
6
|
Zamanian MY, Golmohammadi M, Abdullaev B, García MO, Alazbjee AAA, Kumar A, Mohaamed SS, Hussien BM, Khalaj F, Hodaei SM, Shirsalimi N, Moriasi G. A narrative review on therapeutic potential of naringenin in colorectal cancer: Focusing on molecular and biochemical processes. Cell Biochem Funct 2024; 42:e4011. [PMID: 38583080 DOI: 10.1002/cbf.4011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- School of Medicine, Central Asian University, Tashkent, Uzbekistan
- Department of Medical Oncology and Radiology, Samarkand State Medical University
| | - María Olalla García
- Universidad Estatal de Bolívar, Facultad de Ciencias de la Salud y del Ser Humano, Carrera de Enfermería, CP, Guaranda, Ecuador
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Sameer S Mohaamed
- Department of Pharmacy, Al Rafidain University College, Bagdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
7
|
Wang Z, Kirkwood KL, Wang Y, Du W, Lin S, Zhou W, Yan C, Gao J, Li Z, Sun C, Liu F. Analysis of the effect of CCR7 on the microenvironment of mouse oral squamous cell carcinoma by single-cell RNA sequencing technology. J Exp Clin Cancer Res 2024; 43:94. [PMID: 38539232 PMCID: PMC10976828 DOI: 10.1186/s13046-024-03013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Studies have shown that CCR7, an important inflammatory factor, can promote the proliferation and metastasis of oral squamous cell carcinoma (OSCC), but its role in the tumor microenvironment (TME) remains unclear. This paper explores the role of CCR7 in the TME of OSCC. METHODS In this work, we constructed CCR7 gene knockout mice and OSCC mouse models. Single-cell RNA sequencing (scRNA-seq) and bioinformatics were used to analyze the differences in the OSCC microenvironment between three CCR7 gene knockout mice (KO) and three wild-type mice (WT). Immunohistochemistry, immunofluorescence staining, and flow cytometry were used to analyze the expression of key genes in significantly different cell types between the KO and WT groups. An in vitro experiment was used to verify the effect of CCR7 on M2 macrophage polarization. RESULTS In the mouse OSCC models, the tumor growth rate in the KO group was significantly lower than that in the WT group. Eight main cell types (including tumor cells, fibroblasts, macrophages, granulocytes, T cells, endothelial cells, monocytes, and B cells) were identified by Seurat analysis. The scRNA-seq results showed that the proportion of tumor cells was lower, but the proportion of inflammatory cells was significantly higher in the KO group than in the WT group. CellPhoneDB analysis results indicated a strong interaction relationship between tumor cells and macrophages, T cells, fibroblasts, and endothelial cells. Functional enrichment results indicated that the expression level of the Dusp1 gene in the KO group was generally higher than that in the WT group in various cell types. Macrophage subclustering results indicated that the proportion of M2 macrophages in the KO group was lower than that in the WT group. In vitro experimental results showed that CCR7 can promote M2 macrophage polarization, thus promoting the proliferation, invasion and migration of OSCC cells. CONCLUSIONS CCR7 gene knockout can significantly inhibit the growth of mouse oral squamous cell carcinoma by promoting the polarization of M2 macrophages.
Collapse
Affiliation(s)
- Zengxu Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, NY, Buffalo, 14214-8006, USA
| | - Yao Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Weidong Du
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Shanfeng Lin
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Wanhang Zhou
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Cong Yan
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Jiaxing Gao
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Zhenning Li
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Changfu Sun
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Fayu Liu
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China.
| |
Collapse
|
8
|
Bian Z, Wu X, Chen Q, Gao Q, Xue X, Wang Y. Oct4 activates IL-17A to orchestrate M2 macrophage polarization and cervical cancer metastasis. Cancer Immunol Immunother 2024; 73:73. [PMID: 38430256 PMCID: PMC10908604 DOI: 10.1007/s00262-023-03596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/10/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND Cervical cancer is a common malignant tumor in the female. Interleukin (IL)-17A is a proinflammatory factor and exerts a vital function in inflammatory diseases and cancers. M2 macrophage has been confirmed to promote tumor development. Nevertheless, it is not yet known whether IL-17A facilitates cervical cancer development by inducing M2 macrophage polarization. Therefore, this study was conducted to investigate the regulatory effect of IL-17A on M2 macrophage polarization and the underlying mechanism in cervical cancer development. METHODS RT-qPCR was utilized for testing IL-17A expression in cancer tissues and cells. Flow cytometry was applied to evaluate the M1 or M2 macrophage polarization. Cell proliferative, migratory, and invasive capabilities were measured through colony formation and transwell assays. ChIP and luciferase reporter assays were applied to determine the interaction between IL-17A and octamer-binding transcription factor 4 (OCT4). RESULTS IL-17A expression and concentration were high in metastatic tissues and cells of cervical cancer. IL-17A was found to facilitate M2 macrophage polarization in cervical cancer. Furthermore, IL-17A facilitated the macrophage-mediated promotion of cervical cancer cell proliferative, migratory, and invasive capabilities. Mechanistic assays manifested that Oct4 binds to and transcriptionally activated IL-17A in cervical cancer cells. Furthermore, Oct4 promoted cervical cancer cell malignant phenotype and M2 macrophage polarization by activating the p38 pathway that, in turn, upregulated IL-17A. Additionally, in vivo experiments confirmed that Oct4 knockdown reduced tumor growth and metastasis. CONCLUSION Oct4 triggers IL-17A to facilitate the polarization of M2 macrophages, which promotes cervical cancer cell metastasis.
Collapse
Affiliation(s)
- Zhuoqiong Bian
- Department of the Fifth Rheumatology, The Fifth Hospital of Xi'an City, Xi'an, 710000, Shaanxi, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China
| | - Qing Chen
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China
| | - Qing Gao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China
| | - Xiang Xue
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China
| | - Yidong Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiao Tong University, 157 West Fifth Road, Xincheng District, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
9
|
Wang CW, Biswas PK, Islam A, Chen MK, Chueh PJ. The Use of Immune Regulation in Treating Head and Neck Squamous Cell Carcinoma (HNSCC). Cells 2024; 13:413. [PMID: 38474377 PMCID: PMC10930979 DOI: 10.3390/cells13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Immunotherapy has emerged as a promising new treatment modality for head and neck cancer, offering the potential for targeted and effective cancer management. Squamous cell carcinomas pose significant challenges due to their aggressive nature and limited treatment options. Conventional therapies such as surgery, radiation, and chemotherapy often have limited success rates and can have significant side effects. Immunotherapy harnesses the power of the immune system to recognize and eliminate cancer cells, and thus represents a novel approach with the potential to improve patient outcomes. In the management of head and neck squamous cell carcinoma (HNSCC), important contributions are made by immunotherapies, including adaptive cell therapy (ACT) and immune checkpoint inhibitor therapy. In this review, we are focusing on the latter. Immune checkpoint inhibitors target proteins such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to enhance the immune response against cancer cells. The CTLA-4 inhibitors, such as ipilimumab and tremelimumab, have been approved for early-stage clinical trials and have shown promising outcomes in terms of tumor regression and durable responses in patients with advanced HNSCC. Thus, immune checkpoint inhibitor therapy holds promise in overcoming the limitations of conventional therapies. However, further research is needed to optimize treatment regimens, identify predictive biomarkers, and overcome potential resistance mechanisms. With ongoing advancements in immunotherapy, the future holds great potential for transforming the landscape of oral tumor treatment and providing new hope for patients.
Collapse
Affiliation(s)
- Che-Wei Wang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Pulak Kumar Biswas
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
| |
Collapse
|
10
|
Ma XJ, Sun Z, Wang YP, Yao XP, Luo TT, Bao YL, Ainiwaer D, Zhang T, Zhu H, Zhang Y, Hu FM, Yu WY. Heat shock induces HuR-dependent MKP-1 posttranslational regulation through the p38 MAPK signaling cascade. Tissue Cell 2024; 86:102262. [PMID: 37984224 DOI: 10.1016/j.tice.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Previous studies demonstrated that phosphatases play a pivotal role in modulating inflammation-associated signal transduction, particularly in the context of heat shock, where Mitogen-Activated Protein Kinase Phosphatase-1 (MKP-1) appears to have a central role. Recently, Human Antigen R (HuR) has also been identified as a factor that enhances stress-response protein MKP-1 levels. Consequently, we have directed our interest towards elucidating the mechanisms by which heat shock induces MKP-1 mRNA stabilization, dependent on HuR via the p38 MAPK Signaling Cascade. In this study, we subjected Mouse Embryonic Fibroblast (Mef) cells to heat shock treatment, resulting in a potent stabilization MKP-1 mRNA. The RNA-binding protein HuR, known to influence mRNA, was observed to bind to the MKP-1 AU-rich 3 ´untranslated region. Transfection of p38 wild-type Mef cells with a flag-HuR plasmid resulted in a significant increase in MKP-1 mRNA stability. Interestingly, transfection of the siRNA for HuR into Mef cells resulted in diminished MKP-1 mRNA stability following heat shock, inhibition of p38 MAPK activity effectively curtailed heat shock-mediated MKP-1 mRNA stability. Immunofluorescence analyses further revealed that the translocation of HuR was contingent on p38 MAPK Signaling Cascade. Collectively, these findings underscore the regulatory role of heat shock in MKP-1 gene expression at posttranscriptional levels. The mechanisms underlying the observed increased MKP-1 mRNA stability are shown to be partially dependent on HuR through the p38 MAPK Signaling Cascade.
Collapse
Affiliation(s)
- Xiao-Juan Ma
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Zhan Sun
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Yi-Ping Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xue-Ping Yao
- Department of Functional Center,College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Ting-Ting Luo
- Hematological Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Ya-Li Bao
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Dina Ainiwaer
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Tian Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Hengyi Zhu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Yan Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Fei-Ming Hu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wen-Yan Yu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang 830000, China.
| |
Collapse
|
11
|
Patysheva MR, Prostakishina EA, Budnitskaya AA, Bragina OD, Kzhyshkowska JG. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity. Int J Mol Sci 2023; 24:17542. [PMID: 38139370 PMCID: PMC10743672 DOI: 10.3390/ijms242417542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.
Collapse
Affiliation(s)
- Marina R. Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Elizaveta A. Prostakishina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Arina A. Budnitskaya
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga D. Bragina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia G. Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim Institute of Innate Immunosciences (MI3), University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 69117 Mannheim, Germany
| |
Collapse
|
12
|
Hernández HG, Aranzazu-Moya GC, Pinzón-Reyes EH. Aberrant AHRR, ADAMTS2 and FAM184 DNA Methylation: Candidate Biomarkers in the Oral Rinse of Heavy Smokers. Biomedicines 2023; 11:1797. [PMID: 37509437 PMCID: PMC10376800 DOI: 10.3390/biomedicines11071797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE To identify DNA methylation patterns of heavy smokers in oral rinse samples. METHODS Genome-wide DNA methylation data was imported from Gene Expression Omnibus GSE70977 using the GEOquery package. Two independent sets were analyzed: (a) 71 epigenomes of cancer-free subjects (heavy smokers n = 37 vs. non-smokers n = 31); for concordance assessment (b) 139 oral-cancer patients' epigenomes (heavy smokers n = 92 vs. non-smokers n = 47). Differential DNA methylation for CpG positions and at the regional level was determined using Limma and DMRcate Bioconductor packages. The linear model included sex, age, and alcohol consumption. The statistical threshold was set to p < 0.05. Functional gene prioritization analysis was performed for gene-targeted analysis. RESULTS In individuals without cancer and heavy smokers, the FAM184B gene was found with two CpG positions differentially hypermethylated (p = 0.012 after FDR adjustment), in a region of 48 bp with an absolute methylation difference >10% between groups (p = 1.76 × 10-8). In the analysis corresponding to oral-cancer patients, we found AHRR differentially hypomethylated cancer patients, but also in subjects without oral cancer in the targeted analyses. Remarkably, ADAMTS2 was found differentially hypermethylated in heavy smokers without a diagnosis of cancer in two consecutive probes cg05575921 (p = 3.13 × 10-7) and cg10208897 (p = 1.36 × 10-5). CONCLUSIONS Differentially methylated AHRR, ADAMTS2, and FAM184B genes are biomarker candidates in oral rinse samples.
Collapse
Affiliation(s)
- Hernán Guillermo Hernández
- School of Dentistry, Universidad Santo Tomás, Bucaramanga 680001, Colombia
- PhD Program in Dentistry, Universidad Santo Tomás, Bucaramanga 680001, Colombia
| | | | - Efraín Hernando Pinzón-Reyes
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680003, Colombia
| |
Collapse
|
13
|
Cui Y, Cheng Y, Huang W, Liu J, Zhang X, Bu M, Li X. A novel T-cell proliferation-associated gene predicts prognosis and reveals immune infiltration in patients with oral squamous cell carcinoma. Arch Oral Biol 2023; 152:105719. [PMID: 37178584 DOI: 10.1016/j.archoralbio.2023.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a highly malignant tumour, and the prediction of its prognosis remains challenging. The prognostic value of T-lymphocyte proliferation regulators in OSCC remains to be explored. DESIGN We integrated mRNA expression profiles and relevant clinical information of OSCC patients from The Cancer Genome Atlas database. The expression and function of T-lymphocyte proliferation regulators and their relationship with overall survival (OS) were analysed. The T-lymphocyte proliferation regulator signature was screened using univariate Cox regression and least absolute shrinkage and selection operator coefficients and used to construct models for prognosis and staging prediction as well as for immune infiltration analysis. Final validation was performed using single-cell sequencing database and immunohistochemical staining. RESULTS Most T-lymphocyte proliferation regulators in the TCGA cohort exhibited different expression levels between OSCC and paracancerous tissues. A prognostic model constructed using the T-lymphocyte proliferation regulator signature (RAN, CDK1, and CDK2) was used to categorise patients into high- and low-risk groups. The OS was significantly lower in the high-risk group than the low-risk group (p < 0.01). The predictive ability of the T-lymphocyte proliferation regulator signature was validated by receiver operating characteristic curve analysis. Immune infiltration analysis revealed different immune statuses in both groups. CONCLUSIONS We established a new T-lymphocyte proliferation regulator signature that can predict the prognosis of OSCC. The results of this study will contribute to studies of T-cell proliferation and the immune microenvironment in OSCC to improve prognosis and immunotherapeutic response.
Collapse
Affiliation(s)
- Yunyi Cui
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Yiming Cheng
- Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Wei Huang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Jianping Liu
- Department of Oral and Maxillofacial Surgery, Shinshu University School of Medicine, Matsumoto 3900821, Japan
| | - Xiaoyan Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Mingyang Bu
- Department of Oral Prophylaxis, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Xiangjun Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China.
| |
Collapse
|
14
|
Li R, Zhou Y, Zhang M, Xie R, Duan N, Liu H, Qin Y, Ma J, Li Z, Ye P, Wang W, Wang X. Oral squamous cell carcinoma-derived EVs promote tumor progression by regulating inflammatory cytokines and the IL-17A-induced signaling pathway. Int Immunopharmacol 2023; 118:110094. [PMID: 37030119 DOI: 10.1016/j.intimp.2023.110094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Inflammatory cytokines in the tumor microenvironment (TME) contribute to tumor growth, proliferation, and invasion, and tumor-derived extracellular vesicles (EVs) act as critical "messengers" of communication in the tumor microenvironment. The effects of EVs derived from oral squamous cell carcinoma (OSCC) cells on tumor progression and the inflammatory microenvironment are still unclear. Our study aims to investigate the role of OSCC-derived EVs in tumor progression, the imbalanced TME, and immunosuppression and their effect on the IL-17A-induced signaling pathway. METHODS EVs were isolated from the supernatant of a mouse OSCC cell line, SCC7. The effects of SCC7-EVs and the EV release-specific inhibitor GW4869 on the proliferation and migration of SCC7 cells were investigated in vitro by using CCK-8 and scratch wound healing assays. RT-qPCR and ELISA were performed to examine the alterations in cytokine levels. Then, a mouse xenograft model of OSCC was established by submucosal injection of SCC7 cells with or without SCC7-EV and GW4869 treatment. The effects of GW4869 and SCC7-EVs on xenograft tumor proliferation and invasion were investigated by tumor volume determination and histopathological examination. ELISA was used to investigate the changes in serum cytokine levels. Immunohistochemistry was adopted to analyze the alterations in the levels of inflammatory cytokines, immune factors, and crucial molecules in the IL-17A signaling pathway. RESULTS SCC7-derived EVs increased the supernatant and serum levels of IL-17A, IL-10, IL-1β, and PD-L1, while GW4869 decreased those of TNF-α and IFN-γ. SCC7-EV treatment significantly increased xenograft tumor growth and invasion in mice but resulted in little liquefactive necrosis in tumors. However, GW4869 treatment significantly inhibited xenograft tumor growth but resulted in more liquefactive necrosis. SCC7-derived EVs decreased the expression level of PTPN2, suppressing the immune responses of CD8 + T cells in vivo. Moreover, SCC7-EV treatment significantly enhanced the tumor expression levels of crucial molecules in the IL-17A pathway, including IL-17A, TRAF6 and c-FOS, whereas GW4869 treatment significantly reduced those levels in tumor tissues. CONCLUSION Our results indicated that OSCC-derived EVs can promote tumor progression by altering the TME, causing an inflammatory cytokine imbalance, inducing immunosuppression, and contributing to overactivation of the IL-17A-induced signaling pathway. Our study might provide novel insights into the role of OSCC-derived EVs in tumor biological behavior and immune dysregulation.
Collapse
|
15
|
Lin YC, Hua CH, Lu HM, Huang SW, Chen Y, Tsai MH, Lin FY, Canoll P, Chiu SC, Huang WH, Cho DY, Jan CI. CAR-T cells targeting HLA-G as potent therapeutic strategy for EGFR-mutated and overexpressed oral cancer. iScience 2023; 26:106089. [PMID: 36876120 PMCID: PMC9978640 DOI: 10.1016/j.isci.2023.106089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/11/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy in the world. Recently, scientists have focused on therapeutic strategies to determine the regulation of tumors and design molecules for specific targets. Some studies have demonstrated the clinical significance of human leukocyte antigen G (HLA-G) in malignancy and NLR family pyrin domain-containing 3 (NLRP3) inflammasome in promoting tumorigenesis in OSCC. This is the first study to investigate whether aberrant epidermal growth factor receptor (EGFR) induces HLA-G expression through NLRP3 inflammasome-mediated IL-1β secretion in OSCC. Our results showed that the upregulation of NLRP3 inflammasome leads to abundant HLA-G in the cytoplasm and cell membrane of FaDu cells. In addition, we also generated anti-HLA-G chimeric antigen receptor (CAR)-T cells and provided evidence for their effects in EGFR-mutated and overexpressed oral cancer. Our results may be integrated with OSCC patient data to translate basic research into clinical significance and may lead to novel EGFR-aberrant OSCC treatment.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsin-Man Lu
- Department of Psychology, Asia University, Taichung 404, Taiwan
| | - Shi-Wei Huang
- Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Yu Lin
- Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Shao-Chih Chiu
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Hua Huang
- Dr. Jean Landsborough Memorial Hospice Ward, Changhua Christian Hospital, Changhua 500, Taiwan.,Department of Nursing, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Der-Yang Cho
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Ing Jan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
16
|
Bai LY, Wu KLH, Chiu CF, Chao HC, Lin WY, Hu JL, Peng BR, Weng JR. Extract of Ficus septica modulates apoptosis and migration in human oral squamous cell carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:666-675. [PMID: 36436203 DOI: 10.1002/tox.23716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
According to the alarming statistical analysis of global cancer, there are over 19 million new diagnoses and more than 10 million deaths each year. One such cancer is the oral squamous cell carcinoma (OSCC), which requires new therapeutic strategies. Ficus septica extract has been used in traditional medicine to treat infectious diseases. In this study, we examined the anti-proliferative effects of an extract of F. septica bark (FSB) in OSCC cells. Our results showed that FSB caused a concentration-dependent reduction in the viability of SCC2095 OSCC cells, as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and was less sensitive to fibroblasts. In addition, FSB induced apoptosis by activating caspases, accompanied by the modulation of Akt/mTOR/NF-κB and mitogen-activated protein kinase signaling. Moreover, FSB increased reactive oxygen species generation in a concentration-dependent manner in SCC2095 cells. Furthermore, FSB inhibited cell migration and modulated the levels of the cell adhesion molecules including E-cadherin, N-cadherin, and Snail in SCC2095 cells. Pinoresinol, a lignan isolated from FSB, showed antitumor effects in SCC2095 cells, implying that this compound might play an important role in FSB-induced OSCC cell death. Taken together, FSB is a potential anti-tumor agent against OSCC cells.
Collapse
Affiliation(s)
- Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Kay Li-Hui Wu
- Institute of Translational Research in Biomedicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Chu Chao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| | - Jing-Lan Hu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Bo-Rong Peng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
García-Flores N, Jiménez-Suárez J, Garnés-García C, Fernández-Aroca DM, Sabater S, Andrés I, Fernández-Aramburo A, Ruiz-Hidalgo MJ, Belandia B, Sanchez-Prieto R, Cimas FJ. P38 MAPK and Radiotherapy: Foes or Friends? Cancers (Basel) 2023; 15:861. [PMID: 36765819 PMCID: PMC9913882 DOI: 10.3390/cancers15030861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last 30 years, the study of the cellular response to ionizing radiation (IR) has increased exponentially. Among the various signaling pathways affected by IR, p38 MAPK has been shown to be activated both in vitro and in vivo, with involvement in key processes triggered by IR-mediated genotoxic insult, such as the cell cycle, apoptosis or senescence. However, we do not yet have a definitive clue about the role of p38 MAPK in terms of radioresistance/sensitivity and its potential use to improve current radiotherapy. In this review, we summarize the current knowledge on this family of MAPKs in response to IR as well as in different aspects related to radiotherapy, such as their role in the control of REDOX, fibrosis, and in the radiosensitizing effect of several compounds.
Collapse
Affiliation(s)
- Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Jaime Jiménez-Suárez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Sebastia Sabater
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Ignacio Andrés
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Antonio Fernández-Aramburo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Médica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
| | - Ricardo Sanchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Francisco J. Cimas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
18
|
Clemente-González C, Carnero A. Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers (Basel) 2022; 14:5930. [PMID: 36497411 PMCID: PMC9738438 DOI: 10.3390/cancers14235930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
During tumor growth, the delivery of oxygen to cells is impaired due to aberrant or absent vasculature. This causes an adaptative response that activates the expression of genes that control several essential processes, such as glycolysis, neovascularization, immune suppression, and the cancer stemness phenotype, leading to increased metastasis and resistance to therapy. Hypoxic tumor cells also respond to an altered hypoxic microenvironment by secreting vesicles, factors, cytokines and nucleic acids that modify not only the immediate microenvironment but also organs at distant sites, allowing or facilitating the attachment and growth of tumor cells and contributing to metastasis. Hypoxia induces the release of molecules of different biochemical natures, either secreted or inside extracellular vesicles, and both tumor cells and stromal cells are involved in this process. The mechanisms by which these signals that can modify the premetastatic niche are sent from the primary tumor site include changes in the extracellular matrix, recruitment and activation of different stromal cells and immune or nonimmune cells, metabolic reprogramming, and molecular signaling network rewiring. In this review, we will discuss how hypoxia might alter the premetastatic niche through different signaling molecules.
Collapse
Affiliation(s)
- Cynthia Clemente-González
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Venkatesiah SS, Augustine D, Mishra D, Gujjar N, Haragannavar VC, Awan KH, Patil S. Immunology of Oral Squamous Cell Carcinoma-A Comprehensive Insight with Recent Concepts. Life (Basel) 2022; 12:1807. [PMID: 36362963 PMCID: PMC9695443 DOI: 10.3390/life12111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
This review aims to understand the concept of oral cancer immunology through the notion of immune profiling, immunoediting and immunotherapy, and to gain knowledge regarding its application for the management of oral cancer patients. Oral cancer is an immunogenic tumor where the cells of the tumor microenvironment play an important role in tumorigenesis. Understanding the mechanism of these modulations can help design immunotherapeutic strategies in oral cancer patients. This article gives an overview of immunomodulation in the oral cancer tumor microenvironment, with concepts of immune profiling, immunoediting and immunotherapy. English literature searches via Google Scholar, Web of Science, EBSCO, Scopus, and PubMed database were performed with the key words immunology, tumor microenvironment, cells, cross talk, immune profiling, biomarkers, inflammation, gene expression, techniques, immunoediting, immunosurveillance, tumor escape, immunotherapy, immune checkpoint inhibitors, vaccines in cancer, oral cancer, and head and neck cancer. Original research articles, reviews, and case reports published from 2016-2021 (n = 81) were included to appraise different topics, and were discussed under the following subsections. Literature published on oral cancer immunology reveals that oral cancer immune profiling with appropriate markers and techniques and knowledge on immunoediting concepts can help design and play an effective role in immunotherapeutic management of oral cancer patients. An evaluation of oral cancer immunology helps to determine its role in tumorigenesis, and immunotherapy could be the emerging drift in the effective management of oral cancer.
Collapse
Affiliation(s)
- Sowmya Samudrala Venkatesiah
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Deepika Mishra
- Department of Oral Pathology & Microbiology, Centre for Dental Education and Research, All India Institute of Medical Sciences (AIIMS), Delhi 110608, India
| | - Neethi Gujjar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Vanishri C. Haragannavar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, India
| |
Collapse
|
20
|
lncRNA DLEU2 Accelerates Oral Cancer Progression via miR-30a-5p/RAP1B Axis to Regulate p38 MAPK Signaling Pathway. DISEASE MARKERS 2022; 2022:9310048. [PMID: 36277988 PMCID: PMC9581637 DOI: 10.1155/2022/9310048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Background. Oral cancer (OC) is common cancer in the world. Long noncoding RNAs (lncRNAs) have been shown to be involved in cancer regulation, including oral cancer (OC). The aim of this study was to investigate the role of lncRNA deleted in lymphocytic leukemia 2 (DLEU2) in oral cancer. Method. The Gene Expression Omnibus database was used to analyze differentially expressed lncRNA/microRNA (miRNA, miR)/mRNA. The expression levels of DLEU2, miR-30a-5p, and RAP1B in OC cells were detected by RT-qPCR. Dual-luciferase was used to analyze the binding of lncRNA/miRNA/mRNA. Cell Counting Kit-8 was used to measure cell proliferation. Transwell assay was used to inspect cell migration and invasion abilities. Western blot was used to detect MAPK pathway-related protein levels. Result. Our research shows that, in contrast to miR-30a-5p, DLEU2 or RAP1B was upregulated in OC cells, and high expression of DLEU2 or RAP1B was associated with poorer overall survival. Inhibiting the expression of DLEU2 slowed the proliferation and reduced the ability of migration and invasion of Tca8113 and CAL-27 cells. miR-30a-5p was predicted to interact with DLEU2 or RAP1B by bioinformatics, and dual-luciferase analysis confirmed this interaction. Notably, si-DLEU2 suppressed RAP1B expression and protein level, and after overexpression of RAP1B in OC cells, reversal of suppressed DLEU2 expression was observed. Furthermore, the inhibitory effect of si-DLEU2 on MAPK signaling was reversed by overexpression of RAP1B. Therefore, si-DLEU2 regulates MAPK signaling through the miR-30a-5p/RAP1B axis and inhibits OC development. Conclusion. DLEU2 contributed to proliferation, migration and invasion via miR-30a-5p/RAP1B axis to regulate MAPK signaling pathway in OC cells.
Collapse
|
21
|
Cheng Y, Chen J, Shi Y, Fang X, Tang Z. MAPK Signaling Pathway in Oral Squamous Cell Carcinoma: Biological Function and Targeted Therapy. Cancers (Basel) 2022; 14:cancers14194625. [PMID: 36230547 PMCID: PMC9563402 DOI: 10.3390/cancers14194625] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma accounts for 95% of human head and neck squamous cell carcinoma cases. It is highly malignant and aggressive, with a poor prognosis and a 5-year survival rate of <50%. In recent years, basic and clinical studies have been performed on the role of the mitogen-activated protein kinase (MAPK) signaling pathway in oral cancer. The MAPK signaling pathway is activated in over 50% of human oral cancer cases. Herein, we review research progress on the MAPK signaling pathway and its potential therapeutic mechanisms and discuss its molecular targeting to explore its potential as a therapeutic strategy for oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Juan Chen
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Yuxin Shi
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Xiaodan Fang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (X.F.); (Z.T.)
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (X.F.); (Z.T.)
| |
Collapse
|
22
|
Li QL, Mao J, Meng XY. Comprehensive Characterization of Immune Landscape Based on Tumor Microenvironment for Oral Squamous Cell Carcinoma Prognosis. Vaccines (Basel) 2022; 10:vaccines10091521. [PMID: 36146599 PMCID: PMC9505673 DOI: 10.3390/vaccines10091521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: This study aims to identify an immune-related signature to predict clinical outcomes of oral squamous cell carcinoma (OSCC) patients. Methods: Gene transcriptome data of both tumor and normal tissues from OSCC and the corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Tumor Immune Estimation Resource algorithm (ESTIMATE) was used to calculate the immune/stromal-related scores. The immune/stromal scores and associated clinical characteristics of OSCC patients were evaluated. Univariate Cox proportional hazards regression analyses, least absolute shrinkage, and selection operator (LASSO) and receiver operating characteristic (ROC) curve analyses were performed to assess the prognostic prediction capacity. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) function annotation were used to analysis the functions of TME-related genes. Results: Eleven predictor genes were identified in the immune-related signature and overall survival (OS) in the high-risk group was significantly shorter than in the low-risk group. An ROC analysis showed the TME-related signature could predict the total OS of OSCC patients. Moreover, GSEA and GO function annotation proved that immunity and immune-related pathways were mainly enriched in the high-risk group. Conclusions: We identified an immune-related signature that was closely correlated with the prognosis and immune response of OSCC patients. This signature may have important implications for improving the clinical survival rate of OSCC patients and provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Qi-Lin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
| | - Xin-Yao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
23
|
Zhuang D, Wang S, Liu G, Liu P, Deng H, Sun J, Liu C, Leng X, Zhang Q, Bai F, Mi J, Wu X. Phenformin suppresses angiogenesis through the regulation of exosomal microRNA-1246 and microRNA-205 levels derived from oral squamous cell carcinoma cells. Front Oncol 2022; 12:943477. [PMID: 36158698 PMCID: PMC9492847 DOI: 10.3389/fonc.2022.943477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes secreted by cancer cells are important components in the tumor microenvironment, enabling cancer cells to communicate with each other and with noncancerous cells to play important roles in tumor progression and metastasis. Phenformin, a biguanide antidiabetic drug, has been reported to have a strong antitumor function in multiple types of cancer cells, however little research has been reported about whether phenformin can regulate the secretion of exosomes by cancer cells to regulate the tumor microenvironment and contribute to its antitumor function. Here we found that exosomes (Phen-Exo) derived from phenformin-treated oral squamous cell carcinoma (OSCC) cells significantly suppress the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. The inhibition of angiogenesis by Phen-Exo was verified in vivo by matrigel plug angiogenesis assays and by chick chorioallantoic membrane assays. Mechanistically, we discovered that the expression of microRNA-1246 (miR-1246) and microRNA-205 (miR-205) was significantly increased in exosomes secreted by OSCC cells treated with phenformin, while high expression levels of miR-1246 or miR-205 in vascular endothelial cells inhibited their angiogenic effects and decreased expression of the angiogenic factor VEGFA. In conclusion, these results reveal that phenformin can inhibit angiogenesis by regulating the levels of miR-1246 and miR-205 in exosomes secreted by OSCC cells, suggesting that phenformin has the potential to alter the tumor microenvironment to antagonize the growth of OSCCs, which provides a theoretical basis for developing new strategies to treat OSCCs in the future.
Collapse
Affiliation(s)
- Dexuan Zhuang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuangshuang Wang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guanyi Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiting Deng
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Jianfeng Sun
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Chang Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Leng
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuxiang Bai
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Mi
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xunwei Wu, ; Jun Mi,
| | - Xunwei Wu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Xunwei Wu, ; Jun Mi,
| |
Collapse
|
24
|
Xue Y, Song X, Fan S, Deng R. The role of tumor-associated macrophages in oral squamous cell carcinoma. Front Physiol 2022; 13:959747. [PMID: 36105288 PMCID: PMC9464857 DOI: 10.3389/fphys.2022.959747] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common head and neck cancer with a high recurrence rate and a low 5-year survival rate. Tumor-associated macrophages (TAMs) are important immune cells in the tumor microenvironment, which play an important role in the progression of many tumors. This article reviews the origin, and the role of TAMs in the invasion, metastasis, angiogenesis and immunosuppression of OSCC. Therapeutic strategies targeting TAMs are also discussed in hopes of providing new ideas for the treatment of OSCC.
Collapse
Affiliation(s)
- Yiwen Xue
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiao Song
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Siyu Fan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Runzhi Deng
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- *Correspondence: Runzhi Deng,
| |
Collapse
|
25
|
Li J, Jia Y, Tang L, Zhang R, Zhang Y. Identification of a chromatin regulator signature and potential prognostic ability for adrenocortical carcinoma. Front Genet 2022; 13:948353. [PMID: 36092868 PMCID: PMC9459121 DOI: 10.3389/fgene.2022.948353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Adrenocortical carcinoma (ACC) is a rare malignant tumor. Chromatin regulators (CRs) can drive epigenetic changes, which have been considered as one of the most vital hallmarks of tumors. This study aimed to explore the CR signature for ACC in order to clarify the molecular basis of ACC’s pathogenic mechanism and provide novel methods to diagnose and treat ACC clinically.Methods: This study obtained transcriptome sequencing datasets of ACC patients and sequencing data on normal adrenal tissues in TCGA and GTEx databases, respectively. Meanwhile, prognostic genes were selected through Lasso and Cox regression analyses. Using the transcriptome sequencing datasets of ACC patients downloaded from the GEO database to finish validation, we performed Kaplan–Meier (KM) analysis for evaluating the differential survival between low- and high-risk groups. Then, this work constructed the risk model for predicting ACC prognosis. TIMER 2.0 was employed to assess the differences in immune infiltration between the two groups. Furthermore, this work adopted the R package “pRRophetic” for exploring and estimating the sensitivity of patients to different chemotherapeutic agents.Results: A 5-CR model was established to predict ACC survival, and the CR signature was confirmed as a factor in order to independently predict ACC patient prognosis. In addition, a nomogram composed of the risk score and clinical T stage performed well in the prediction of patients’ prognosis. Differentially expressed CRs (DECRs) were mostly associated with the cell cycle, base excision repair, colon cancer, gene duplication, homologous recombination, and other signaling pathways for the high-risk group. As for the low-risk group, DECRs were mainly enriched in allograft rejection, drug metabolism of cytochrome P450, metabolism of xenogeneic organisms by cytochrome P450, retinol metabolism, and other signaling pathways. According to TIMER analysis, the immune infiltration degrees of endothelial cells, M2 macrophages, myeloid dendritic cells, CD4+ Th1 cells, NKT cells, and M0 macrophages showed significant statistical differences between the high- and low-risk groups, and high infiltration levels of M0 and M2 macrophages were more pronounced in higher T stage (T3 and T4), N stage (N1), and clinical stages (III and IV). In addition, high-risk cases exhibited higher sensitivity to etoposide and doxorubicin. Additionally, low-risk patients had significantly decreased expression of RRM1 compared with high-risk cases, suggesting the better effect of mitotane treatment.Conclusion: This study identified the DECRs, which might be related to ACC genesis and progression. The pathways enriched by these DECRs were screened, and these DECRs were verified with excellent significance for estimating ACC survival. Drug sensitivity analysis also supported the current clinical treatment plan. Moreover, this study will provide reliable ideas and evidence for diagnosing and treating ACC in the clinic.
Collapse
Affiliation(s)
- Junwu Li
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanzhen Jia
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ronggui Zhang
- Department of Urology, Chongqing Emergency Medical Center, Chongqing, China
| | - Yuanfeng Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yuanfeng Zhang,
| |
Collapse
|
26
|
Zhou WH, Du WD, Li YF, Al-Aroomi MA, Yan C, Wang Y, Zhang ZY, Liu FY, Sun CF. The Overexpression of Fibronectin 1 Promotes Cancer Progression and Associated with M2 Macrophages Polarization in Head and Neck Squamous Cell Carcinoma Patients. Int J Gen Med 2022; 15:5027-5042. [PMID: 35607361 PMCID: PMC9123938 DOI: 10.2147/ijgm.s364708] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the biological roles of fibronectin 1 (FN1) in head and neck squamous cell carcinoma (HNSCC) and its effects on macrophage M2 polarization. Methods We analyzed FN1 expression pattern and examined its clinical relevance in HNSCC progression by bioinformatic analysis. Small interfering RNA (siRNA) was utilized to silence FN1 in HNSCC cells. Cell counting kit-8 (CCK-8) assay, colony formation assay, Transwell assay and wound healing assay were performed to reveal the effect of FN1 on malignant behaviors of HNSCC cells. Moreover, a co-culture model of macrophages and HNSCC cells was established to investigate whether FN1 induce macrophage M2 polarization. Finally, we used bioinformatic methods to explore the possible FN1-related pathways in HNSCC. Results FN1 is significantly overexpressed in HNSCC patients and has been obviously correlated with higher pathological stage and poor prognosis. Downregulation of FN1 suppressed the proliferation, migration and invasion of HNSCC cells, and inhibited macrophage M2 polarization in vitro. In addition, “PI3K-Akt” and “MAPK” signaling pathways may be involved in the malignant process of FN1 in HNSCC. Conclusion The overexpression of FN1 promotes HNSCC progression and induces macrophages M2 polarization. FN1 may serve as a promising prognostic biomarker and therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Wan-Hang Zhou
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Wei-Dong Du
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Yan-Fei Li
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People’s Republic of China
| | - Maged Ali Al-Aroomi
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Cong Yan
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Yao Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Ze-Ying Zhang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Fa-Yu Liu
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
- Correspondence: Fa-Yu Liu; Chang-Fu Sun, Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110000, People’s Republic of China, Tel +86 24 22894773, Fax +86 24 86602310, Email ;
| | - Chang-Fu Sun
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| |
Collapse
|
27
|
Radharani NNV, Yadav AS, Nimma R, Kumar TVS, Bulbule A, Chanukuppa V, Kumar D, Patnaik S, Rapole S, Kundu GC. Tumor-associated macrophage derived IL-6 enriches cancer stem cell population and promotes breast tumor progression via Stat-3 pathway. Cancer Cell Int 2022; 22:122. [PMID: 35300689 PMCID: PMC8932105 DOI: 10.1186/s12935-022-02527-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) play crucial role in tumor progression, drug resistance and relapse in various cancers. CSC niche is comprised of various stromal cell types including Tumor-associated macrophages (TAMs). Extrinsic ques derived from these cells help in maintenance of CSC phenotype. TAMs have versatile roles in tumor progression however their function in enrichment of CSC is poorly explored. METHODS Mouse macrophages (RAW264.7) cells were activated by interaction with conditioned media (CM) of murine breast cancer cells (4T1) into TAMs and the effect of activated macrophage (TAM) derived factors was examined on enrichment of cancer stem cells (CSCs) and tumor growth using in vitro and in vivo models. RESULTS In this study, we report that macrophages upon interaction with breast cancer cells activate tumor promoting function and exhibit differential expression of various proteins as shown by secretome analysis using proteomics studies. Based on secretome data, we found that Interleukin-6 (IL-6) is one of the up-regulated genes expressed in activated macrophages. Further, we confirm that TAMs produce high levels of IL-6 and breast cancer cell derived factors induce IL-6 production in activated macrophages via p38-MAPK pathway. Furthermore, we demonstrate that tumor activated macrophages induce enrichment of CSCs and expression of CSC specific transcription factors such as Sox-2, Oct-3/4 and Nanog in breast cancer cells. We further prove that TAM derived IL-6 plays a key role in TAM mediated CSC enrichment through activation of Signal transducer and activator of transcription 3 (STAT-3) signaling. TAM derived IL-6 influences breast cancer cell migration and angiogenesis. Moreover, our in vivo findings indicated that TAM derived IL-6 induces CSC population and resulting tumor growth in breast cancer. CONCLUSION These finding provide evidence that TAM derived IL-6 plays a major role in CSC enrichment and tumor progression in breast cancer and IL-6 and its regulated signalling network may act as potential therapeutic target for management of breast cancer.
Collapse
Affiliation(s)
- N N V Radharani
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751 024, India
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751 024, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - T V Santosh Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Anuradha Bulbule
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Venkatesh Chanukuppa
- Proteomics Laboratory, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Srinivas Patnaik
- School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751 024, India
| | - Srikanth Rapole
- Proteomics Laboratory, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India. .,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751 024, India. .,Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed To Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
28
|
You Y, Tian Z, Du Z, Wu K, Xu G, Dai M, Wang Y, Xiao M. M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop. J Exp Clin Cancer Res 2022; 41:10. [PMID: 34991668 PMCID: PMC8734049 DOI: 10.1186/s13046-021-02222-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) have a leading position in the tumor microenvironment. Previously, we have demonstrated that M1-like TAMs activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma (OSCC). However, the functional roles and associated molecular mechanisms of the activated M1-like TAMs need to be further clarified in OSCC. METHODS Conditioned Media (CM) were harvested from the exosome activated M1-like TAMs. We measured the malignant behaviors of OSCC under the treatment of CM from M1-like TAMs by performing colony forming assays, invasion assays, wound-healing assays, spheroid forming assays and in vivo xenograft experiments. The underlying mechanisms were investigated by RNA-seq, cytokines analysis, intracellular signaling pathway analysis, ChIP assays, bioinformatics analysis and validation. RESULTS M1-like TAMs significantly promoted the epithelial-mesenchymal transition (EMT) process, and induced the cancer-stem like cells (CSCs) by upregulating the expression of MME and MMP14 in OSCC cells. Cytokine analysis revealed a shark increase of IL6 secretion from M1-like TAMs. Blocking IL6 in the CM from M1-like TAMs could significantly weaken its effects on the colony forming, invasion, migration, microsphere forming and xenograft forming abilities of OSCC cells. Cellular signaling assays indicated the activation of Jak/Stat3 pathway in the OSCC cells treated by the CM from M1-like TAMs. Blocking the activation of the Jak/Stat3 pathway could significantly weaken the effects of M1-like TAMs on the colony forming, invasion, migration, microsphere forming and xenograft forming abilities of OSCC cells. Further RNA-seq analysis and bioinformatics analysis revealed an increased expression of THBS1 in the OSCC cells treated by M1-like TAMs. Bioinformatics prediction and ChIP assays revealed the activation of Stat3 by CM from M1-like TAMs could directly promote the transcription of THBS1 in OSCC cells. CONCLUSIONS We proposed that M1-like TAMs could cascade a mesenchymal/stem-like phenotype of OSCC via the IL6/Stat3/THBS1 feedback loop. A better understanding on the functional roles and associated molecular mechanisms of M1-like TAMs might facilitate the development of novel therapies for supplementing the current treatment strategies for OSCC patients.
Collapse
Affiliation(s)
- Yuanhe You
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhuowei Tian
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhong Du
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kailiu Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guisong Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Meilu Dai
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, and Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| | - Yan'an Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology; National Clinical Research Center for Oral Disease, Shanghai, China.
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Meng Xiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology; National Clinical Research Center for Oral Disease, Shanghai, China.
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
29
|
Shan Q, Takabatake K, Omori H, Kawai H, Oo MW, Nakano K, Ibaragi S, Sasaki A, Nagatsuka H. Stromal cells in the tumor microenvironment promote the progression of oral squamous cell carcinoma. Int J Oncol 2021; 59:72. [PMID: 34368860 PMCID: PMC8360621 DOI: 10.3892/ijo.2021.5252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The stromal cells in the tumor microenvironment (TME) can influence the progression of multiple types of cancer; however, data on oral squamous cell carcinoma (OSCC) are limited. In the present study, the effects of verrucous squamous cell carcinoma-associated stromal cells (VSCC-SCs), squamous cell carcinoma-associated stromal cells (SCC-SCs) and human dermal fibroblasts (HDFs) on the tumor nest formation, proliferation, invasion and migration of HSC-3 cells were examined in vitro using Giemsa staining, MTS, and Transwell (invasion and migration) assays, respectively. The results revealed that both the VSCC-SCs and SCC-SCs inhibited the tumor nest formation, and promoted the proliferation, invasion and migration of OSCC cells in vitro. Furthermore, the effects of VSCC-SCs, SCC-SCs and HDFs on the differentiation, proliferation, invasion and migration of OSCC cells in vivo were evaluated by hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunohistochemistry and double-fluorescent immunohistochemical staining, respectively. The results demonstrated that the VSCC-SCs promoted the differentiation, proliferation, invasion and migration of OSCC cells, while the SCC-SCs inhibited the differentiation, and promoted the proliferation, invasion and migration of OSCC cells in vivo. Finally, microarray data were used to predict genes in VSCC-SCs and SCC-SCs that may influence the progression of OSCC, and those with potential to influence the differential effects of VSCC-SCs and SCC-SCs on the differentiation of OSCC. It was found that C-X-C motif chemokine ligand (CXCL)8, mitogen-activated protein kinase 3 (MAPK3), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), C-X-C motif chemokine ligand 1 (CXCL1) and C-C motif chemokine ligand 2 (CCL2) may be involved in the crosstalk between VSCC-SCs, SCC-SCs and OSCC cells, which regulates the progression of OSCC. Intercellular adhesion molecule 1 (ICAM1), interleukin (IL)1B, Fos proto-oncogene, AP-1 transcription factor subunit (FOS), bone morphogenetic protein 4 (BMP4), insulin (INS) and nerve growth factor (NGF) may be responsible for the differential effects of VSCC-SCs and SCC-SCs on the differentiation of OSCC. On the whole, the present study demonstrates that both VSCC-SCs and SCC-SCs may promote the progression of OSCC, and SCC-SCs were found to exert a more prominent promoting effect; this may represent a potential regulatory mechanism for the progression of OSCC.
Collapse
Affiliation(s)
- Qiusheng Shan
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Haruka Omori
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| |
Collapse
|
30
|
Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, Zhao P, Zhang M, Shao Y, Huang S, He X, Wen H, Wu X. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene 2021; 40:4770-4782. [PMID: 34148056 PMCID: PMC8298204 DOI: 10.1038/s41388-021-01884-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Numerous studies suggest an important role for copy number alterations (CNAs) in cancer progression. However, CNAs of long intergenic noncoding RNAs (lincRNAs) in ovarian cancer (OC) and their potential functions have not been fully investigated. Here, based on analysis of The Cancer Genome Atlas (TCGA) database, we identified in this study an oncogenic lincRNA termed LINC00662 that exhibited a significant correlation between its CNA and its increased expression. LINC00662 overexpression is highly associated with malignant features in OC patients and is a prognostic indicator. LINC00662 significantly promotes OC cell proliferation and metastasis in vitro and in vivo. Mechanistically, LINC00662 is stabilized by heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1). Moreover, LINC00662 exerts oncogenic effects by interacting with glucose-regulated protein 78 (GRP78) and preventing its ubiquitination in OC cells, leading to activation of the oncogenic p38 MAPK signaling pathway. Taken together, our results define an oncogenic role for LINC00662 in OC progression mediated via GRP78/p38 signaling, with potential implications regarding therapeutic targets for OC.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qinhao Guo
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xingzhu Ju
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Deng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ping Zhao
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Meng Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
31
|
Li Z, Zhang L, Liu FY, Li P, He J, Kirkwood CL, Sohn J, Chan JM, Magner WJ, Kirkwood KL. MKP-1 is required to limit myeloid-cell mediated oral squamous cell carcinoma progression and regional extension. Oral Oncol 2021; 120:105401. [PMID: 34182221 DOI: 10.1016/j.oraloncology.2021.105401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) require MAPK phosphatases (MKPs) for deactivation of MAPK intracellular signaling. MKP-1 (encoded by Dusp1) is a key negative regulator of MAPKs and prior reports have indicated that MKP-1 regulates oral cancer-associated inflammation and leukocyte infiltration. OBJECTIVE To determine the significance of myeloid-based expression of MKP-1 in oral cancer. METHODS The Cancer Genome Atlas (TCGA) was used to address DUSP1 expression in oral squamous cell carcinoma (OSCC). Syngeneic and carcinogen-induced mouse models using global and myeloid-specific Dusp-1 deficient mice with immunophenotypic, histologic, and transcriptomic analyses and in vitro migration assays. RESULTS Data from TCGA indicates the DUSP1 expression is inversely related to oral cancer burden and nodal involvement. Using murine models of OSCC, the role of MKP-1 signaling in tumor associated macrophages (TAMs) was assessed. Dusp1-deficient mice had increased tumor burden and TAM infiltrate with increased M2 macrophage polarization. Transcriptomic signatures of TAMs from Dusp1-deficent mice indicated a pro-metastatic phenotype as well as concomitant differences in myeloid-associated genes, cytokine/chemokine signaling, and Notch signaling consistent with tumor progression. In vitro and in vivo assays revealed mouse OSCC cells had a higher migration rate using TAM cell-free supernatant from Dusp1 deficiency mice compared to controls with enhanced regional cervical lymph node metastasis, respectively. To validate TAM studies using implantable mouse models, an OSCC progression model with conditional myeloid-specific Dusp-1 deficient mice demonstrated enhanced OSCC disease progression, characterized by advanced onset, histological stage, and tumor burden. CONCLUSION Myeloid-based Dusp1-deficiency increases OSCC burden and metastasis through alteration in TAM recruitment, gene profile, and polarity suggesting that MKP-1 could be a viable target to reprogram TAM to limit local/regional OSCC extension.
Collapse
Affiliation(s)
- Zhenning Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China; Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Zhang
- Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Fa-Yu Liu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Peng Li
- Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China,; Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jing He
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Cameron L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jiho Sohn
- Department of Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jon M Chan
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - William J Magner
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
32
|
PLOD2-driven IL-6/STAT3 signaling promotes the invasion and metastasis of oral squamous cell carcinoma via activation of integrin β1. Int J Oncol 2021; 58:29. [PMID: 33887877 PMCID: PMC8057293 DOI: 10.3892/ijo.2021.5209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
We previously reported that high expression of procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2) leads to stabilization and plasma membrane translocation of integrin β1 to promote the invasion and metastasis of oral squamous cell carcinoma (SCC). The present study aimed to further understand the relationship between PLOD2-integrin β1 signaling and the tumor microenvironment. This study provided further advanced insights indicating that elevated interleukin (IL)-6 in the tumor microenvironment acts as a key molecule that triggers PLOD2-integrin β1 axis-derived acceleration of tumor invasion and metastasis. It was found using the dual-luciferase reporter assay system that signal transducer and activator of transcription 3 (STAT3) activation by IL-6 was essential for increasing the expression levels of PLOD2 through direct activation of the PLOD2 promoter in oral SCC, whereas IL-6 stimulation did not contribute to integrin β1 expression or the subsequent maturation process towards a functional form on the plasma membrane. Furthermore, the expression of IL-6 in oral SCC tissues was mainly observed in the tumor stroma. Finally, with double immunofluorescence staining, it was found that IL-6 expression occurred in CD163-positive M2 macrophages distributed around the tumor nest. These results combined with our previous results indicate that as IL-6 significantly increases STAT3-mediated PLOD2 promoter activity, IL-6 released by M2-type tumor-associated macrophages is a crucial factor that promotes PLOD2-integrin β1 axis-enhanced invasion and metastasis of oral SCC cells.
Collapse
|
33
|
Kalogirou EM, Tosios KI, Christopoulos PF. The Role of Macrophages in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:611115. [PMID: 33816242 PMCID: PMC8014034 DOI: 10.3389/fonc.2021.611115] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a common malignancy worldwide, with high disease-related death rates. Oral squamous cell carcinoma (OSCC) accounts for more than 90% of oral tumors, with surgical management remaining the treatment of choice. However, advanced and metastatic OSCC is still incurable. Thus, emphasis has been given lately in understanding the complex role of the oral tumor microenvironment (TME) in OSCC progression, in order to identify novel prognostic biomarkers and therapeutic targets. Tumor associated macrophages (TAMs) constitute a major population of the OSCC TME, with bipolar role in disease progression depending on their activation status (M1 vs. M2). Here, we provide an up to date review of the current literature on the role of macrophages during oral oncogenesis, as well as their prognostic significance in OSCC survival and response to standard treatment regimens. Finally, we discuss novel concepts regarding the potential use of macrophages as targets for OSCC immunotherapeutics and suggest future directions in the field.
Collapse
Affiliation(s)
- Eleni Marina Kalogirou
- Department of Oral Medicine and Pathology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine and Pathology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
34
|
Yang C, Zhang L, Huang H, Yuan X, Zhang P, Ye C, Wei M, Huang Y, Luo X, Luo J. Alantolactone inhibits proliferation, metastasis and promotes apoptosis of human osteosarcoma cells by suppressing Wnt/β-catenin and MAPKs signaling pathways. Genes Dis 2020; 9:466-478. [PMID: 35224161 PMCID: PMC8843874 DOI: 10.1016/j.gendis.2020.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/31/2020] [Indexed: 12/25/2022] Open
Abstract
Although there are many therapeutic strategies such as surgery and chemotherapy, the prognosis of osteosarcoma (OS) is still far from being satisfactory. It is urgent to develop more effective, tolerable and safe drugs for the treatment of OS. In the present study, we investigated the anti-OS activity of Alantolactone (ALT), a natural eucalyptone sesquiterpene lactone mainly exists in Inula helenium, and probed the possible mechanism involved. We demonstrated that ALT significantly inhibited cell proliferation of various human OS cell lines while had relative lower cytotoxicity against normal cells. Then, we validated that ALT reduced migration, decreased invasion possibly through reversing epithelial mesenchymal transition (EMT) process and suppressing Matrix metalloproteinases (MMPs). Moreover, we confirmed that ALT promoted apoptosis and arrested cell cycle at G2/M phase of human OS cells in vitro. In addition, we confirmed that ALT restrained tumor growth and metastasis of OS 143 cells in a xenograft model in vivo. Mechanistically, ALT inhibited the activity of Wnt/β-catenin and p38, ERK1/2 and JNK Mitogen Activated Protein Kinases (MAPKs) signal pathway. Notably, the combination of ALT and Wnt/β-catenin inhibitor, as well as the combination of ALT and MAPKs inhibitors resulted in a synergistically effect on inhibiting the proliferation, migration and invasion of OS cells. Collectively, our results validate the ALT may inhibit proliferation, metastasis and promotes apoptosis of human OS cells possibly through suppressing Wnt/β-Catenin and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Chunmei Yang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Lulu Zhang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Huakun Huang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaohui Yuan
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ping Zhang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Caihong Ye
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengqi Wei
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, PR China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, PR China
| | - Jinyong Luo
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
- Corresponding author. School of Laboratory Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.
| |
Collapse
|
35
|
Ge Q, Chen L, Yuan Y, Liu L, Feng F, Lv P, Ma S, Chen K, Yao Q. Network Pharmacology-Based Dissection of the Anti-diabetic Mechanism of Lobelia chinensis. Front Pharmacol 2020; 11:347. [PMID: 32265717 PMCID: PMC7099657 DOI: 10.3389/fphar.2020.00347] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic inflammatory disease, and the rapidly increasing DM is becoming a major problem of global public health. Traditional Chinese medicine (TCM) has a long history of treating diabetes. It has been developed and utilized because of its good efficacy and no toxic side effects. Lobelia chinensis is a traditional whole grass herbal. With the continuous deepening of pharmacological research on TCM, the active ingredients of L. chinensis are continuously revealed, which contained the alkaloids, flavonoids, flavonoid glycosides and amino acids that have the good effects of anti-inflammatory, anti-viral and anti-diabetic. In order to further explore the targets of active ingredients and its anti-diabetic mechanism, a feasible network pharmacology analysis model based on chemical, pharmacokinetic and pharmacological data was developed by network construction method to clarify the anti-diabetic mechanism of L. chinensis. The present study conducted by gas chromatography–mass spectrometer (GC/MS), which identified 208 metabolites of L. chinensis, of which 23 ingredients may have effective pharmacological effects after absorption, distribution, metabolism, and excretion (ADME) screening. Network pharmacological analysis on the active ingredients revealed that 5-hydroxymethylfurfural in L. chinensis affects the insulin resistance signaling pathway by acting on GSK3B, TNF, and MAPK1, acacetin affects the diabetic pathway by acting on INSR, DPP4, and GSK3B, that regulate type 2 diabetes, non-insulin-dependent DM, and inflammatory diseases. These results successfully indicated the potential anti-diabetic mechanism of the active ingredients of L. chinensis.
Collapse
Affiliation(s)
- Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Yuan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fan Feng
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|