1
|
Angjelova A, Jovanova E, Polizzi A, Santonocito S, Lo Giudice A, Isola G. The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leukoplakia: A Narrative Review. J Clin Med 2023; 12:6819. [PMID: 37959284 PMCID: PMC10649116 DOI: 10.3390/jcm12216819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Oral leukoplakia is a predominantly white lesion of the oral mucosa that cannot be classified as any other definable lesion with the risk of progressing into malignancy. Despite the advancements in conventional therapy, the rates of malignant transformation remain notably high, affecting 4.11% of adults, due to the difficulty of accurate diagnosis and indistinct treatment. Photodynamic therapy (PDT), being a minimally invasive surgical intervention, employs a variety of factors, including light, nano-photosensitizers (PSs) and oxygen in the management of precancerous lesions. PDT faces limitations in administering photosensitizers (PSs) because of their low water solubility. However, these challenges could be effectively resolved through the incorporation of PSs in nanostructured drug delivery systems, such as gold nanoparticles, micelles, liposomes, metal nanoparticles, dendrimers and quantum dots. This review will give an overview of the different innovative PS approaches in the management of premalignant lesions, highlighting the most recent advancements. From a clinical perspective, it is expected that nanotechnology will overcome barriers faced by traditional therapeutics and will address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Angela Angjelova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Elena Jovanova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| |
Collapse
|
2
|
Silver Nanoparticles Synthesized Using Eichhornia crassipes Extract from Yuriria Lagoon, and the Perspective for Application as Antimicrobial Agent. CRYSTALS 2022. [DOI: 10.3390/cryst12060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The antimicrobial effects of silver (Ag) ions and salts are well known. However, the antimicrobial effects, mechanism, and the cytotoxic activity in vitro of Ag nanoparticles (AgNP) has recently been validated. In this work, we report the green synthesis of AgNPs using the extract of Eichhornia crassipes as a reducing agent and evaluate its antimicrobial activity against Escherichia coli (ATCC-25922). The morphology, size, chemical composition, and inhibition properties of the nanoparticles as a function of the reduction time and temperature were analyzed. According to TEM imaging, nanoparticles with average diameters between 20–40 nm were synthesized. Antibacterial results suggest that AgNPs can be used as an effective growth inhibitor with higher antimicrobial activity against Escherichia coli after 120 min of reaction with a synthesis temperature of 95°. More extensive analysis is required for the appropriate selection of the synthesis parameters and adequate concentration for use in biomedical applications and antibacterial control systems.
Collapse
|
3
|
Broadwater D, Medeiros HCD, Lunt RR, Lunt SY. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu Rev Biomed Eng 2021; 23:29-60. [PMID: 34255992 DOI: 10.1146/annurev-bioeng-122019-115833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; , .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; ,
| |
Collapse
|
4
|
Ji Z, Guo W, Sakkiah S, Liu J, Patterson TA, Hong H. Nanomaterial Databases: Data Sources for Promoting Design and Risk Assessment of Nanomaterials. NANOMATERIALS 2021; 11:nano11061599. [PMID: 34207026 PMCID: PMC8234318 DOI: 10.3390/nano11061599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
Nanomaterials have drawn increasing attention due to their tunable and enhanced physicochemical and biological performance compared to their conventional bulk materials. Owing to the rapid expansion of the nano-industry, large amounts of data regarding the synthesis, physicochemical properties, and bioactivities of nanomaterials have been generated. These data are a great asset to the scientific community. However, the data are on diverse aspects of nanomaterials and in different sources and formats. To help utilize these data, various databases on specific information of nanomaterials such as physicochemical characterization, biomedicine, and nano-safety have been developed and made available online. Understanding the structure, function, and available data in these databases is needed for scientists to select appropriate databases and retrieve specific information for research on nanomaterials. However, to our knowledge, there is no study to systematically compare these databases to facilitate their utilization in the field of nanomaterials. Therefore, we reviewed and compared eight widely used databases of nanomaterials, aiming to provide the nanoscience community with valuable information about the specific content and function of these databases. We also discuss the pros and cons of these databases, thus enabling more efficient and convenient utilization.
Collapse
|
5
|
Yadav E, Yadav P. Biofabricated zinc oxide nanoparticles impair cognitive function via modulating oxidative stress and acetylcholinesterase level in mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:572-585. [PMID: 33247493 DOI: 10.1002/tox.23062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Current work was designed to explore the effect of ZnO nanoparticles (ZnONP) biofabricated by using Trianthema portulacastrum (TP) leaves extract on mice brain hippocampus. ZnO nanoparticles of TP leaves (ZnOTP) were synthesized by co-precipitation method and further characterized by using various techniques such as UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR), and Energy Dispersive X-ray (EDX). ZnOTP were evaluated for in vitro antioxidant activity, in vivo behavior models (for assessment of cognitive ability), acetylcholinesterase (AChE) activity along with other neurotransmitters content determination, estimation of various oxidative stress parameters and analysis of zinc content in the brain as well as plasma. Histopathological evaluation of the brain hippocampus of each group was performed to corroborate the statistical results. Spherical ZnOTP of 10 to 20 nm size embedded with different phytoconstituents of TP was confirmed. Results of our study revealed a significant memory deficit in mice treated with ZnOTP. Neuronal degeneration was also observed via a significant increase in AChE activity and oxidative stress levels in the brain of mice administered with ZnOTP. Exposure of ZnOTP was also found responsible for modulation of neurotransmission in hippocampus area. Further, ZnOTP disturbed the zinc homeostasis in hippocampus via elevation of zinc content in brain as well as plasma. Histopathology of hippocampus supported the damaging impact of ZnOTP by an increase in vacuolated cytoplasm and focal gliosis in groups treated with ZnOTP. Results demonstrated the neurotoxic effect of ZnOTP on brain hippocampus via cognitive impairment by alteration of neurotransmitter level, zinc content and oxidative stress.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Prayagraj, India
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Prayagraj, India
| |
Collapse
|
6
|
Dobretsov S, Sathe P, Bora T, Barry M, Myint MTZ, Abri MA. Toxicity of Different Zinc Oxide Nanomaterials at 3 Trophic Levels: Implications for Development of Low-Toxicity Antifouling Agents. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1343-1354. [PMID: 32274816 DOI: 10.1002/etc.4720] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Because zinc oxide (ZnO) nanomaterials are used in antifouling and antibacterial solutions, understanding their toxic effects on different aquatic organisms is essential. In the present study, we evaluated the toxicity of ZnO nanoparticles of 10 to 30 nm (ZnONPI) and 80 to 200 nm (ZnONPII), ZnO nanorods (width 80 nm, height 1.7 µm) attached to the support substrate (glass, ZnONRG) and not attached (ZnONRS), as well as Zn2+ ions at concentrations ranging from 0.5 to 100 mg/L. Toxicity was evaluated using the microalga Dunaliella salina, the brine shrimp Artemia salina, and the marine bacterium Bacillus cereus. The highest toxicity was observed for ZnONPs (median lethal concentration [LC50] ~15 mg/L) and Zn2+ ions (LC50 ~13 mg/L), whereas the lowest toxicity found for ZnO nanorods (ZnONRG LC50 ~60 mg/L; ZnONRS LC50 ~42 mg/L). The presence of the support substrate in case of ZnO nanorods reduced the associated toxicity to aquatic organisms. Smaller ZnONPs resulted in the highest Zn2+ ion dissolution among tested nanostructures. Different aquatic organisms responded differently to ZnO nanomaterials, with D. salina and B. cereus being more sensitive than A. salina. Toxicity of nanostructures increased with an increase of the dose and the time of exposure. Supported ZnO nanorods can be used as a low-toxicity alternative for future antimicrobial and antifouling applications. Environ Toxicol Chem 2020;39:1343-1354. © 2020 SETAC.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Priyanka Sathe
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Center of Nanotechnology, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Tanujjal Bora
- Nanotechnology Industrial System Engineering, School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Pathumthani, Thailand
| | - Michael Barry
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mohammed Al Abri
- Center of Nanotechnology, Sultan Qaboos University, Muscat, Sultanate of Oman
- Petroleum and Chemical Engineering Department, College of Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
7
|
Characterization of Silver Nanoparticles Obtained by a Green Route and Their Evaluation in the Bacterium of Pseudomonas aeruginosa. CRYSTALS 2020. [DOI: 10.3390/cryst10050395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metal nanoparticles are widely used in different areas such as biotechnology and biomedicine, for example in drug delivery, imaging and control of bacterial growth. The antimicrobial effect of silver has been identified as an alternative approach to the increasing bacterial resistance to antibiotics. Silver nanoparticles were synthesized by the green route using the Geranium extract as a reducing agent. The characterization was carried out by the techniques of UV-Vis spectrophotometry, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray emitted photoelectron spectroscopy (XPS) and X-ray diffraction. Nanoparticle diameters between 15 and 50 nm were obtained and the interplanar spaces calculated from the electron diffraction pattern corresponding to a mixture of silver with 4H and FCC structures. To determine the minimum inhibitory concentration of silver nanoparticles (AgNPs) on the Pseudomonas aeruginosa bacteria (ATCC-27853), different concentrations of colloidal solution 0.36, 0.18, 0.09 and 0.05 μg/mL were evaluated as a function of the incubation time, measuring the inhibition halo and colony forming unit (CFU) during 0, 2 and 4 h of incubation. The minimum inhibitory AgNPs concentration (MIC) is 0.36 μg/mL at 0 h while the concentration of 0.18 μg/mL presents a total inhibition of the bacterium after 2 h. For the rest of the dilutions, gradual inhibitions as a function of time were observed. We evaluate the antibacterial effect of silver nanoparticles obtained by a green methodology in Pseudomonas aeruginosa bacteria. Finally, the colloidal nanoparticle solution can be an antibacterial alternative for different biomedical approaches.
Collapse
|
8
|
Ben Mihoub A, Youssef Z, Colombeau L, Jouan-Hureaux V, Arnoux P, Frochot C, Vanderesse R, Acherar S. Inclusion complex vs. conjugation of hydrophobic photosensitizers with β-cyclodextrin: Improved disaggregation and photodynamic therapy efficacy against glioblastoma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110604. [PMID: 32228929 DOI: 10.1016/j.msec.2019.110604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
Self-aggregation of hydrophobic porphyrin-based photosensitizers (PSs) in aqueous biological environment decreases their bioavailability and in vivo therapeutic efficacy, which hampers their clinical use in photodynamic therapy (PDT). In the current study, we explore three new supramolecular systems based of hydrophobic PSs (i.e. 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) or 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (P1COOH)) non-covalently or covalently attached to β-CD. The two non-covalent solid inclusion complexes (β-CD)2/mTHPP and [(β-CD)/P1COOH]4 are prepared by a new co-precipitation@lyophilization combined method and the covalent conjugate β-CD-P1 by click chemistry. The binding type effect and effectiveness on the disaggregation in aqueous medium and in vitro PDT efficacy against glioblastoma cancer cells of PSs are investigated for the three β-CD/PS systems. The findings reveal a remarkable improvement of the disaggregation and in vitro PDT activity of these β-CD/PS systems compared to the free PSs, except for [(β-CD)/P1COOH]4 inclusion complex caused by J-type self-aggregation of the inclusion complex in tetrameric form. β-CD-P1 conjugate shows the higher in vitro PDT efficacy compared to the other β-CD/PS systems. Overall, the results indicate that the disaggregation in aqueous medium and in vitro PDT activity of hydrophobic PSs can be improved by their binding to β-CD and the covalent binding is the best approach.
Collapse
Affiliation(s)
- Amina Ben Mihoub
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France; Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, (UATL) BP 37G, Laghouat 03000, Algeria.
| | - Zahraa Youssef
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | | | | | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
9
|
Abstract
Phototherapy involves the irradiation of tissues with light, and is commonly implemented in the forms of photodynamic therapy (PDT) and photothermal therapy (PTT). Photosensitizers (PSs) are often needed to improve the efficacy and selectivity of phototherapy via enhanced singlet oxygen generation in PDT and photothermal responses in PTT. In both cases, efficient and selective delivery of PSs to the diseased tissues is of paramount importance. Nanoscale metal-organic frameworks (nMOFs), a new class of hybrid materials built from metal connecting points and bridging ligands, have been examined as nanocarriers for drug delivery due to their compositional and structural tunability, highly porous structures, and good biocompatibility. This review summarizes recent advances on using nMOFs as nanoparticle PSs for applications in PDT and PTT.
Collapse
Affiliation(s)
| | | | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
In Vitro Cytotoxicity of Nanoparticles: A Comparison between Particle Size and Cell Type. ACTA ACUST UNITED AC 2016. [DOI: 10.1155/2016/4023852] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reduction in size of Zinc oxide (ZnO) and Silicon dioxide (SiO2) particles from micron to nano scale offers unique physical characteristics on one hand while making them cytotoxic on other hand. The present study was aimed at comparing cytotoxic effects of ZnO and SiO2 nanoparticles with their micron size and secondary aim was to compare responses of these particles to two different cell types, namely, human lung epithelial cells (L-132) and human monocytes (THP-1). The L-132 and THP-1 cells were exposed to nano and micron size of ZnO and SiO2 particles with different concentrations (5–500 μg/mL) for 24 h, and cytotoxicity was analyzed by MTT assay, live-dead staining, and TC-50 was calculated. ZnO and SiO2 particles showed concentration-dependent cytotoxicity in both cell lines. In size-dependent study, ZnO particles exhibited nearly equal toxicity profile in L-132 cells while in THP-1 cells nano ZnO showed more toxicity than its micron size. The SiO2 particles showed more toxicity in their nano size than micron size in both cell lines. Human monocytes, THP-1 cells, were more sensitive towards the toxicity of both particles than human lung cells, L-132. The results highlight the difference of cytotoxicity between particle sizes and differential sensitivity of cells towards the particles of same composition. In conclusion, ZnO and SiO2 particles exhibited concentration-dependent toxicity, which was more in their nano size than micron counterpart. However, the toxic response varies depending on type of cell exposed due to differential sensitivity.
Collapse
|
11
|
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound.
Collapse
|
12
|
Changes in Caco-2 cells transcriptome profiles upon exposure to gold nanoparticles. Toxicol Lett 2015; 233:187-99. [DOI: 10.1016/j.toxlet.2014.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022]
|
13
|
Jones DE, Igo S, Hurdle J, Facelli JC. Automatic extraction of nanoparticle properties using natural language processing: NanoSifter an application to acquire PAMAM dendrimer properties. PLoS One 2014; 9:e83932. [PMID: 24392101 PMCID: PMC3879259 DOI: 10.1371/journal.pone.0083932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
In this study, we demonstrate the use of natural language processing methods to extract, from nanomedicine literature, numeric values of biomedical property terms of poly(amidoamine) dendrimers. We have developed a method for extracting these values for properties taken from the NanoParticle Ontology, using the General Architecture for Text Engineering and a Nearly-New Information Extraction System. We also created a method for associating the identified numeric values with their corresponding dendrimer properties, called NanoSifter. We demonstrate that our system can correctly extract numeric values of dendrimer properties reported in the cancer treatment literature with high recall, precision, and f-measure. The micro-averaged recall was 0.99, precision was 0.84, and f-measure was 0.91. Similarly, the macro-averaged recall was 0.99, precision was 0.87, and f-measure was 0.92. To our knowledge, these results are the first application of text mining to extract and associate dendrimer property terms and their corresponding numeric values.
Collapse
Affiliation(s)
- David E. Jones
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Sean Igo
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
- Center for High Performance Computing, University of Utah, Salt Lake City, Utah, United States of America
| | - John Hurdle
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
| | - Julio C. Facelli
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
- Center for High Performance Computing, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
14
|
Amara S, Slama IB, Omri K, Ghoul JEL, Mir LEL, Rhouma KB, Abdelmelek H, Sakly M. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain. Toxicol Ind Health 2013; 31:1202-9. [DOI: 10.1177/0748233713491802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20–30 nm) at a dose of 25 mg/kg body weight. Sub-acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group ( p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain.
Collapse
Affiliation(s)
- Salem Amara
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Tunisia
| | - Imen Ben Slama
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Tunisia
| | - Karim Omri
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment, College of Sciences in Gabes, Tunisia
| | - Jaber EL Ghoul
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment, College of Sciences in Gabes, Tunisia
| | - Lassaad EL Mir
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment, College of Sciences in Gabes, Tunisia
- Department of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Khemais Ben Rhouma
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Tunisia
| | - Hafedh Abdelmelek
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Tunisia
| | - Mohsen Sakly
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Tunisia
| |
Collapse
|
15
|
Kathawala MH, Xiong S, Richards M, Ng KW, George S, Loo SCJ. Emerging in vitro models for safety screening of high-volume production nanomaterials under environmentally relevant exposure conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1504-1520. [PMID: 23019115 DOI: 10.1002/smll.201201452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Indexed: 06/01/2023]
Abstract
The rising production of nanomaterial-based consumer products has raised safety concerns. Testing these with animal and other direct models is neither ethically nor economically viable, nor quick enough. This review aims to discuss the strength of in vitro testing, including the use of 2D and 3D cultures, stem cells, and tissue constructs, etc., which would give fast and repeatable answers of a highly specific nature, while remaining relevant to in vivo outcomes. These results can then be combined and the overall toxicity predicted with relative accuracy. Such in vitro models can screen potentially toxic nanomaterials which, if required, can undergo further stringent studies in animals. The cyto- and phototoxicity of some high-volume production nanomaterials, using in vitro models, is also reviewed.
Collapse
Affiliation(s)
- Mustafa Hussain Kathawala
- Nanyang Technological University, School of Materials Science and Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|
16
|
Fatehi L, Wolf SM, McCullough J, Hall R, Lawrenz F, Kahn JP, Jones C, Campbell SA, Dresser RS, Erdman AG, Haynes CL, Hoerr RA, Hogle LF, Keane MA, Khushf G, King NMP, Kokkoli E, Marchant G, Maynard AD, Philbert M, Ramachandran G, Siegel RA, Wickline S. Recommendations for nanomedicine human subjects research oversight: an evolutionary approach for an emerging field. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2012; 40:716-750. [PMID: 23289677 PMCID: PMC4467171 DOI: 10.1111/j.1748-720x.2012.00703.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The nanomedicine field is fast evolving toward complex, "active," and interactive formulations. Like many emerging technologies, nanomedicine raises questions of how human subjects research (HSR) should be conducted and the adequacy of current oversight, as well as how to integrate concerns over occupational, bystander, and environmental exposures. The history of oversight for HSR investigating emerging technologies is a patchwork quilt without systematic justification of when ordinary oversight for HSR is enough versus when added oversight is warranted. Nanomedicine HSR provides an occasion to think systematically about appropriate oversight, especially early in the evolution of a technology, when hazard and risk information may remain incomplete. This paper presents the consensus recommendations of a multidisciplinary, NIH-funded project group, to ensure a science-based and ethically informed approach to HSR issues in nanomedicine, and to integrate HSR analysis with analysis of occupational, bystander, and environmental concerns. We recommend creating two bodies, an interagency Human Subjects Research in Nanomedicine (HSR/N) Working Group and a Secretary's Advisory Committee on Nanomedicine (SAC/N). HSR/N and SAC/N should perform 3 primary functions: (1) analysis of the attributes and subsets of nanomedicine interventions that raise HSR challenges and current gaps in oversight; (2) providing advice to relevant agencies and institutional bodies on the HSR issues, as well as federal and federal-institutional coordination; and (3) gathering and analyzing information on HSR issues as they emerge in nanomedicine. HSR/N and SAC/N will create a home for HSR analysis and coordination in DHHS (the key agency for relevant HSR oversight), optimize federal and institutional approaches, and allow HSR review to evolve with greater knowledge about nanomedicine interventions and greater clarity about attributes of concern.
Collapse
|
17
|
Wolf SM, Jones C. Designing Oversight for Nanomedicine Research in Human Subjects: Systematic Analysis of Exceptional Oversight for Emerging Technologies. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2011; 13:1449-1465. [PMID: 23226969 PMCID: PMC3515054 DOI: 10.1007/s11051-011-0237-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The basic procedures and rules for oversight of U.S. human subjects research have been in place since 1981. Certain types of human subjects research, however, have provoked creation of additional mechanisms and rules beyond the Department of Health & Human Services (DHHS) Common Rule and Food and Drug Administration (FDA) equivalent. Now another emerging domain of human subjects research-nanomedicine-is prompting calls for extra oversight. However, in 30 years of overseeing research on human beings, we have yet to specify what makes a domain of scientific research warrant extra oversight. This failure to systematically evaluate the need for extra measures, the type of extra measures appropriate for different challenges, and the usefulness of those measures hampers efforts to respond appropriately to emerging science such as nanomedicine. This article evaluates the history of extra oversight, extracting lessons for oversight of nanomedicine research in human beings. We argue that a confluence of factors supports the need for extra oversight, including heightened uncertainty regarding risks, fast-evolving science yielding complex and increasingly active materials, likelihood of research on vulnerable participants including cancer patients, and potential risks to others beyond the research participant. We suggest the essential elements of the extra oversight needed.
Collapse
Affiliation(s)
- Susan M. Wolf
- Consortium on Law and Values in Health, Environment & the Life Sciences; Law School; Medical School; Center for Bioethics, University of Minnesota, Minneapolis, MN 55455
- To whom correspondence should be addressed. ; telephone: 612-625-0055; fax: 612-624-9143
| | | |
Collapse
|
18
|
Heng BC, Zhao X, Xiong S, Ng KW, Boey FYC, Loo JSC. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Arch Toxicol 2010; 85:695-704. [DOI: 10.1007/s00204-010-0608-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/20/2010] [Indexed: 02/05/2023]
|
19
|
Keogh E, Rosser BA, Eccleston C. e-Health and chronic pain management: current status and developments. Pain 2010; 151:18-21. [PMID: 20674174 DOI: 10.1016/j.pain.2010.07.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/15/2010] [Accepted: 07/15/2010] [Indexed: 11/25/2022]
Affiliation(s)
- Edmund Keogh
- Centre for Pain Research, University of Bath, UK
| | | | | |
Collapse
|
20
|
Su G, Yan B. Nano-combinatorial chemistry strategy for nanotechnology research. ACTA ACUST UNITED AC 2010; 12:215-21. [PMID: 20131816 DOI: 10.1021/cc900193g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gaoxing Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | | |
Collapse
|
21
|
|
22
|
El-Sadik AO, El-Ansary A, Sabry SM. Nanoparticle-labeled stem cells: a novel therapeutic vehicle. Clin Pharmacol 2010; 2:9-16. [PMID: 22291483 PMCID: PMC3262361 DOI: 10.2147/cpaa.s8931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration.
Collapse
Affiliation(s)
- Abir O El-Sadik
- Stem Cell Unit, Anatomy Department, College of Medicine, Health Science Colleges, Cairo, Egypt.
| | | | | |
Collapse
|