1
|
Henry Dusim GA, Muhamad F, Lai KW. Enhancing Calcium Phosphate Cements: A review of Bacterial Cellulose (BC) and other Biopolymer Reinforcements for Biomedical Applications. BIOMATERIALS ADVANCES 2025; 172:214245. [PMID: 40054229 DOI: 10.1016/j.bioadv.2025.214245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Calcium phosphate cements (CPCs) are renowned for their biocompatibility and osteoconductivity, making them ideal for bone tissue engineering. However, their brittleness and low tensile strength limit their use in load-bearing applications. Bacterial cellulose (BC) has emerged as a promising reinforcement material due to its high tensile strength, biocompatibility, and biodegradability. The incorporation of 2 wt% BC into CPCs increased compressive strength from 5 MPa to 12 MPa, representing a 2.4-fold enhancement, while also improving toughness and promoting cellular interactions through its nanofibrillar structure. Additionally, hybrid composites combining BC with collagen, chitosan, or polycaprolactone (PCL) exhibit synergistic effects, further enhancing mechanical properties and biodegradability. These advancements highlight the potential of BC-reinforced CPCs for clinical applications in bone repair and regeneration. Despite these improvements, limited research addresses tensile and flexural properties, which are critical for load-bearing applications, as well as the effects of BC on injectability and setting time for minimally invasive procedures. Emerging innovations, such as electroactive BC-reinforced CPCs for stimulating bone healing, hold significant potential but remain underexplored. Future research should focus on optimising mechanical properties, validating clinical performance, and developing hybrid formulations to expand their use in load-bearing bone repairs.
Collapse
Affiliation(s)
- Grace Anabela Henry Dusim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Han J, Zheng X, Liu J, Wang Y, Cui Z, Wu S, Liang Y, Zhu S, Ge X, Li Z. Modification and evaluation of diatrizoate sodium containing polymethyl methacrylate bone cement. J Biomater Appl 2023; 37:1300-1314. [PMID: 36607821 DOI: 10.1177/08853282221150359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polymethyl methacrylate (PMMA) bone cement is now widely used in percutaneous vertebro plasty (PVP) and percutaneous kyphoplasty (PKP). However, studies showed that the radiopacifiers (zirconia, barium sulfate, etc.) added to PMMA will have a negative impact on its use, e.g. barium sulfate will weaken the mechanical properties of bone cement and lead to bone absorption and aseptic loosening. Iodine is an element existing in the human body and has good imaging performance. Iodine contrast agent has been used in clinic for many years and has abundant clinical data. Therefore, using iodine instead of barium sulfate may be a promising choice. In this paper, the effect of different content of diatrizoate sodium (DTA, C11H8I3N2NaO4) on the properties of PMMA was studied and compared with the traditional PMMA bone cement containing 30 wt% barium sulfate. The mechanical properties, setting properties, radiopacity, and biocompatibility of bone cement were evaluated. The compressive strength of PMMA bone cement with 20 wt% DTA can reach 76.38 MPa. DTA released from bone cement up to 14 days accounted for only 2.3% of its dosage. The water contact angle was 62.3°. The contrast of bone cement on X-ray film was comparable to that of bone cement containing 30 wt% barium. The hemolysis rate was lower than 4%, and there was no obvious hemolysis. PMMA with 20 wt% DTA can maintain the relative growth rate of MC3T3-E1 and L929 cells above 80%. The results show that adding 20 wt% DTA into PMMA can obtain good radiopacity while maintaining its mechanical properties, setting properties, and biocompatibility. DTA can be used as a promising candidate material for PMMA bone cement radiopacifier.
Collapse
Affiliation(s)
- Jintong Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| | - Xiaoqiang Zheng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| | - Jingyu Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| | - Yifan Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| | - Zhenduo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| | - Shuilin Wu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| | - Yanqin Liang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| | - Shengli Zhu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, 530428Tianjin University, Tianjin, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, 530428Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Hamadouche M, Liverneaux PA, Migaud H. Research and biomechanics: Small steps for scientists but significant progress for clinicians. Orthop Traumatol Surg Res 2022; 108:103448. [PMID: 36270441 DOI: 10.1016/j.otsr.2022.103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Moussa Hamadouche
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Cochin, GH Paris Centre, APHP, Université Paris Cité, Paris, France
| | - Philippe André Liverneaux
- ICube CNRS UMR7357, Strasbourg University, 2-4 Rue Boussingault, 67000 Strasbourg, France; Department of Hand Surgery, Strasbourg University Hospitals, FMTS, 1 Avenue Molière, 67200 Strasbourg, France
| | - Henri Migaud
- Orthopaedics & Traumatology: Surgery & Research, 70 Rue Boissonade, 75014 Paris, France.
| |
Collapse
|
4
|
Szabelski J, Karpiński R, Krakowski P, Jojczuk M, Jonak J, Nogalski A. Analysis of the Effect of Component Ratio Imbalances on Selected Mechanical Properties of Seasoned, Medium Viscosity Bone Cements. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5577. [PMID: 36013714 PMCID: PMC9416016 DOI: 10.3390/ma15165577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The paper presents the results of experimental strength tests of specimens made of two commercially available bone cements subjected to compression, that is a typical variant of load of this material during use in the human body, after it has been used for implantation of prostheses or supplementation of bone defects. One of the factors analysed in detail was the duration of cement seasoning in Ringer's solution that simulates the aggressive environment of the human body and material degradation caused by it. The study also focused on the parameters of quantitative deviation from the recommended proportions of liquid (MMA monomer, accelerator and stabiliser) and powder (PMMA prepolymer and initiator) components, i.e., unintentional inaccuracy of component proportioning at the stage of cement mass preparation. Statistical analysis has shown the influence of these factors on the decrease in compressive strength of the cements studied, which may be of significant importance in operational practice.
Collapse
Affiliation(s)
- Jakub Szabelski
- Department of Computerization and Production Robotization, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Robert Karpiński
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Przemysław Krakowski
- Chair and Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
- Orthopaedic Department, Łęczna Hospital, Krasnystawska 52, 21-010 Leczna, Poland
| | - Mariusz Jojczuk
- Chair and Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Józef Jonak
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Adam Nogalski
- Chair and Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| |
Collapse
|
5
|
Karpiński R, Szabelski J, Krakowski P, Jojczuk M, Jonak J, Nogalski A. Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements. MATERIALS 2022; 15:ma15062197. [PMID: 35329650 PMCID: PMC8951357 DOI: 10.3390/ma15062197] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Revision surgeries several years after the implantation of the prosthesis are unfavorable from the patient’s point of view as they expose him to additional discomfort, to risk of complications and are expensive. One of the factors responsible for the aseptic loosening of the prosthesis is the gradual degradation of the cement material as a result of working under considerable loads, in an aggressive environment of the human body. Contaminants present in the surgical field may significantly affect the durability of the bone cement and, consequently, of the entire bone-cement-prosthesis system. The paper presents the results of an analysis of selected mechanical properties of two medium-viscosity bone cements DePuy CMW3 Gentamicin and Heraeus Palamed, for the samples contaminated with saline and blood in the range of 1–10%. The results obtained for compressive strength and modulus of elasticity were subjected to statistical analysis, which estimated the nature of changes in these parameters depending on the amount and type of contamination and their statistical significance.
Collapse
Affiliation(s)
- Robert Karpiński
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Correspondence: (R.K.); (J.S.)
| | - Jakub Szabelski
- Section of Biomedical Engineering, Department of Computerization and Production Robotization, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
- Correspondence: (R.K.); (J.S.)
| | - Przemysław Krakowski
- Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland; (P.K.); (M.J.); (A.N.)
- Orthopaedic Department, Łęczna Hospital, Krasnystawska 52, 21-010 Leczna, Poland
| | - Mariusz Jojczuk
- Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland; (P.K.); (M.J.); (A.N.)
| | - Józef Jonak
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Adam Nogalski
- Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland; (P.K.); (M.J.); (A.N.)
| |
Collapse
|