1
|
Wang L, Chen Q, Liu D. Development of photodynamic therapy in treating oral diseases. FRONTIERS IN ORAL HEALTH 2025; 5:1506407. [PMID: 39882195 PMCID: PMC11777028 DOI: 10.3389/froh.2024.1506407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The morbidity of oral disorders, including gingivitis, caries, endodontic-periodontal diseases, and oral cancer, is relatively high globally. Pathogenic cells are the root cause of many oral disorders, and oral therapies depend on eradicating them. Photodynamic therapy (PDT) has been established as a potential and non-invasive local adjuvant treatment for oral disorders. PDT consists of three essential components: photosensitizer (PS), a light source with a certain wavelength, and oxygen dissolved in the cells. These three components can interact to cause damage to proteins, lipids, nucleic acids, and other biological components within diseased tissues. Herein, we aimed to provide a detailed understanding of PDT and how it can treat oral diseases. Concerns about PDT and potential remedies are also a factor. PDT has been shown in numerous clinical studies to be an efficient supplementary therapy that can reduce pathogenic cells. The PDT has great potential for dental applications, including treating bacterial and fungal infections during root canal therapy and preventing oral cancer, potentially malignant disorders, periodontitis, dental caries, and peri-implant disorders. Although PDT has been promoted as having significant potential and utility in dentistry, more clinical research must be conducted before being used broadly.
Collapse
Affiliation(s)
- Ling Wang
- Department of Stomatology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan, China
| | - Qiang Chen
- Department of Stomatology, The Traditional Chinese Medicine Hospital of Longquanyi, Chengdu, Sichuan, China
| | - Dan Liu
- Department of Stomatology, Ren Ai Community Healthcare Center of Longquanyi District, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Girardi FM, Schuch LF, Martins MD. Oral cancer immunology: state of the art and future perspectives. Braz Oral Res 2024; 38:e129. [PMID: 39775418 DOI: 10.1590/1807-3107bor-2024.vol38.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2025] Open
Abstract
Oral cancer is a multifactorial disease involving genetic, epigenetic, and environmental factors. The literature indicates that inflammatory cells at the advancing front of the tumor induce a host immune response, preventing the spread of the tumor. However, cancer cells adopt various continued strategies to circumvent this immune surveillance. The complexity of immune mechanisms suggests that there must be virtually individual patterns of anti-tumor immune responses. Due to this important interaction of cancer with the immune system, the objective of the present study was to provide an up-to-date overview of immuno-oncology focused on oral cancer, summarizing the basic immunology, the classic risk factors, immunotherapy, and future treatment and prognostic perspectives.
Collapse
Affiliation(s)
| | - Lauren Frenzel Schuch
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| | - Manoela Domingues Martins
- Universidade Federal do Rio Grande do Sul - UFRS, School of Dentistry, Department of Oral Pathology, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Almangush A, Alabi RO, Pirinen M, Mäkitie A, Leivo I. Accumulating evidence from meta-analyses of prognostic studies on oral cancer: towards biomarker-driven patient selection. BMC Cancer 2024; 24:1517. [PMID: 39696123 DOI: 10.1186/s12885-024-13317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Many histopathologic prognostic markers, identified by routine hematoxylin and eosin (HE) staining, have been proposed for predicting the survival of patients with oral squamous cell carcinoma (OSCC). Subsequently, several meta-analyses have been conducted on these prognostic markers. We sought to analyze the accumulated evidence from these meta-analyses. METHODS An electronic database search of PubMed, Scopus, Ovid Medline, Web of Science, and Cochrane Library was conducted to retrieve all meta-analysis articles published on histopathologic prognostic markers of OSCC. The risk of bias of the included studies was analyzed using the Risk of Bias in Systematic Reviews (ROBIS) tool. The synthesis of the results was conducted following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS There were 16 meta-analysis articles published on the histological prognostic markers of OSSC. The accumulated evidence from these meta-analyses highlighted the powerful prognostic value of depth of invasion, tumor thickness, perineural invasion, lymphovascular invasion, worst pattern of invasion, tumor budding, and tumor-stroma ratio. The highest odds ratio (OR) of a relationship between a histopathologic prognostic marker and outcome was for the depth of invasion (OR 10.16, 95% CI 5.05-20.46) and tumor thickness (OR 7.32, 95% CI 5.3-10.1) in predicting lymph node metastasis. CONCLUSION The published meta-analyses present robust evidence on the significance of emerging histopathologic markers, namely, worst pattern of invasion, tumor budding, and tumor-stroma ratio. It is time to consider such markers in daily pathology reporting and risk stratification of OSCC.
Collapse
Affiliation(s)
- Alhadi Almangush
- Department of Pathology, University of Helsinki, Haartmaninkatu 3, Helsinki, FIN-00014, P.O. Box 21, Finland.
- Institute of Biomedicine, Pathology, University of Turku, Kiinamyllynkatu 10 D 5035, Turku, 20520, Finland.
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Faculty of Dentistry, Misurata University, Misurata, Libya.
| | - Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 263, Helsinki, FI-00029 HUS, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Kiinamyllynkatu 10 D 5035, Turku, 20520, Finland
| |
Collapse
|
4
|
Yumnam G, Devi RS, Singh CI. Mapping the landscape of oral cancer research trends: a systematic scientometric review of global efforts. Oral Maxillofac Surg 2024; 28:1077-1093. [PMID: 38664290 DOI: 10.1007/s10006-024-01253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/20/2024] [Indexed: 08/18/2024]
Abstract
PURPOSE The primary goal of this study was to assess the growth, most influential articles, countries, journals, authors, and papers published in the field of global oral cancer. Research articles on oral cancer, published between 1989 and 2022, were identified through the Web of Science database to achieve this. METHODS A comprehensive dataset comprising 7,178 documents was meticulously extracted from the Web of Science, forming the basis for scientometric analysis. A refined subset of 4,901 documents was judiciously selected following a rigorous screening process for meticulous, in-depth analysis. RESULTS The field has witnessed a remarkable publication surge, with the United States taking the lead in productivity. The journal Oral Oncology has become the foremost publication, renowned for its prolific output and widespread citation. This trend highlights the growing importance and interest in this domain, with researchers and experts worldwide contributing to the expanding body of knowledge. The United States' dominance in productivity suggests its strong commitment to advancing research in the field, while Oral Oncology's recognition underscores its influential role in disseminating cutting-edge findings and fostering scientific progress. CONCLUSION This scientometric analysis is a valuable resource for researchers, funding agencies, industry, and institutions, offering guidance and insights. CLINICAL TRIAL NUMBER Not Applicable.
Collapse
Affiliation(s)
- Gyanajeet Yumnam
- Department of Library and Information Science, Manipur University, Imphal, India
| | - Rajkumari Sofia Devi
- Department of Library and Information Science, Manipur University, Imphal, India
| | | |
Collapse
|
5
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
6
|
Chou MY, Lin-Shiau SY. Novel regimens of phytopolyphenols and celecoxib enhancing efficacy and selectivity of anticancer effects of chemotherapeutic agents on cultured cancer cells. J Dent Sci 2024; 19:1486-1498. [PMID: 39035282 PMCID: PMC11259733 DOI: 10.1016/j.jds.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/16/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Explorations of novel regimens enhancing efficacy and selectivity of chemotherapeutic agents are urgent to solve the problems of cancer therapy. This study aimed to explore synergistic anticancer effects of novel regimens of phytopolyphenols [curcumin (C), tea polyphenols (G) or GC] with celecoxib (Cl) and ZnSO4. Materials and methods Antiproliferative effects of drugs on cultured cancer cells and pathogenic biofilms were assayed by MTT and optical density (OD600) respectively; their inhibition on efflux pump (Na+-K+-ATPase) was measured by colorimetric methods. Synergistic (CI < 1) anticancer effects were evaluated by the equations of combination index (CI) and efficacy index (EI). Results Both Cl and methotrexate (MTX) alone exhibited inhibitory effects not only on proliferation and efflux pump of cultured cancer cells but also pathogenic biofilm formation. Phytopolyphenols (P) and MTX potentiated these inhibitory effects of Cl. In addition, novel regimens containing Cl, memantine (Mem) or thioridazine (TRZ) further enhanced not only efficacy and selectivity of anticancer effects but also inhibition on efflux pump and pathogenic biofilm formation of four chemotherapeutic agents (MTX, cisplatin, 5-fluorouracil and doxorubicin) respectively. Conclusion In this study, novel regimens of phytopolyphenols (P), targeting drugs (T; Cl, Mem or TRZ) and metal ions (M; ZnSO4) so called PTM regimens exerted not only by themselves but also markedly potentiated efficacy and selectivity of anticancer effects of four chemotherapeutic agents. Because of their potent inhibitions on efflux pump and pathogenic biofilm formation, these combinatorial novel regimens were expected to be able to overcome the problems of multidrug resistant cancers and merit for further clinical studies.
Collapse
Affiliation(s)
- Ming-Yung Chou
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shoei-Yn Lin-Shiau
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Caruntu A, Yang SF, Acero J. New Insights for an Advanced Understanding of the Molecular Mechanisms in Oral Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:6964. [PMID: 39000073 PMCID: PMC11241153 DOI: 10.3390/ijms25136964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC), the most common type of head and neck cancer, remains a highly challenging cancer to treat, largely due to the late diagnosis in advanced stages of the disease, which occurs in more than half of cases [...].
Collapse
Affiliation(s)
- Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Julio Acero
- Department of Oral and Maxillofacial Surgery, Ramon y Cajal University Hospital, 28034 Madrid, Spain;
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain
| |
Collapse
|
8
|
D’Antonio DL, Marchetti S, Pignatelli P, Umme S, De Bellis D, Lanuti P, Piattelli A, Curia MC. Effect of 5-Aminolevulinic Acid (5-ALA) in "ALADENT" Gel Formulation and Photodynamic Therapy (PDT) against Human Oral and Pancreatic Cancers. Biomedicines 2024; 12:1316. [PMID: 38927525 PMCID: PMC11201195 DOI: 10.3390/biomedicines12061316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Oral squamous-cell and pancreatic carcinomas are aggressive cancers with a poor outcome. Photodynamic therapy (PDT) consists of the use of photosensitizer-induced cell and tissue damage that is activated by exposure to visible light. PDT selectively acts on cancer cells, which have an accumulation of photosensitizer superior to that of the normal surrounding tissues. 5-aminolevulinic acid (5-ALA) induces the production of protoporphyrin IX (PpIX), an endogenous photosensitizer activated in PDT. This study aimed to test the effect of a new gel containing 5% v/v 5-ALA (ALAD-PDT) on human oral CAL-27 and pancreatic CAPAN-2 cancer cell lines. The cell lines were incubated in low concentrations of ALAD-PDT (0.05%, 0.10%, 0.20%, 0.40%, 0.75%, 1.0%) for 4 h or 8 h, and then irradiated for 7 min with 630 nm RED light. The cytotoxic effects of ALAD-PDT were measured using the MTS assay. Apoptosis, cell cycle, and ROS assays were performed using flow cytometry. PpIX accumulation was measured using a spectrofluorometer after 10 min and 24 and 48 h of treatment. The viability was extremely reduced at all concentrations, at 4 h for CAPAN-2 and at 8 h for CAL-27. ALAD-PDT induced marked apoptosis rates in both oral and pancreatic cancer cells. Elevated ROS production and appreciable levels of PpIX were detected in both cell lines. The use of ALA-PDT as a topical or intralesional therapy would permit the use of very low doses to achieve effective results and minimize side effects. ALAD-PDT has the potential to play a significant role in complex oral and pancreatic anticancer therapies.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Simona Marchetti
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| | - Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Jonio, 74122 Taranto, Italy;
| | - Samia Umme
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| | - Domenico De Bellis
- Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.D.B.); (P.L.)
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.D.B.); (P.L.)
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| |
Collapse
|
9
|
Zhang W, Lu R, Lv L, Ma C, Ding Y, Yang F, Fang Q, Wu Y, Pan R, Chen Y. 2α, 3α, 24-Thrihydroxyurs-12-en-24-ursolic acid enhances the cytotoxic effect of cisplatin on oral cancer cells by down-regulating autophagy. J Cell Biochem 2024; 125:e30504. [PMID: 37992225 DOI: 10.1002/jcb.30504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
This study aimed to investigate the effect and mechanism of 2α, 3α, 24-thrihydroxyurs-12-en-24-ursolic acid (TEOA) alone or in combination with cisplatin on oral cancer. TEOA, a pentacyclic triterpenoid compound isolated from the roots of Actinidia eriantha, has demonstrated antitumor activity in preclinical experiments. However, its role in oral cancer remains poorly understood. Our findings revealed that a low concentration of TEOA did not exhibit significant cytotoxicity against oral squamous cell carcinoma cells. However, when combined with cisplatin, TEOA showed a significant therapeutic effect. The combined treatments resulted in a significant inhibition of proliferation and migration and a significant increase in apoptosis of squamous cell carcinoma cells. Cisplatin exposure increased autophagy levels, which may contribute to chemoresistance. Of note, the presence of TEOA significantly inhibited cisplatin-induced autophagy, leading to improved chemotherapy efficacy. Our findings indicate that a mild low dosage of TEOA may enhance the cytotoxic effect of cisplatin by downregulating autophagy in oral cancer cells.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China
| | - Ruijie Lu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leyao Lv
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenxi Ma
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yude Ding
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China
| | - Qingxia Fang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Center for Clinical Pharmacy, Cancer Center, Hangzhou, Zhejiang, China
| | - Yue Wu
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Center for Clinical Pharmacy, Cancer Center, Hangzhou, Zhejiang, China
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Yunfang Chen
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Abd El-Hafeez T, Shams MY, Elshaier YAMM, Farghaly HM, Hassanien AE. Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs. Sci Rep 2024; 14:2428. [PMID: 38287066 PMCID: PMC10825182 DOI: 10.1038/s41598-024-52814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Combination therapy is a fundamental strategy in cancer chemotherapy. It involves administering two or more anti-cancer agents to increase efficacy and overcome multidrug resistance compared to monotherapy. However, drug combinations can exhibit synergy, additivity, or antagonism. This study presents a machine learning framework to classify and predict cancer drug combinations. The framework utilizes several key steps including data collection and annotation from the O'Neil drug interaction dataset, data preprocessing, stratified splitting into training and test sets, construction and evaluation of classification models to categorize combinations as synergistic, additive, or antagonistic, application of regression models to predict combination sensitivity scores for enhanced predictions compared to prior work, and the last step is examination of drug features and mechanisms of action to understand synergy behaviors for optimal combinations. The models identified combination pairs most likely to synergize against different cancers. Kinase inhibitors combined with mTOR inhibitors, DNA damage-inducing drugs or HDAC inhibitors showed benefit, particularly for ovarian, melanoma, prostate, lung and colorectal carcinomas. Analysis highlighted Gemcitabine, MK-8776 and AZD1775 as frequently synergizing across cancer types. This machine learning framework provides a valuable approach to uncover more effective multi-drug regimens.
Collapse
Affiliation(s)
- Tarek Abd El-Hafeez
- Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt.
- Computer Science Unit, Deraya University, El-Minia, Egypt.
| | - Mahmoud Y Shams
- Faculty of Artificial Intelligence, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Heba Mamdouh Farghaly
- Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt
| | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt.
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt.
| |
Collapse
|
11
|
Calanca N, Francisco ALN, Bizinelli D, Kuasne H, Barros Filho MC, Flores BCT, Pinto CAL, Rainho CA, Soares MBP, Marchi FA, Kowalski LP, Rogatto SR. DNA methylation-based depiction of the immune microenvironment and immune-associated long non-coding RNAs in oral cavity squamous cell carcinomas. Biomed Pharmacother 2023; 167:115559. [PMID: 37742611 DOI: 10.1016/j.biopha.2023.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Oral cavity squamous cell carcinoma (OSCC) is a complex and dynamic disease characterized by clinicopathological and molecular heterogeneity. Spatial and temporal heterogeneity of cell subpopulations has been associated with cancer progression and implicated in the prognosis and therapy response. Emerging evidence indicates that aberrant epigenetic profiles in OSCC may foster an immunosuppressive tumor microenvironment by modulating the expression of immune-related long non-coding RNAs (lncRNAs). DNA methylation analysis was performed in 46 matched OSCC and normal adjacent tissue samples using a genome-wide platform (Infinium HumanMethylation450 BeadChip). Reference-based computational deconvolution (MethylCIBERSORT) was applied to infer the immune cell composition of the bulk samples. The expression levels of genes encoding immune markers and differentially methylated lncRNAs were investigated using The Cancer Genome Atlas dataset. OSCC specimens presented distinct immune cell composition, including the enrichment of monocyte lineage cells, natural killer cells, cytotoxic T-lymphocytes, regulatory T-lymphocytes, and neutrophils. In contrast, B-lymphocytes, effector T-lymphocytes, and fibroblasts were diminished in tumor samples. The hypomethylation of three immune-associated lncRNAs (MEG3, MIR155HG, and WFDC21P) at individual CpG sites was confirmed by bisulfite-pyrosequencing. Also, the upregulation of a set of immune markers (FOXP3, GZMB, IL10, IL2RA, TGFB, IFNG, TDO2, IDO1, and HIF1A) was detected. The immune cell composition, immune markers alteration, and dysregulation of immune-associated lncRNAs reinforce the impact of the immune microenvironment in OSCC. These concurrent factors contribute to tumor heterogeneity, suggesting that epi-immunotherapy could be an efficient alternative to treat OSCC.
Collapse
Affiliation(s)
- Naiade Calanca
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark; Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Ana Lucia Noronha Francisco
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Daniela Bizinelli
- International Research Center (CIPE), A.C.Camargo Cancer Center, São Paulo 01508-010, SP, Brazil
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal H3A1A3, QC, Canada
| | | | - Bianca Campos Troncarelli Flores
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark
| | | | - Claudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Milena Botelho Pereira Soares
- Health Technology Institute, SENAI CIMATEC, Salvador 41650-010, BA, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil
| | - Fabio Albuquerque Marchi
- Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo 05402-000, SP, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil; Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo 05402-000, SP, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark.
| |
Collapse
|
12
|
Yoon K, Jung S, Ryu J, Park HJ, Oh HK, Kook MS. Redox-Sensitive Delivery of Doxorubicin from Nanoparticles of Poly(ethylene glycol)-Chitosan Copolymer for Treatment of Drug-Resistant Oral Cancer Cells. Int J Mol Sci 2023; 24:13704. [PMID: 37762003 PMCID: PMC10531032 DOI: 10.3390/ijms241813704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Reactive oxygen species (ROS)-sensitive polymer nanoparticles were synthesized for tumor targeting of an anticancer drug, doxorubicin (DOX). For this purpose, chitosan-methoxy poly(ethylene glycol) (mPEG) (ChitoPEG)-graft copolymer was synthesized and then DOX was conjugated to the backbone of chitosan using a thioketal linker. Subsequently, the chemical structure of the DOX-conjugated ChitoPEG copolymer (ChitoPEGthDOX) was confirmed via 1H nuclear magnetic resonance (NMR) spectra. Nanoparticles of the ChitoPEGthDOX conjugates have spherical shapes and a size of approximately 100 nm. Transmission electron microscopy (TEM) has shown that ChitoPEGthDOX nanoparticles disintegrate in the presence of hydrogen peroxide and the particle size distribution also changes from a monomodal/narrow distribution pattern to a multi-modal/wide distribution pattern. Furthermore, DOX is released faster in the presence of hydrogen peroxide. These results indicated that ChitoPEGthDOX nanoparticles have ROS sensitivity. The anticancer activity of the nanoparticles was evaluated using AT84 oral squamous carcinoma cells. Moreover, DOX-resistant AT84 cells were prepared in vitro. DOX and its nanoparticles showed dose-dependent cytotoxicity in both DOX-sensitive and DOX-resistant AT84 cells in vitro. However, DOX itself showed reduced cytotoxicity against DOX-resistant AT84 cells, while the nanoparticles showed almost similar cytotoxicity to DOX-sensitive and DOX-resistant AT84 cells. This result may be due to the inhibition of intracellular delivery of free DOX, while nanoparticles were efficiently internalized in DOX-resistant cells. The in vivo study of a DOX-resistant AT84 cell-bearing tumor xenograft model showed that nanoparticles have higher antitumor efficacy than those found in free DOX treatment. These results may be related to the efficient accumulation of nanoparticles in the tumor tissue, i.e., the fluorescence intensity in the tumor tissue was stronger than that of any other organs. Our findings suggest that ChitoPEGthDOX nanoparticles may be a promising candidate for ROS-sensitive anticancer delivery against DOX-resistant oral cancer cells.
Collapse
Affiliation(s)
- Kaengwon Yoon
- El-Dental Clinic, Seomun Daero Street 625, Namgu, Gwangju 61737, Republic of Korea;
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Seunggon Jung
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Jaeyoung Ryu
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Hong-Ju Park
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Hee-Kyun Oh
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Min-Suk Kook
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| |
Collapse
|
13
|
Zhang Y, Li Y, Fu Q, Han Z, Wang D, Umar Shinge SA, Muluh TA, Lu X. Combined Immunotherapy and Targeted Therapies for Cancer Treatment: Recent Advances and Future Perspectives. Curr Cancer Drug Targets 2023; 23:251-264. [PMID: 36278447 DOI: 10.2174/1568009623666221020104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
The previous year's worldview for cancer treatment has advanced from general to more precise therapeutic approaches. Chemotherapies were first distinguished as the most reliable and brief therapy with promising outcomes in cancer patients. However, patients could also suffer from severe toxicities resulting from chemotherapeutic drug usage. An improved comprehension of cancer pathogenesis has led to new treatment choices, including tumor-targeted therapy and immunotherapy. Subsequently, cancer immunotherapy and targeted therapy give more hope to patients since their combination has tremendous therapeutic efficacy. The immune system responses are also initiated and modulated by targeted therapies and cytotoxic agents, which create the principal basis that when targeted therapies are combined with immunotherapy, the clinical outcomes are of excellent efficacy, as presented in this review. This review focuses on how immunotherapy and targeted therapy are applicable in cancer management and treatment. Also, it depicts promising therapeutic results with more extensive immunotherapy applications with targeted therapy. Further elaborate that immune system responses are also initiated and modulated by targeted therapies and cytotoxic agents, which create the principal basis that this combination therapy with immunotherapy can be of great outcome clinically.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Yafei Li
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Qiuxia Fu
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Zhiqiang Han
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Daijie Wang
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| | - Shafiu A Umar Shinge
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Sichuan, P.R. China
| | - Tobias Achu Muluh
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Sichuan, P.R. China.,School of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Xiaohong Lu
- Department of Oncology, The People's Hospital of Luzhou, 646000 Luzhou, Sichuan, P.R. China
| |
Collapse
|
14
|
Yan R, Liu J, Dong Z, Peng Q. Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. BIOMATERIALS ADVANCES 2022; 144:213218. [PMID: 36436431 DOI: 10.1016/j.bioadv.2022.213218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Oral diseases, such as dental caries, periodontitis and oral cancer, have a very high morbidity over the world. Basically, many oral diseases are commonly related to bacterial infections or cell malignant proliferation, and usually located on the superficial positions. These features allow the convenient and efficient application of photodynamic therapy (PDT) for oral diseases, since PDT is ideally suitable for the diseases on superficial sites and has been widely used for antimicrobial and anticancer therapy. Photosensitizers (PSs) are an essential element in PDT, which induce the generation of a large number of reactive oxygen species (ROS) upon absorption of specific lights. Almost all the PSs are small molecules and commonly suffered from various problems in the PDT environment, such as low solubility and poor stability. Recently, reports on the nanomedicine-based PDT have been well documented. Various functionalized nanomaterials can serve either as the PSs carriers or the direct PSs, thus enhancing the PDT efficacy. Herein, we aim to provide a comprehensive understanding of the features of different oral diseases and discuss the potential applications of nanomedicine-based PDT in the treatment of some common oral diseases. Also, the concerns and possible solutions for nanomaterials-mediated PDT are discussed.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Hong SO, Kook MS, Jeong YIL, Park MJ, Yang SW, Kim BH. Nanophotosensitizers Composed of Phenyl Boronic Acid Pinacol Ester-Conjugated Chitosan Oligosaccharide via Thioketal Linker for Reactive Oxygen Species-Sensitive Delivery of Chlorin e6 against Oral Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7057. [PMID: 36295132 PMCID: PMC9604738 DOI: 10.3390/ma15207057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Chlorin E6 (Ce6)-incorporated nanophotosensitizers were fabricated for application in photodynamic therapy (PDT) of oral cancer cells. For this purpose, chitosan oligosaccharide (COS) was conjugated with hydrophobic and reactive oxygen species (ROS)-sensitive moieties, such as phenyl boronic acid pinacol ester (PBAP) via a thioketal linker (COSthPBAP). ThdCOOH was conjugated with PBAP to produce ThdCOOH-PBAP conjugates and then attached to amine groups of COS to produce a COSthPBAP copolymer. Ce6-incorporated nanophotosensitizers using the COSthPBAP copolymer were fabricated through the nanoprecipitation and dialysis methods. The Ce6-incorporated COSthPBAP nanophotosensitizers had a small diameter of less than 200 nm with a mono-modal distribution pattern. However, it became a multimodal and/or irregular distribution pattern when H2O2 was added. In a morphological observation using TEM, the nanophotosensitizers were disintegrated by the addition of H2O2, indicating that the COSthPBAP nanophotosensitizers had ROS sensitivity. In addition, the Ce6 release rate from the COSthPBAP nanophotosensitizers accelerated in the presence of H2O2. The SO generation was also higher in the nanophotosensitizers than in the free Ce6. Furthermore, the COSthPBAP nanophotosensitizers showed a higher intracellular Ce6 uptake ratio and ROS generation in all types of oral cancer cells. They efficiently inhibited the viability of oral cancer cells under light irradiation, but they did not significantly affect the viability of either normal cells or cancer cells in the absence of light irradiation. The COSthPBAP nanophotosensitizers showed a tumor-specific delivery capacity and fluorescence imaging of KB tumors in an in vivo animal tumor imaging study. We suggest that COSthPBAP nanophotosensitizers are promising candidates for the imaging and treatment of oral cancers.
Collapse
Affiliation(s)
- Sung-Ok Hong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
- Department of Oral and Maxillofacial Surgery, Kyung Hee University Dental Hospital at Gangdong, Seoul 05278, Korea
| | - Min-Suk Kook
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Min-Ju Park
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Seong-Won Yang
- Department of Ophthalmology, College of Medicine, Chosun University, Gwangju 61453, Korea
| | - Byung-Hoon Kim
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
16
|
Balachander K, Paramasivam A. Ferroptosis: An emerging therapeutic target for oral cancer. Oral Oncol 2022; 131:105970. [PMID: 35717722 DOI: 10.1016/j.oraloncology.2022.105970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Kannan Balachander
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Arumugam Paramasivam
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
17
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
18
|
Matsuda Y, Jayasinghe RD, Zhong H, Arakawa S, Kanno T. Oral Health Management and Rehabilitation for Patients with Oral Cancer: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10050960. [PMID: 35628095 PMCID: PMC9140416 DOI: 10.3390/healthcare10050960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Surgery is the current first choice for oral cancer treatment. Intensity-modulated radiation therapy, molecular targeted drugs, and immune checkpoint inhibitors are still used as adjuvant therapy for advanced cancer. In addition, postoperative rehabilitation and multidisciplinary treatment have also been developed in recent years. Multidisciplinary team approaches and supportive care in oral cancer treatment reportedly shorten the time to treatment and improve outcomes. Although there is enough evidence confirming the role of oral and maxillofacial surgeons, dentists, and dental hygienists in supportive care in oral cancer treatment, there are very few systematic studies. In particular, oral health management is a concept that encompasses oral function management, oral hygiene management, and oral care during oral cancer treatment. We provide a narrative review focusing on oral health management from a multidisciplinary and supportive care perspective, applicable in oral cancer treatment.
Collapse
Affiliation(s)
- Yuhei Matsuda
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8501, Japan; (H.Z.); (S.A.)
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo 693-8501, Japan;
- Correspondence: ; Tel.: +81-3-5803-4649
| | - Ruwan D. Jayasinghe
- Center for Research in Oral Cancer, Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Getambe 20400, Sri Lanka;
| | - Hui Zhong
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8501, Japan; (H.Z.); (S.A.)
| | - Shinichi Arakawa
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8501, Japan; (H.Z.); (S.A.)
| | - Takahiro Kanno
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo 693-8501, Japan;
| |
Collapse
|
19
|
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022; 11:145. [PMID: 35052649 PMCID: PMC8773066 DOI: 10.3390/antiox11010145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells' growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo, 00184 Rome, Italy;
- SIFASD, Società Italiana Sindrome Feto-Alcolica, 00184 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Alessandro Mattia
- Ministero dell’Interno, Dipartimento della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, 00185 Rome, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| |
Collapse
|
20
|
Sultania M, Imaduddin M, S V Deo S, Kar M, K Muduly D, Kumar S, Sharma A, Mishra A, K D Majumdar S, K Adhya A, K Parida D. Role of metronomic therapy for advanced oral cancers and predictors of response: A multi-institutional feasibility study. Head Neck 2021; 44:104-112. [PMID: 34708450 DOI: 10.1002/hed.26904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In an era of targeted therapies, patients with cancer in resource-constraint countries continue to struggle to find affordable care. METHODS The present study is a multicenter prospective single-arm study. Patients with expected delay in surgery, unresectable or metastatic cancers, and patients not suitable for surgery or conventional chemotherapy were included. Oral methotrexate 15 mg/m2 once a week and oral celecoxib 200 mg twice daily was used for metronomic therapy. RESULTS At 8 weeks, a clinically complete response was seen in 2.5%, partial response in 46.6%, stable disease in 39.8%, and disease progression in 11%. Size less than 4 cm, alveolobuccal subsite, and well-differentiated histology were significantly associated with no disease progression. CONCLUSION Constraint-adapted approach of using methotrexate and celecoxib is economical with good compliance, minimal toxicity, and good efficacy. It is feasible for use in diverse settings. Individualized selection of patients based on response predictors may maximize metronomic therapy's benefit.
Collapse
Affiliation(s)
- Mahesh Sultania
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Mohammed Imaduddin
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Suryanarayana S V Deo
- Department of Surgical Oncology, Dr. B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Dillip K Muduly
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Sharma
- Department of Medical Oncology, Dr. B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ashutosh Mishra
- Department of Surgical Oncology, Dr. B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj K D Majumdar
- Department of Radiotherapy, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Amit K Adhya
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Dilip K Parida
- Department of Radiotherapy, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
21
|
Tudor DV, Bâldea I, Olteanu DE, Fischer-Fodor E, Piroska V, Lupu M, Călinici T, Decea RM, Filip GA. Celecoxib as a Valuable Adjuvant in Cutaneous Melanoma Treated with Trametinib. Int J Mol Sci 2021; 22:4387. [PMID: 33922284 PMCID: PMC8122835 DOI: 10.3390/ijms22094387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Melanoma patients stop responding to targeted therapies mainly due to mitogen activated protein kinase (MAPK) pathway re-activation, phosphoinositide 3 kinase/the mechanistic target of rapamycin (PI3K/mTOR) pathway activation or stromal cell influence. The future of melanoma treatment lies in combinational approaches. To address this, our in vitro study evaluated if lower concentrations of Celecoxib (IC50 in nM range) could still preserve the chemopreventive effect on melanoma cells treated with trametinib. MATERIALS AND METHODS All experiments were conducted on SK-MEL-28 human melanoma cells and BJ human fibroblasts, used as co-culture. Co-culture cells were subjected to a celecoxib and trametinib drug combination for 72 h. We focused on the evaluation of cell death mechanisms, melanogenesis, angiogenesis, inflammation and resistance pathways. RESULTS Low-dose celecoxib significantly enhanced the melanoma response to trametinib. The therapeutic combination reduced nuclear transcription factor (NF)-kB (p < 0.0001) and caspase-8/caspase-3 activation (p < 0.0001), inhibited microphthalmia transcription factor (MITF) and tyrosinase (p < 0.05) expression and strongly down-regulated the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway more significantly than the control or trametinib group (p < 0.0001). CONCLUSION Low concentrations of celecoxib (IC50 in nM range) sufficed to exert antineoplastic capabilities and enhanced the therapeutic response of metastatic melanoma treated with trametinib.
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Ioana Bâldea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Diana Elena Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Eva Fischer-Fodor
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania; (E.F.-F.); (V.P.)
| | - Virag Piroska
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania; (E.F.-F.); (V.P.)
| | - Mihai Lupu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Tudor Călinici
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Roxana Maria Decea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| |
Collapse
|
22
|
Lu HJ, Tseng SW, Peng CY, Tseng HC, Hsin CH, Chen HL, Huang WS, Wu MF, Yang MH, Chang PMH. Predictors of early progression after curative resection followed by platinum-based adjuvant chemoradiotherapy in oral cavity squamous cell carcinoma. Postgrad Med 2020; 133:377-384. [PMID: 32791023 DOI: 10.1080/00325481.2020.1809869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Early progression, defined as a disease-free interval (DFI) of less than 6 months after completion of adjuvant platinum-based chemoradiotherapy (CRT), leads to poor outcomes in locally advanced oral cavity squamous cell carcinoma (OCSCC). However, appropriate biomarkers for predicting early progression remain unknown. METHODS In this study, 346 patients with OCSCC, who underwent curative surgical resection and platinum-based adjuvant CRT at the Taipei Veterans General Hospital (202 patients, training cohort) and Chung Shan Medical University Hospital (144 patients, validation cohort) were enrolled. The clinical-pathological variables were compared using the χ2 test. Cox proportional-hazards analyses were performed for DFIs. Survival was estimated using the Kaplan-Meier method and log-rank tests, and a scoring system for predicting early progression was established. RESULTS One-fifth (20.5%, 71/346) of all patients experienced progression within 6 months. Each of the independent factors for the DFI in the training cohort, including pT3-4, extracapsular spread, and perineural invasion, were assigned a score of one point to establish a scoring system. The 6-month DFIs of the low-risk (score 0-1), intermediate-risk (score 2), and high-risk (score 3) groups were 97.8%, 78.7%, and 35.7% and 88.2%, 77.6%, and 42.1% in the training and validation cohorts, respectively. If the cutoff level was ≥2 or <2, the sensitivity/specificity/area under the curve for the training and validation cohorts were 94.4%/56.1%/0.837, and 73.3%/56.6%/0.703, respectively. CONCLUSIONS The established scoring system effectively predicted early progression after adjuvant CRT for locally advanced OCSCC.
Collapse
Affiliation(s)
- Hsueh-Ju Lu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Szu-Wen Tseng
- Division of Hematology and Oncology, Department of Medicine, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Chih-Yu Peng
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Hsien-Chun Tseng
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Lin Chen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Shiou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Muh-Hwa Yang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Kumar N, Lata K, Mishra D, Kumar S, Deo SVS. Metronomic chemotherapy for head-and-neck cancers in coronavirus disease 2019 pandemic. CLINICAL CANCER INVESTIGATION JOURNAL 2020. [DOI: 10.4103/ccij.ccij_63_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|