1
|
Rodríguez-Palma EJ, Loya-Lopez S, Allen K, Cruz-Almeida Y, Khanna R. The contribution of clock genes BMAL1 and PER2 in osteoarthritis-associated pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100177. [PMID: 39850977 PMCID: PMC11754085 DOI: 10.1016/j.ynpai.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025]
Abstract
Joint pain is the primary symptom of osteoarthritis (OA) and the main motivator for patients to seek medical care. OA-related pain significantly restricts joint function and diminishes quality of life. Despite the availability of various pain-relieving medications for OA, current treatment strategies often fall short in delivering adequate pain relief. Furthermore, long-term use of pain medications for OA management is frequently linked with notable side effects and toxicities, suggesting the need to explore new potential targets to treat pain in OA patients. In this context, clock genes, particularly brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1) and period circadian protein homolog 2 (PER2), known for their role in circadian rhythms, represent promising opportunities for pharmacological interventions due to their involvement in both the development and maintenance of OA pain. While BMAL1 and PER2 have been extensively studied in neuropathic and inflammatory pain, their specific contributions to OA pain remain less clear, demanding further investigation. This narrative review aims to synthesize the relationship between OA pain and the BMAL1 and PER2 signaling pathways, ultimately exploring the potential therapeutic role of clock genes in addressing this challenging condition.
Collapse
Affiliation(s)
- Erick J. Rodríguez-Palma
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Santiago Loya-Lopez
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kyle Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
- Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Yoon HJ, Moon JY, Kim HJ, Park S, Choi JS, Choi HI, Kim S, Yoon KC. Evaluation of Ocular Irritation Sensitivity: Implications of Clinical Parameters, Pain Sensitivity, and Tear Neuromediator Profiles. J Clin Med 2024; 14:138. [PMID: 39797220 PMCID: PMC11721892 DOI: 10.3390/jcm14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Sensitivity to ocular irritation varies among individuals, being influenced by clinical, subjective, and biochemical factors. This study aimed to evaluate individual variability in ocular irritation sensitivity, focusing on clinical parameters, pain perception, and tear neuromediator profiles. Methods: Sixty female participants aged 20-40 were classified into high-sensitivity and low-sensitivity groups based on their response to an irritant (Tween20). Clinical assessments included the ocular surface disease index (OSDI), tear break-up time (TBUT), Schirmer test, and corneal touch threshold measured with the Cochet-Bonnet esthesiometer. Pain sensitivity was assessed using the pain sensitivity questionnaire (PSQ), and tear neuromediators were quantified in tear samples before and after stimulation. The concentrations of calcitonin gene-related peptide (CGRP), nerve growth factor, neuropeptide Y, vasoactive intestinal peptide (VIP), and substance P were measured using an enzyme-linked immune sorbent assay (ELISA). Results: The high-sensitivity group exhibited significantly higher OSDI scores (p = 0.038). No significant differences were observed in TBUT, corneal staining scores, or Schirmer's test results. The PSQ results revealed that the high-sensitivity group had lower total and moderate pain scores (p = 0.037 and p = 0.040, respectively). An analysis of the tear neuromediator showed elevated baseline CGRP levels (p = 0.017) and a significant post-stimulation increase in substance P (p = 0.021) in the high-sensitivity group. Conclusions: These findings emphasize the value of combining clinical, subjective, and biochemical measures to understand sensitivity to ocular irritation. This comprehensive approach may guide the development of safer cosmetic formulations and improve safety assessment protocols.
Collapse
Affiliation(s)
- Hyeon-Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| | - Ja Young Moon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| | - Hyun Jee Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| | - Sodam Park
- Safety and Microbiology Lab, Amorepacific R&I Center, Yongin-si 17074, Republic of Korea
| | - Ji Suk Choi
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| | - Hoon-In Choi
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| | - Seoyoung Kim
- Safety and Microbiology Lab, Amorepacific R&I Center, Yongin-si 17074, Republic of Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| |
Collapse
|
3
|
Schaible HG, König C, Ebersberger A. Spinal pain processing in arthritis: Neuron and glia (inter)actions. J Neurochem 2024; 168:3644-3662. [PMID: 36520021 DOI: 10.1111/jnc.15742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diseases of joints are among the most frequent causes of chronic pain. In the course of joint diseases, the peripheral and the central nociceptive system develop persistent hyperexcitability (peripheral and central sensitization). This review addresses the mechanisms of spinal sensitization evoked by arthritis. Electrophysiological recordings in anesthetized rats from spinal cord neurons with knee input in a model of acute arthritis showed that acute spinal sensitization is dependent on spinal glutamate receptors (AMPA, NMDA, and metabotropic glutamate receptors) and supported by spinal actions of neuropeptides such as neurokinins and CGRP, by prostaglandins, and by proinflammatory cytokines. In several chronic arthritis models (including immune-mediated arthritis and osteoarthritis) spinal glia activation was observed to be coincident with behavioral mechanical hyperalgesia which was attenuated or prevented by intrathecal application of minocycline, fluorocitrate, and pentoxyfylline. Some studies identified specific pathways of micro- and astroglia activation such as the purinoceptor- (P2X7-) cathepsin S/CX3CR1 pathway, the mobility group box-1 protein (HMGB1), and toll-like receptor 4 (TLR4) activation, spinal NFκB/p65 activation and others. The spinal cytokines TNF, interleukin-6, interleukin-1β, and others form a functional spinal network characterized by an interaction between neurons and glia cells which is required for spinal sensitization. Neutralization of spinal cytokines by intrathecal interventions attenuates mechanical hyperalgesia. This effect may in part result from local suppression of spinal sensitization and in part from efferent effects which attenuate the inflammatory process in the joint. In summary, arthritis evokes significant spinal hyperexcitability which is likely to contribute to the phenotype of arthritis pain in patients.
Collapse
Affiliation(s)
- Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
4
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
5
|
Liao Z, Umar M, Huang X, Qin L, Xiao G, Chen Y, Tong L, Chen D. Transient receptor potential vanilloid 1: A potential therapeutic target for the treatment of osteoarthritis and rheumatoid arthritis. Cell Prolif 2024; 57:e13569. [PMID: 37994506 PMCID: PMC10905355 DOI: 10.1111/cpr.13569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/24/2023] Open
Abstract
This study aims to determine the molecular mechanisms and analgesic effects of transient receptor potential vanilloid 1 (TRPV1) in the treatments of osteoarthritis (OA) and rheumatoid arthritis (RA). We summarize and analyse current studies regarding the biological functions and mechanisms of TRPV1 in arthritis. We search and analyse the related literature in Google Scholar, Web of Science and PubMed databases from inception to September 2023 through the multi-combination of keywords like 'TRPV1', 'ion channel', 'osteoarthritis', 'rheumatoid arthritis' and 'pain'. TRPV1 plays a crucial role in regulating downstream gene expression and maintaining cellular function and homeostasis, especially in chondrocytes, synovial fibroblasts, macrophages and osteoclasts. In addition, TRPV1 is located in sensory nerve endings and plays an important role in nerve sensitization, defunctionalization or central sensitization. TRPV1 is a non-selective cation channel protein. Extensive evidence in recent years has established the significant involvement of TRPV1 in the development of arthritis pain and inflammation, positioning it as a promising therapeutic target for arthritis. TRPV1 likely represents a feasible therapeutic target for the treatment of OA and RA.
Collapse
Affiliation(s)
- Zhidong Liao
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co‐constructed by the Province and MinistryGuangxi Medical UniversityNanningGuangxiChina
| | - Muhammad Umar
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Xingyun Huang
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong KongChina
| | - Guozhi Xiao
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yan Chen
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Liping Tong
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Di Chen
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| |
Collapse
|
6
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:339. [PMID: 36679051 PMCID: PMC9860573 DOI: 10.3390/plants12020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Diseases such as cancer, neurological pathologies and chronic pain represent currently unmet needs. The existing pharmacotherapeutic options available for treating these conditions are limited by lack of efficiency and/or side effects. Transient receptor potential vanilloid 1 ion channel emerged as an attractive therapeutic target for developing new analgesic, anti-cancer and antiepileptic agents. Furthermore, various natural ingredients were shown to have affinity for this receptor. The aim of this narrative review was to summarize the diverse natural scaffolds of TRPV1 modulators based on their agonistic/antagonistic properties and to analyze the structure-activity relationships between the ligands and molecular targets based on the results of the existing molecular docking, mutagenesis and in vitro studies. We present here an exhaustive collection of TRPV1 modulators grouped by relevant chemical features: vanilloids, guaiacols, phenols, alkylbenzenes, monoterpenes, sesquiterpenoids, alkaloids, etc. The information herein is useful for understanding the key structural elements mediating the interaction with TRPV1 and how their structural variation impacts the interaction between the ligand and receptor. We hope this data will contribute to the design of novel effective and safe TRPV1 modulators, to help overcome the lack of effective therapeutic agents against pathologies with high morbidity and mortality.
Collapse
|
8
|
Peng JW, Gu YY, Wei J, Sun Y, Zhu CL, Zhang L, Song Y, Chen L, Chen X, Wang Q, Zhang HL. LncRNA MEG3-TRPV1 signaling regulates chronic inflammatory pain in rats. Mol Pain 2022; 18:17448069221144246. [PMID: 36424837 PMCID: PMC9726848 DOI: 10.1177/17448069221144246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Osteoarthritis (OA) is a common osteoarthropathy with chronic inflammatory pain as the core symptom in middle-aged and elderly people. LncRNA MEG3 (Maternally expressed gene 3) is involved in the development of OA via regulation of angiogenesis, which causes the activation and overexpression of transient receptor potential vanilloid type-1 (TRPV1). In this study, we investigated the mechanism of MEG3-TRPV1 signaling in chronic inflammatory pain (CIP) of rat model. Chronic inflammatory pain was modeled using subcutaneous microinjection of complete Freund's adjuvant (CFA) into the left hind paw of rats. We showed that TRPV1 mRNA and protein were significantly increased, while MEG3 mRNA was significantly decreased, in the DRG and SDH of CFA-induced rats. In addition, intrathecal injection of MEG3-overexpressing lentivirus significantly downregulated TRPV1 expression and alleviated chronic inflammatory pain in CFA-induced rats. Treatment with a TRPV1 antagonist also significantly relieved chronic inflammatory pain in CFA-induced rats. In general, our results reveal that MEG3 alleviates chronic inflammatory pain by downregulating TRPV1 expression. These findings may provide new therapeutic targets in the treatment of patients with OA.
Collapse
Affiliation(s)
- Jing-Wei Peng
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China,Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Yin-Yin Gu
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jia Wei
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ye Sun
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Chun-Long Zhu
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ling Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Yu Song
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Long Chen
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xia Chen
- Department of Anesthesiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Qian Wang
- Department of Anesthesiology, Children’s Hospital of Soochow University, Suzhou, China,Qian Wang, Department of Anesthesiology, Children’s Hospital of Soochow University, Suzhou 215123, China.
| | - Hai-Long Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China,Hai-Long Zhang, Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Stöckl S, Eitner A, Bauer RJ, König M, Johnstone B, Grässel S. Substance P and Alpha-Calcitonin Gene-Related Peptide Differentially Affect Human Osteoarthritic and Healthy Chondrocytes. Front Immunol 2021; 12:722884. [PMID: 34512650 PMCID: PMC8430215 DOI: 10.3389/fimmu.2021.722884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that not only causes cartilage loss but also structural damage in all joint tissues. Joints are innervated by alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP)-positive sensory nerve fibers. Alteration of sensory joint innervation could be partly responsible for degenerative changes in joints that contribute to the development of OA. Therefore, our aim was to analyze and compare the molecular effects of SP and αCGRP on the metabolism of articular chondrocytes from OA patients and non-OA cartilage donors. We treated the cells with SP or αCGRP and analysed the influence of these neuropeptides on chondrocyte metabolism and modulation of signaling pathways. In chondrocytes from healthy cartilage, SP had minimal effects compared with its effects on OA chondrocytes, where it induced inflammatory mediators, inhibited chondrogenic markers and promoted apoptosis and senescence. Treatment with αCGRP also increased apoptosis and senescence and reduced chondrogenic marker expression in OA chondrocytes, but stimulated an anabolic and protective response in healthy chondrocytes. The catabolic influence of SP and αCGRP might be due to activation of ERK signaling that could be counteracted by an increased cAMP response. We suggest that a switch between the G-subunits of the corresponding receptors after binding their ligands SP or αCGRP plays a central role in mediating the observed effects of sensory neuropeptides on chondrocytes.
Collapse
Affiliation(s)
- Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| | - Annett Eitner
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Physiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias König
- Department of Orthopedics, University Medical Center Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical Biotechnology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Radiofrequency Irradiation Modulates TRPV1-Related Burning Sensation in Rosacea. Molecules 2021; 26:molecules26051424. [PMID: 33800730 PMCID: PMC7961329 DOI: 10.3390/molecules26051424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.
Collapse
|
11
|
Abstract
The transient receptor potential vanilloid-1 (TRPV1) is a non-specific cation channel known for its sensitivity to pungent vanilloid compound (i.e. capsaicin) and noxious stimuli, including heat, low pH or inflammatory mediators. TRPV1 is found in the somatosensory system, particularly primary afferent neurons that respond to damaging or potentially damaging stimuli (nociceptors). Stimulation of TRPV1 evokes a burning sensation, reflecting a central role of the channel in pain. Pharmacological and genetic studies have validated TRPV1 as a therapeutic target in several preclinical models of chronic pain, including cancer, neuropathic, postoperative and musculoskeletal pain. While antagonists of TRPV1 were found to be a valuable addition to the pain therapeutic toolbox, their clinical use has been limited by detrimental side effects, such as hyperthermia. In contrast, capsaicin induces a prolonged defunctionalisation of nociceptors and thus opened the door to the development of a new class of therapeutics with long-lasting pain-relieving effects. Here we review the list of TRPV1 agonists undergoing clinical trials for chronic pain management, and discuss new indications, formulations or combination therapies being explored for capsaicin. While the analgesic pharmacopeia for chronic pain patients is ancient and poorly effective, modern TRPV1-targeted drugs could rapidly become available as the next generation of analgesics for a broad spectrum of pain conditions.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
12
|
An update on targets for treating osteoarthritis pain: NGF and TRPV1. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2020; 6:129-145. [PMID: 34178580 DOI: 10.1007/s40674-020-00146-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose of review a)Osteoarthritis (OA) is the most common form of arthritis, and pain is the primary symptom of the disease, yet analgesic options for treating OA pain remain limited. In this review, we aimed to give an update on the current clinical and preclinical studies targeting two pathways that are being investigated for treating OA pain: the nerve growth factor (NGF) pathway and the transient receptor potential vanilloid-1 (TRPV1) pathway. Recent findings b)Antibodies against NGF, small molecule inhibitors of TrkA, TRPV1 agonists, and TRPV1 antagonists are all in different stages of clinical and pre-clinical testing for the treatment of OA pain. NGF antibodies have shown efficacy in the primary endpoints tested compared to placebo, however, rapidly progressive OA has been consistently observed in a subset of patients and the cause remains unclear. TRPV1 agonists have also demonstrated reduced pain with no serious adverse events - the most common adverse events include a burning or warming sensation upon administration. Summary c)Targeting the NGF and TRPV1 pathways appear effective for reducing OA pain, but further work is needed to better understand which patients may benefit most from these treatments. The anti-NGF antibody tanezumab and the TRPV1 agonist CNTX-4975 have both received fast-track designation from the FDA for the treatment of OA pain.
Collapse
|
13
|
de Sousa Valente J. The Pharmacology of Pain Associated With the Monoiodoacetate Model of Osteoarthritis. Front Pharmacol 2019; 10:974. [PMID: 31619987 PMCID: PMC6759799 DOI: 10.3389/fphar.2019.00974] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
The high incidence of osteoarthritis (OA) in an increasingly elderly population anticipates a dramatic rise in the number of people suffering from this disease in the near future. Because pain is the main reason patients seek medical help, effective pain management-which is currently lacking-is paramount to improve the quality of life that OA sufferers desperately seek. Good animal models are, in this day and age, fundamental tools for basic research of new therapeutic pathways. Several animal models of OA have been characterized, but none of them reproduces entirely all symptoms of the disease. Choosing between different animal models depends largely on which aspect of OA one aims to study. Here, we review the current understanding of the monoiodoacetate (MIA) model of OA. MIA injection in the knee joint leads to the progressive disruption of cartilage, which, in turn, is associated with the development of pain-like behavior. There are several reasons why the MIA model of OA seems to be the most adequate to study the pharmacological effect of new drugs in pain associated with OA. First, the pathological changes induced by MIA share many common traits with those observed in human OA (Van Der Kraan et al., 1989; Guingamp et al., 1997; Guzman et al., 2003), including loss of cartilage and alterations in the subchondral bone. The model has been extensively utilized in basic research, which means that the time course of pain-related behaviors and histopathological changes, as well as pharmacological profile, namely of commonly used pain-reducing drugs, is now moderately understood. Also, the severity of the progression of pathological changes can be controlled by grading the concentration of MIA administered. Further, in contrast with other OA models, MIA offers a rapid induction of pain-related phenotypes, with the cost-saving consequence in new drug screening. This model, therefore, may be more predictive of clinical efficacy of novel pharmacological tools than other chronic or acute OA models.
Collapse
Affiliation(s)
- João de Sousa Valente
- Vascular Biology and Inflammation Section, Cardiovascular School of Medicine and Sciences, British Heart Foundation Centre of Excellence, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Otis C, Guillot M, Moreau M, Pelletier JP, Beaudry F, Troncy E. Sensitivity of functional targeted neuropeptide evaluation in testing pregabalin analgesic efficacy in a rat model of osteoarthritis pain. Clin Exp Pharmacol Physiol 2019; 46:723-733. [PMID: 31046168 DOI: 10.1111/1440-1681.13100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/22/2019] [Accepted: 04/28/2019] [Indexed: 12/27/2022]
Abstract
The monosodium iodoacetate (MIA)-induced joint degeneration in rats is the most used animal model to screen analgesic drugs to alleviate osteoarthritis (OA) pain. This study aimed to evaluate the analgesic efficacy of pregabalin (PGB) in an MIA-induced OA model in rodents by using functional and neuroproteomic pain assessment methods. Treatment group included PGB in curative intent over 9 days compared to gold standard therapy (positive controls) and placebo (negative control). Functional assessments of pain (quantitative sensory testing and operant test) were performed concomitantly with spinal neuropeptides quantification. At day 21 post-OA induction, PGB in MIA rats reduced tactile allodynia (P = 0.028) and improved the place escape/avoidance behaviour (P = 0.04) compared to values recorded at last time-point before initiating analgesic therapy. All spinal neuropeptide concentrations, such as substance P, calcitonin gene-related peptide, bradykinin and somatostatin, came back to normal (non-affected) rat values, compared to their increase observed in MIA rats receiving the placebo (P < 0.0001). Initiated 13 days after chemical OA induction, repeated medication with PGB provided analgesia according to quantitative sensory testing, operant test and targeted neuropeptides pain assessment methods. This report highlights the interest of using reliable and sensitive methods like targeted neuropeptide quantification to detect the analgesic effects of a test article with concomitant functional assessments of pain when studying OA pain components.
Collapse
Affiliation(s)
- Colombe Otis
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Martin Guillot
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Maxim Moreau
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Eric Troncy
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
15
|
Dose-Dependent Effect of Hyperbaric Oxygen Treatment on Burn-Induced Neuropathic Pain in Rats. Int J Mol Sci 2019; 20:ijms20081951. [PMID: 31010055 PMCID: PMC6514672 DOI: 10.3390/ijms20081951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperbaric oxygen treatment (HBOT) has been used to reduce neuropathic pain. Melatonin and opioid receptors are involved in neuropathic pain, but it is not known if HBOT works through these pathways to achieve its antinociceptive effect. We divided anesthetized rats into two treatment and three sham groups. The two treatment groups received third-degree burns on their right hind paws, one treated in a hyperbaric chamber for a week and the other for two weeks. We evaluated the mechanical paw-withdrawal threshold (MWT) and expression of melatonin receptor 1 (MT1), melatonin receptor 2 (MT2), μ (MOR) and κ (KOR) opioid receptor, brain-derived neurotrophic factor (BDNF), Substance P, and calcitonin gene-related peptide (CGRP) in cuneate nucleus, dorsal horn, and hind paw skin by immunohistochemical, immunofluorescence assays and real-time quantitative polymerase chain reaction (RT-PCR). The group receiving one-week HBOT had increased expressions of MT1, MT2, MOR and KOR and decreased expressions of BDNF, Substance P, and CGRP. Their mechanically measured pain levels returned to normal within a week and lasted three weeks. This anti-allodynia effect lasted twice as long in those treated for two weeks. Our findings suggest that increasing the duration of HBOT can reduce burn-induced mechanical allodynia for an extended period of time in rats. The upregulation of melatonin and opioid receptors observed after one week of HBOT suggests they may be partly involved in attenuation of the mechanical allodynia. Downregulation of BDNF, substance P and CGRP may have also contributed to the overall beneficial effect of HBOT.
Collapse
|
16
|
Abstract
CGRP has long been suspected as a mediator of arthritis pain, although evidence that CGRP directly mediates human musculoskeletal pain remains circumstantial. This chapter describes in depth the evidence surrounding CGRP's association with pain in musculoskeletal disorders and also summarises evidence for CGRP being a direct cause of pain in other conditions. CGRP-immunoreactive nerves are present in musculoskeletal tissues, and CGRP expression is altered in musculoskeletal pain. CGRP modulates musculoskeletal pain through actions both in the periphery and central nervous system. Human observational studies, research on animal arthritis models and the few reported randomised controlled trials in humans of treatments that target CGRP provide the context of CGRP as a possible pain biomarker or mediator in conditions other than migraine.
Collapse
Affiliation(s)
- David A Walsh
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK.
- Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Nottinghamshire, UK.
| | - Daniel F McWilliams
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Eitner A, Hofmann GO, Schaible HG. Mechanisms of Osteoarthritic Pain. Studies in Humans and Experimental Models. Front Mol Neurosci 2017; 10:349. [PMID: 29163027 PMCID: PMC5675866 DOI: 10.3389/fnmol.2017.00349] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
Pain due to osteoarthritis (OA) is one of the most frequent causes of chronic pain. However, the mechanisms of OA pain are poorly understood. This review addresses the mechanisms which are thought to be involved in OA pain, derived from studies on pain mechanisms in humans and in experimental models of OA. Three areas will be considered, namely local processes in the joint associated with OA pain, neuronal mechanisms involved in OA pain, and general factors which influence OA pain. Except the cartilage all structures of the joints are innervated by nociceptors. Although the hallmark of OA is the degradation of the cartilage, OA joints show multiple structural alterations of cartilage, bone and synovial tissue. In particular synovitis and bone marrow lesions have been proposed to determine OA pain whereas the contribution of the other pathologies to pain generation has been studied less. Concerning the peripheral neuronal mechanisms of OA pain, peripheral nociceptive sensitization was shown, and neuropathic mechanisms may be involved at some stages. Structural changes of joint innervation such as local loss and/or sprouting of nerve fibers were shown. In addition, central sensitization, reduction of descending inhibition, descending excitation and cortical atrophies were observed in OA. The combination of different neuronal mechanisms may define the particular pain phenotype in an OA patient. Among mediators involved in OA pain, nerve growth factor (NGF) is in the focus because antibodies against NGF significantly reduce OA pain. Several studies show that neutralization of interleukin-1β and TNF may reduce OA pain. Many patients with OA exhibit comorbidities such as obesity, low grade systemic inflammation and diabetes mellitus. These comorbidities can significantly influence the course of OA, and pain research just began to study the significance of such factors in pain generation. In addition, psychologic and socioeconomic factors may aggravate OA pain, and in some cases genetic factors influencing OA pain were found. Considering the local factors in the joint, the neuronal processes and the comorbidities, a better definition of OA pain phenotypes may become possible. Studies are under way in order to improve OA and OA pain monitoring.
Collapse
Affiliation(s)
- Annett Eitner
- Department of Physiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Gunther O Hofmann
- Department of Traumatology and Orthopedic Surgery, University Hospital Jena, Friedrich Schiller University, Jena, Germany.,Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Hans-Georg Schaible
- Department of Physiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
18
|
Mayorga AJ, Flores CM, Trudeau JJ, Moyer JA, Shalayda K, Dale M, Frustaci ME, Katz N, Manitpisitkul P, Treister R, Ratcliffe S, Romano G. A randomized study to evaluate the analgesic efficacy of a single dose of the TRPV1 antagonist mavatrep in patients with osteoarthritis. Scand J Pain 2017; 17:134-143. [PMID: 28850367 DOI: 10.1016/j.sjpain.2017.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIMS Transient receptor potential vanilloid type 1 (TRPV1) receptor antagonists have been evaluated in clinical studies for their analgesic effects. Mavatrep, a potent, selective, competitive TRPV1 receptor antagonist has demonstrated pharmacodynamic effects consistent with target engagement at the TRPV1 receptor in a previous single-dose clinical study. The current study was conducted to evaluate the analgesic effects of a single dose of mavatrep. METHODS In this randomized, placebo- and active-controlled, 3-way crossover, phase 1b study, patients with painful knee osteoarthritis were treated with a single-dose of 50mg mavatrep, 500mg naproxen twice-daily, and placebo. Patients were randomized to 1 of 6 treatment sequences. Each treatment sequence included three treatment periods of 7 days duration with a 7 day washout between each treatment period. The primary efficacy evaluation was pain reduction measured by the 4-h postdose sum of pain intensity difference (SPID) based on the 11-point (0-10) Numerical Rating Scale (NRS) for pain after stair-climbing (PASC). The secondary efficacy evaluations included 11-point (0-10) NRS pain scores entered into the Actiwatch between clinic visits, the Western Ontario and McMaster Universities Arthritis Index subscales (WOMAC) questionnaire, and use of rescue medication. Safety and tolerability of single oral dose mavatrep were also assessed. RESULTS Of 33 patients randomized, 32 completed the study. A statistically significantly (p<0.1) greater reduction in PASC was observed for mavatrep versus placebo (4-h SPID least square mean [LSM] [SE] difference: 1.5 [0.53]; p=0.005 and 2-h LSM [SE] difference of PID: 0.7 [0.30]; p=0.029). The mean average daily current pain NRS scores were lower in the mavatrep and naproxen treatment arm than in the placebo arm (mavatrep: 7 day mean [SD], 3.72 [1.851]; naproxen: 7 day mean [SD], 3.49 [1.544]; placebo: 7 day mean [SD], 4.9 [1.413]). Mavatrep showed statistically significant improvements as compared with placebo on the WOMAC subscales (pain on days 2 [p=0.049] and 7 [p=0.041], stiffness on day 7 [p=0.075]), and function on day 7 [p=0.077]). The same pattern of improvement was evident for naproxen versus placebo. The mean (SD) number of rescue medication tablets taken during the 7-day treatment period was 4.2 (6.49) for mavatrep treatment, 2.8 (5.42) for naproxen, and 6.3 (8.25) for placebo treatment. All patients that received mavatrep reported at least 1 treatment emergent adverse event (TEAE). Feeling cold (79%), thermohypoesthesia (61%), dysgeusia (58%), paraesthesia (36%), and feeling hot (15%) were the most common TEAEs in the mavatrep group. Total 9% patients receiving mavatrep experienced minor thermal burns. No deaths or serious AEs or discontinuations due to AEs occurred. CONCLUSION Overall, mavatrep was associated with a significant reduction in pain, stiffness, and physical function when compared with placebo in patients with knee osteoarthritis. Mavatrep's safety profile was consistent with its mechanism of action as a TRPV1 antagonist. IMPLICATIONS Further studies are required to evaluate whether lower multiple doses of mavatrep can produce analgesic efficacy while minimizing adverse events, as well as the potential for improved patient counselling techniques to reduce the minor thermal burns related to decreased heat perception. TRIAL REGISTRATION 2009-010961-21 (EudraCT Number).
Collapse
Affiliation(s)
| | | | | | - John A Moyer
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Kevin Shalayda
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Mark Dale
- MAC Clinical Research, Manchester, UK
| | | | - Nathaniel Katz
- Analgesic Solutions, Natick, MA, USA; Tufts University School of Medicine, Boston, MA, USA
| | | | - Roi Treister
- Analgesic Solutions, Natick, MA, USA; Tufts University School of Medicine, Boston, MA, USA; Massachusetts General Hospital & Harvard Medical School, Department of Neurology, Nerve Injury Unit, Boston, MA, USA
| | | | - Gary Romano
- Janssen Research & Development, LLC, Titusville, NJ, USA
| |
Collapse
|
19
|
Zhang E, Lee S, Yi MH, Nan Y, Xu Y, Shin N, Ko Y, Lee YH, Lee W, Kim DW. Expression of granulocyte colony-stimulating factor 3 receptor in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Mol Med Rep 2017; 16:2009-2015. [PMID: 28656207 PMCID: PMC5561782 DOI: 10.3892/mmr.2017.6853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/11/2017] [Indexed: 12/13/2022] Open
Abstract
In previous studies that have profiled gene expression in patients with complex regional pain syndrome (CRPS), the expression of granulocyte colony-stimulating factor 3 receptor (G-CSFR) was elevated, as were a number of pain-associated genes. The present study determined the expression of G-CSFR and the mechanisms by which it may affect hypersensitivity, focusing on the signal transducer and activator of transcription 3 (STAT3)/transient receptor potential cation channel subfamily V 1 (TRPV1) signaling pathway in particular, which is an important mediator of pain. Following L5 spinal nerve ligation (SNL) surgery, the protein and mRNA levels of G-CSFR increased in the ipsilateral spinal dorsal horn when compared with the sham and/or contralateral control. Double immunofluorescence further demonstrated that G-CSFR colocalized with TRPV1 and phosphorylated STAT in the neurons of the spinal dorsal horn. G-CSF treatment led to an increase in G-CSFR and TRPV1 expression and phosphorylation of STAT3. These results indicate that G-CSF-induced G-CSFR expression may activate TRPV1 by promoting phosphorylation of STAT3. Collectively, the results suggest, for the first time, that the expression of G-CSFR in neurons following peripheral nerve injury may be involved in the induction and maintenance of neuropathic pain through the STAT3 and TRPV1 signaling pathway.
Collapse
Affiliation(s)
- Enji Zhang
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| | - Sunyeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 301‑747, Republic of Korea
| | - Min-Hee Yi
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| | - Yongshan Nan
- Department of Anesthesiology, Yanbian University Hospital, Yanbian, Jilin 133000, P.R. China
| | - Yinshi Xu
- Department of Anesthesiology, Yanbian University Hospital, Yanbian, Jilin 133000, P.R. China
| | - Nara Shin
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| | - Youngkwon Ko
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 301‑747, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| | - Wonhyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon 301‑747, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301‑747, Republic of Korea
| |
Collapse
|
20
|
Role of calcitonin gene-related peptide in nociception resulting from hind paw incision in rats. J ANAT SOC INDIA 2017. [DOI: 10.1016/j.jasi.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Takano S, Uchida K, Inoue G, Minatani A, Miyagi M, Aikawa J, Iwase D, Onuma K, Mukai M, Takaso M. Increase and regulation of synovial calcitonin gene-related peptide expression in patients with painful knee osteoarthritis. J Pain Res 2017; 10:1099-1104. [PMID: 28546767 PMCID: PMC5436753 DOI: 10.2147/jpr.s135939] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Recent studies suggest that the vasodilatory neuropeptide calcitonin gene-related peptide (CGRP) is localized in the synovial tissue and may be involved in the pathology of hip and knee osteoarthritis (OA). However, the regulation and relationship between pain and CGRP expression levels in the synovial tissue of human OA patients are not fully understood. Methods Synovial tissues were harvested from 74 participants with radiographic knee OA (unilateral Kellgren/Lawrence grades 3–4) during total knee arthroplasty. CGRP-expressing cells in the resected tissue were identified by immunohistochemical analyses. To examine CGRP expression levels, CD14-positive (CD14+) (macrophage-rich cell fraction) and CD14-negative (CD14−; fibroblast-rich cell fraction) cells were isolated from the synovial tissue. To investigate the involvement of prostaglandin E2 (PGE2) in the regulation of CGRP expression, cultured CD14− and CD14+ cells were stimulated with PGE2. In addition, CGRP expression levels in the synovial tissue of OA patients with strong/severe (visual analog scale [VAS]≥6) and mild/moderate pain (VAS<6) were compared. Results CGRP-positive cells were detected in the intimal lining layer and comprised both CD14− and CD14+ cells. CGRP expression in non-cultured CD14− fractions was significantly higher than that in CD14+ fractions. The expression levels of CGRP were significantly increased in cultured CD14− cell fractions treated with exogenous PGE2, compared to untreated CD14− cell fractions. In contrast, treatment with PGE2 did not increase CGRP regardless of whether or not CD14+ cells expressed CGRP. Furthermore, CGRP expression in the VAS≥6 group was also significantly higher than that in the VAS<6 group. Conclusion These findings suggest that CGRP expression in the synovial fibroblasts is regulated by the COX-2/PGE2 pathway and that elevation of synovial CGRP levels may contribute to OA pain.
Collapse
Affiliation(s)
- Shotaro Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Atsushi Minatani
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Dai Iwase
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kenji Onuma
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Manabu Mukai
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
22
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
23
|
TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals (Basel) 2016; 9:ph9040077. [PMID: 27983625 PMCID: PMC5198052 DOI: 10.3390/ph9040077] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022] Open
Abstract
Ion channels of the Transient Receptor Potential (TRP) family mediate the influx of monovalent and/or divalent cations into cells in response to a host of chemical or physical stimuli. In the skin, TRP channels are expressed in many cell types, including keratinocytes, sensory neurons, melanocytes, and immune/inflammatory cells. Within these diverse cell types, TRP channels participate in physiological processes ranging from sensation to skin homeostasis. In addition, there is a growing body of evidence implicating abnormal TRP channel function, as a product of excessive or deficient channel activity, in pathological skin conditions such as chronic pain and itch, dermatitis, vitiligo, alopecia, wound healing, skin carcinogenesis, and skin barrier compromise. These diverse functions, coupled with the fact that many TRP channels possess pharmacologically accessible sites, make this family of proteins appealing therapeutic targets for skin disorders.
Collapse
|
24
|
Liang S, Li J, Gou X, Chen D. Blocking mammalian target of rapamycin alleviates bladder hyperactivity and pain in rats with cystitis. Mol Pain 2016; 12:12/0/1744806916668868. [PMID: 27780878 PMCID: PMC5084610 DOI: 10.1177/1744806916668868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The purposes of this study were to examine (1) the effects of blocking mammalian target of rapamycin (mTOR) on the exaggerated bladder activity and pain evoked by cystitis and (2) the underlying mechanisms responsible for the role of mTOR in regulating cystic sensory activity. RESULTS The expression of p-mTOR, mTOR-mediated phosphorylation of p70 ribosomal S6 protein kinase 1 (p-S6K1), 4 E-binding protein 4 (p-4 E-BP1), as well as phosphatidylinositide 3-kinase (p-PI3K) pathway were amplified in cyclophosphamide rats as compared with control rats. Blocking mTOR by intrathecal infusion of rapamycin attenuated bladder hyperactivity and pain. In addition, blocking PI3K signal pathway attenuated activities of mTOR, which was accompanied with decreasing bladder hyperactivity and pain. Inhibition of either mTOR or PI3K blunted the enhanced spinal substance P and calcitonin gene-related peptide in cyclophosphamide rats. CONCLUSIONS The data for the first time revealed specific signaling pathways leading to cyclophosphamide-induced bladder hyperactivity and pain, including the activation of mTOR and PI3K. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis.
Collapse
Affiliation(s)
- Simin Liang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daihui Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Minatani A, Uchida K, Inoue G, Takano S, Aikawa J, Miyagi M, Fujimaki H, Iwase D, Onuma K, Matsumoto T, Takaso M. Activation of calcitonin gene-related peptide signaling through the prostaglandin E2-EP1/EP2/EP4 receptor pathway in synovium of knee osteoarthritis patients. J Orthop Surg Res 2016; 11:117. [PMID: 27751171 PMCID: PMC5067902 DOI: 10.1186/s13018-016-0460-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a 37-amino-acid vasodilatory neuropeptide that binds to receptor activity-modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CLR). Clinical and preclinical evidence suggests that CGRP is associated with hip and knee joint pain; however, the regulation mechanisms of CGRP/CGRP receptor signaling in synovial tissue are not fully understood. METHODS Synovial tissues were harvested from 43 participants with radiographic knee osteoarthritis (OA; unilateral Kellgren/Lawrence (K/L) grades 3-4) during total knee arthroplasty. Correlationships between the mRNA expression levels of CGRP and those of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cycloxygenase-2 (COX-2) were evaluated using real-time PCR analysis of total RNA extracted from the collected synovial tissues. To investigate the factors controlling the regulation of CGRP and CGRP receptor expression, cultured synovial cells were stimulated with TNF-α, IL-1β, IL-6, and prostaglandin E2 (PGE2) and were also treated with PGE2 receptor (EP) agonist. RESULTS CGRP and COX-2 localized in the synovial lining layer. Expression of COX-2 positively correlated with CGRP mRNA expression in the synovial tissue of OA patients. The gene expression of CGRP and RAMP1 increased significantly in synovial cells exogenously treated with PGE2 compared to untreated control cells. In cultured synovial cells, CGRP gene expression increased significantly following EP4 agonist treatment, whereas RAMP1 gene expression increased significantly in the presence of exogenously added EP1 and EP2 agonists. CONCLUSIONS PGE2 appears to regulate CGRP/CGRP receptor signaling through the EP receptor in the synovium of knee OA patients.
Collapse
Affiliation(s)
- Atsushi Minatani
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan.
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Shotaro Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hisako Fujimaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Dai Iwase
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kenji Onuma
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
26
|
Koda K, Hyakkoku K, Ogawa K, Takasu K, Imai S, Sakurai Y, Fujita M, Ono H, Yamamoto M, Fukuda I, Yamane S, Morita A, Asaki T, Kanemasa T, Sakaguchi G, Morioka Y. Sensitization of TRPV1 by protein kinase C in rats with mono-iodoacetate-induced joint pain. Osteoarthritis Cartilage 2016; 24:1254-62. [PMID: 26970286 DOI: 10.1016/j.joca.2016.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/10/2016] [Accepted: 02/26/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess the functional changes of Transient receptor potential vanilloid 1 (TRPV1) receptor and to clarify its mechanism in a rat mono-iodoacetate (MIA)-induced joint pain model (MIA rats), which has joint degeneration with cartilage loss similar to osteoarthritis. METHODS Sensitization of TRPV1 in MIA rats was assessed by transient spontaneous pain behavior induced by capsaicin injection in knee joints and electrophysiological changes of dorsal root ganglion (DRG) neurons innervating knee joints in response to capsaicin. Mechanisms of TRPV1 sensitization were analyzed by a newly developed sandwich enzyme-linked immunosorbent assay that detects phosphorylated TRPV1, followed by functional and expression analyses of protein kinase C (PKC) in vivo and in vitro, which involves TRPV1 phosphorylation. RESULTS Pain-related behavior induced by intra-articular injection of capsaicin was significantly increased in MIA rats compared with sham rats. In addition, capsaicin sensitivity, evaluated by capsaicin-induced inward currents, was significantly increased in DRG neurons of MIA rats. Protein levels of TRPV1 remained unchanged, but phosphorylated TRPV1 at Ser800 increased in DRG neurons of MIA rats. Phosphorylated-PKCɛ (p-PKCɛ) increased and co-localized with TRPV1 in DRG neurons of MIA rats. Capsaicin-induced pain-related behavior in MIA rats was inhibited by intra-articular pretreatment of the PKC inhibitor bisindolylmaleimide I. In addition, intra-articular injection of the PKC activator phorbol 12-myristate 13-acetate increased capsaicin-induced pain-related behavior in normal rats. CONCLUSION TRPV1 was sensitized at the knee joint and at DRG neurons of MIA rats through PKC activation. Thus, TRPV1 sensitization might be involved in chronic pain caused by osteoarthritis.
Collapse
Affiliation(s)
- K Koda
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - K Hyakkoku
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - K Ogawa
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - K Takasu
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - S Imai
- Antibody Therapeutics, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Y Sakurai
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - M Fujita
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - H Ono
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - M Yamamoto
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - I Fukuda
- Biomarker, Biotechnology-Based Medicine, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - S Yamane
- Antibody Therapeutics, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - A Morita
- Biomarker, Biotechnology-Based Medicine, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - T Asaki
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - T Kanemasa
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - G Sakaguchi
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Y Morioka
- Pain & Neuroscience, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co., Ltd., 1-1 Futaba-cho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
27
|
Kim Y, Kim EH, Lee KS, Lee K, Park SH, Na SH, Ko C, Kim J, Yooon YW. The effects of intra-articular resiniferatoxin on monosodium iodoacetate-induced osteoarthritic pain in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:129-36. [PMID: 26807032 PMCID: PMC4722186 DOI: 10.4196/kjpp.2016.20.1.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 01/19/2023]
Abstract
This study was performed to investigate whether an intra-articular injection of transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX) would alleviate behavioral signs of arthritic pain in a rat model of osteoarthritis (OA). We also sought to determine the effect of RTX treatment on calcitonin gene-related peptide (CGRP) expression in the spinal cord. Knee joint inflammation was induced by intra-articular injection of monosodium iodoacetate (MIA, 8 mg/50 µl) and weight bearing percentage on right and left hindpaws during walking, paw withdrawal threshold to mechanical stimulation, and paw withdrawal latency to heat were measured to evaluate pain behavior. Intra-articular administration of RTX (0.03, 0.003 and 0.0003%) at 2 weeks after the induction of knee joint inflammation significantly improved reduction of weight bearing on the ipsilateral hindlimb and increased paw withdrawal sensitivity to mechanical and heat stimuli. The reduction of pain behavior persisted for 3~10 days according to each behavioral test. The MIA-induced increase in CGRP immunoreactivity in the spinal cord was decreased by RTX treatment in a dose-dependent manner. The present study demonstrated that a single intra-articular administration of RTX reduced pain behaviors for a relatively long time in an experimental model of OA and could normalize OA-associated changes in peptide expression in the spinal cord.
Collapse
Affiliation(s)
- Youngkyung Kim
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea.; Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Eun-Hye Kim
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Kyu Sang Lee
- School of Health and Fitness Management, College of Health and Welfare, Woosong University, Daejeon 34606, Korea
| | - Koeun Lee
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea.; Department of Rehabilitation Policy and Standardization, National Rehabilitation Research Institute (KNRRI), Seoul 01022, Korea
| | - Sung Ho Park
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea.; Department of Physical Therapy, Korea University College of Health Science, Seoul 02841, Korea
| | - Sook Hyun Na
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Cheolwoong Ko
- Advanced Biomedical and Welfare Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea
| | - Junesun Kim
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea.; Department of Physical Therapy, Korea University College of Health Science, Seoul 02841, Korea
| | - Young Wook Yooon
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
28
|
Wan D, Wang D, Sun Q, Song Y, Jiang Y, Li R, Ye J. Antinociception of spirocyclopiperazinium salt compound LXM-10-M targeting α7 nicotinic receptor and M4 muscarinic receptor and inhibiting CaMKIIα/CREB/CGRP signaling pathway in mice. Eur J Pharmacol 2015; 770:92-8. [PMID: 26658370 DOI: 10.1016/j.ejphar.2015.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
The present study was designed to investigate the antinociception of spirocyclopiperazinium salt compound LXM-10-M (2,4-dimethyl-9-β-m-hydroxyphenylethyl-3-oxo-6, 9-diazaspiro [5.5] undecane chloride) in thermal and chemical pain models, and further to explore the molecular target and potential signal pathway. We assessed the antinociception of LXM-10-M in hot-plate test, formalin test and acetic acid writhing test in mice. The possible changes of calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)/cAMP response element-binding protein (CREB)/calcitonin gene related peptide (CGRP) signaling pathway were detected by Western Blot in mice. Administration of LXM-10-M produced significant antinociception in hot-plate test, formalin test and acetic acid writhing test in mice, with no obvious toxicity. The antinociceptive effects were blocked by pretreatment with methyllycaconitine citrate (MLA, α7 nicotinic receptor antagonist) or tropicamide (TRO, M4 muscarinic receptor antagonist). Western blot analysis showed that the upregulations of p-CaMKIIα, p-CREB and CGRP in the spinal cord were reduced by LXM-10-M in chemical pain model in mice, and the effects were blocked by MLA or TRO pretreatment. This is the first paper to report that LXM-10-M exerted significant antinociception, which may be attributed to the activation of α7 nicotinic receptor and M4 muscarinic receptor and thereby triggering the inhibition of CaMKIIα/CREB/CGRP signaling pathway in mice.
Collapse
Affiliation(s)
- Dan Wan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ding Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Sun
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Song
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - YiMin Jiang
- Medical and Healthy Analysis Center, Peking University, Beijing, China
| | - RunTao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
29
|
Walsh DA, Mapp PI, Kelly S. Calcitonin gene-related peptide in the joint: contributions to pain and inflammation. Br J Clin Pharmacol 2015; 80:965-78. [PMID: 25923821 DOI: 10.1111/bcp.12669] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Arthritis is the commonest cause of disabling chronic pain, and both osteoarthritis (OA) and rheumatoid arthritis (RA) remain major burdens on both individuals and society. Peripheral release of calcitonin gene-related peptide (CGRP) contributes to the vasodilation of acute neurogenic inflammation. Contributions of CGRP to the pain and inflammation of chronic arthritis, however, are only recently being elucidated. Animal models of arthritis are revealing the molecular and pathophysiological events that accompany and lead to progression of both arthritis and pain. Peripheral actions of CGRP in the joint might contribute to both inflammation and joint afferent sensitization. CGRP and its specific receptors are expressed in joint afferents and up-regulated following arthritis induction. Peripheral CGRP release results in activation of synovial vascular cells, through which acute vasodilatation is followed by endothelial cell proliferation and angiogenesis, key features of chronic inflammation. Local administration of CGRP to the knee also increases mechanosensitivity of joint afferents, mimicking peripheral sensitization seen in arthritic joints. Increased mechanosensitivity in OA knees and pain behaviour can be reduced by peripherally acting CGRP receptor antagonists. Effects of CGRP pathway blockade on arthritic joint afferents, but not in normal joints, suggest contributions to sensitization rather than normal joint nociception. CGRP therefore might make key contributions to the transition from normal to persistent synovitis, and the progression from nociception to sensitization. Targeting CGRP or its receptors within joint tissues to prevent these undesirable transitions during early arthritis, or suppress them in established disease, might prevent persistent inflammation and relieve arthritis pain.
Collapse
Affiliation(s)
- David A Walsh
- Professor of Rheumatology, Director Arthritis Research UK Pain Centre University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB
| | - Paul I Mapp
- Research Fellow, Arthritis UK Pain Centre, University of Nottingham, NG5 1PB
| | - Sara Kelly
- Assistant Professor in Neuroscience, School of Biosciences, University of Nottingham, Sutton Bonnington Campus, Nr Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
30
|
Alsalem M, Wong A, Millns P, Arya PH, Chan MSL, Bennett A, Barrett DA, Chapman V, Kendall DA. The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms. Br J Pharmacol 2015; 168:1961-74. [PMID: 23278358 DOI: 10.1111/bph.12092] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential vanilloid type 1 (TRPV1) plays a fundamental role in the detection of heat and inflammatory pain responses. Here we investigated the contribution of two potential endogenous ligands [9- and 13- hydroxyoctadecadienoic acid (HODE)] to TRPV1-mediated noxious responses and inflammatory pain responses. EXPERIMENTAL APPROACH 9- and 13-HODE, and their precursor, linoleic acid, were measured in dorsal root ganglion (DRG) neurons and in the hindpaws of control and carrageenan-inflamed rats by liquid chromatography/tandem electrospray mass spectrometry. Calcium imaging studies of DRG neurons were employed to determine the role of TRPV1 in mediating linoleic acid, 9-HODE- and 13-HODE-evoked responses, and the contribution of 15-lipoxygenase to the generation of the HODEs. Behavioural studies investigated the contribution of 9- and 13-HODE and 15-lipoxygenase to inflammatory pain behaviour. KEY RESULTS 9-HODE (35 ± 7 pmol g(-1)) and 13-HODE (32 ± 6 pmol g(-1)) were detected in hindpaw tissue, but were below the limits of detection in DRGs. Following exposure to linoleic acid, 9- and 13-HODE were detected in DRGs and TRPV1 antagonist-sensitive calcium responses evoked, which were blocked by the 15-lipoxygenase inhibitor PD146176 and an anti-13-HODE antibody. Levels of linoleic acid were significantly increased in the carrageenan-inflamed hindpaw (P < 0.05), whereas levels of 9- and 13-HODE were, however, decreased. Intraplantar co-administration of anti-9- and 13-HODE antibodies and treatment with PD146176 significantly (P < 0.01) attenuated carrageenan-induced hyperalgesia. CONCLUSIONS AND IMPLICATIONS This study demonstrates that, although 9- and 13-HODE can activate TRPV1 in DRG cell bodies, the evidence for a role of these lipids as endogenous peripheral TRPV1 ligands in a model of inflammatory pain is at best equivocal.
Collapse
Affiliation(s)
- Mohammad Alsalem
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Chen K, Zhang ZF, Liao MF, Yao WL, Wang J, Wang XR. Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord. J Neurol Sci 2015; 352:62-7. [DOI: 10.1016/j.jns.2015.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 02/08/2023]
|
33
|
Malek N, Mrugala M, Makuch W, Kolosowska N, Przewlocka B, Binkowski M, Czaja M, Morera E, Di Marzo V, Starowicz K. A multi-target approach for pain treatment. Pain 2015; 156:890-903. [DOI: 10.1097/j.pain.0000000000000132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Tian L, Fan T, Zhou N, Guo H, Zhang W. Role of PAR2 in regulating oxaliplatin-induced neuropathic pain via TRPA1. Transl Neurosci 2015; 6:111-116. [PMID: 28123794 PMCID: PMC4936617 DOI: 10.1515/tnsci-2015-0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of OXL is neuropathic pain. In this study, the underlying mechanisms responsible for OXL evoked-neuropathic pain were examined. Using a rat model, the results demonstrated that intraperitoneal (i.p.) injection of OXL significantly increased mechanical pain and cold sensitivity as compared with control animals (P < 0.05 vs. control rats). Blocking proteinase-activated receptor 2 (PAR2) significantly attenuated mechanical pain and cold sensitivity observed in control rats and OXL rats (P < 0.05 vs. vehicle control). The attenuating effect of PAR2 on mechanical pain and cold sensitivity were significantly smaller in OXL-rats than in control rats. The role played by PAR2 downstream signaling pathways [namely, transient receptor potential ankyrin 1 (TRPA1)] in regulating OXL evoked-neuropathic pain was also examined. The data shows that TRPA1 expression was upregulated in the lumbar dorsal root ganglion (DRG) of OXL rats and blocking TRPA1 inhibited mechanical pain and heightened cold sensitivity (P < 0.05 vs. control rats). Blocking PAR2 also significantly decreased TRPA1 expression in the DRG. Findings in this study show that OXL intervention amplifies mechanical hyperalgesia and cold hypersensitivity and PAR2 plays an important role in regulating OXL-induced neuropathic pain via TRPA1 pathways.
Collapse
|
35
|
Niyom S, Mama KR, Gustafson DL, Rezende ML. Single- and multiple dose pharmacokinetics and multiple dose pharmacodynamics of oral ABT-116 (a TRPV1 antagonist) in dogs. J Vet Pharmacol Ther 2014; 38:336-43. [DOI: 10.1111/jvp.12180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- S. Niyom
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical sciences; Colorado State University; Fort Collins CO USA
- Department of Companion Animal Clinical Sciences; Faculty of Veterinary Medicine; Kasetsart University; Bangkok Thailand
| | - K. R. Mama
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical sciences; Colorado State University; Fort Collins CO USA
| | - D. L. Gustafson
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical sciences; Colorado State University; Fort Collins CO USA
| | - M. L. Rezende
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical sciences; Colorado State University; Fort Collins CO USA
| |
Collapse
|
36
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 847] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
37
|
Bullock CM, Wookey P, Bennett A, Mobasheri A, Dickerson I, Kelly S. Peripheral calcitonin gene-related peptide receptor activation and mechanical sensitization of the joint in rat models of osteoarthritis pain. Arthritis Rheumatol 2014; 66:2188-200. [PMID: 24719311 PMCID: PMC4314689 DOI: 10.1002/art.38656] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
Objective To investigate the role of the sensory neuropeptide calcitonin gene-related peptide (CGRP) in peripheral sensitization in experimental models of osteoarthritis (OA) pain. Methods Experimental knee OA was induced in rats by intraarticular injection of monosodium iodoacetate (MIA) or by transection of the medial meniscus (MMT). Single-unit recordings of joint-innervating nociceptors were obtained in MIA- and saline-treated rats following administration of CGRP or the CGRP receptor antagonist CGRP 8–37. Effects of CGRP 8–37 were also examined in rats that underwent MMT and sham operations. Protein and messenger RNA (mRNA) levels of CGRP receptor components in the L3–L4 dorsal root ganglion (DRG) were investigated following MIA treatment. Results In both the MIA and MMT groups, the mechanical sensitivity of joint nociceptors was enhanced compared to that in the control groups. Exogenous CGRP increased mechanical sensitivity in a greater proportion of joint nociceptors in the MIA-treated rats than in the saline-treated rats. Local blockade of endogenous CGRP by CGRP 8–37 reversed both the MIA- and MMT-induced enhancement of joint nociceptor responses. Joint afferent cell bodies coexpressed the receptor for CGRP, called the calcitonin-like receptor (CLR), and the intracellular accessory CGRP receptor component protein. MIA treatment increased the levels of mRNA for CLR in the L3–L4 DRG and the levels of CLR protein in medium and large joint afferent neurons. Conclusion Our findings provide new and compelling evidence implicating a role of CGRP in peripheral sensitization in experimental OA. Our novel finding of CGRP-mediated control of joint nociceptor mechanosensitivity suggests that the CGRP receptor system may be an important target for the modulation of pain during OA. CGRP receptor antagonists recently developed for migraine pain should be investigated for their efficacy against pain in OA.
Collapse
Affiliation(s)
- Craig M Bullock
- University of Nottingham, Nottingham, UK, and University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK
| | | | | | | | | | | |
Collapse
|
38
|
Preclinical assessment of pain: improving models in discovery research. Curr Top Behav Neurosci 2014; 20:101-20. [PMID: 25012511 DOI: 10.1007/7854_2014_330] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To date, animal models have not sufficiently "filtered" targets for new analgesics, increasing the failure rate and cost of drug development. Preclinical assessment of "pain" has historically relied on measures of evoked behavioral responses to sensory stimuli in animals. Such measures can often be observed in decerebrated animals and therefore may not sufficiently capture affective and motivational aspects of pain, potentially diminishing translation from preclinical studies to the clinical setting. Further, evidence indicates that there are important mechanistic differences between evoked behavioral responses of hypersensitivity and ongoing pain, limiting evaluation of mechanisms that could mediate aspects of clinically relevant pain. The mechanisms underlying ongoing pain in preclinical models are currently being explored and may serve to inform decisions towards the transition from drug discovery to drug development for a given target.
Collapse
|
39
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
40
|
Bullock CM, Kelly S. Calcitonin gene-related peptide receptor antagonists: beyond migraine pain--a possible analgesic strategy for osteoarthritis? Curr Pain Headache Rep 2014; 17:375. [PMID: 24068339 PMCID: PMC3824306 DOI: 10.1007/s11916-013-0375-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) pain is poorly understood and managed, as current analgesics have only limited efficacy and unwanted side effect profiles. A broader understanding of the pathological mechanisms driving OA joint pain is vital for the development of improved analgesics. Both clinical and preclinical data suggest an association between joint levels of the sensory neuropeptide calcitonin gene-related peptide (CGRP) and pain during OA. Whether a direct causative link exists remains an important unanswered question. Given the recent development of small molecule CGRP receptor antagonists with clinical efficacy against migraine pain, the interrogation of the role of CGRP in OA pain mechanisms is extremely timely. In this article, we provide the background to the importance of CGRP in pain mechanisms and review the emerging clinical and preclinical evidence implicating a role for CGRP in OA pain. We suggest that the CGRP receptor antagonists developed for migraine pain warrant further investigation in OA.
Collapse
Affiliation(s)
- C. M. Bullock
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| | - S. Kelly
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| |
Collapse
|
41
|
Flynn R, Chapman K, Iftinca M, Aboushousha R, Varela D, Altier C. Targeting the transient receptor potential vanilloid type 1 (TRPV1) assembly domain attenuates inflammation-induced hypersensitivity. J Biol Chem 2014; 289:16675-87. [PMID: 24808184 DOI: 10.1074/jbc.m114.558668] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief.
Collapse
Affiliation(s)
- Robyn Flynn
- From the Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada and
| | - Kevin Chapman
- From the Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada and
| | - Mircea Iftinca
- From the Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada and
| | - Reem Aboushousha
- From the Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada and
| | - Diego Varela
- Centro de Estudios Moleculares de la Celula and Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Christophe Altier
- From the Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada and
| |
Collapse
|
42
|
Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 2014; 171:2474-507. [PMID: 24102319 PMCID: PMC4008995 DOI: 10.1111/bph.12414] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called 'TRP channelopathies') that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field.
Collapse
Affiliation(s)
- Yosuke Kaneko
- Discovery Research Alliance, Ono Pharmaceutical Co. LtdOsaka, Japan
| | - Arpad Szallasi
- Department of Pathology and Laboratory Medicine, Monmouth Medical CenterLong Branch, NJ, USA
| |
Collapse
|
43
|
Blockade of substance P receptor attenuates osteoporotic pain, but not bone loss, in ovariectomized mice. Menopause 2014; 20:1074-83. [PMID: 23549442 DOI: 10.1097/gme.0b013e31828837a6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of a substance P (SP) receptor (NK1 receptor [NK1-R]) antagonist on hyperalgesia and bone metabolism in ovariectomized mice. METHODS Thirty-six 9-week-old mice were subjected to either bilateral ovariectomy or sham surgery. Three weeks after the operation, the mice were treated with either a single-dose injection or 2-week repeated daily administration of L-703606, an NK1-R antagonist. Behavioral tests were performed for pain assessment; tibiae and the third lumbar vertebrae were dissected and assessed for microarchitectural or biomechanical properties. The expressions of SP and NK1-R in the dorsal root ganglia and spinal cord were also evaluated. RESULTS Both single-dose injection and 2-week repeated injections of L-703606 led to a significant increase in nociceptive threshold in ovariectomized mice. However, the antihyperalgesic effect faded at 2 hours and almost disappeared at 5 hours after a single-dose injection. With the 14-day repeated treatment of ovariectomized mice, the effect was not detectable at 24 hours after the first injection but was obvious at 24 hours after 1-week and 2-week administrations and still existed at 48 hours after the last injection. Ovariectomized mice at the hyperalgesic state had enhanced SP immunoreactivity in the dorsal root ganglia and up-regulated SP and NK1-R expressions in the spinal cord. However, no significant change in serum SP level was detected. Two-week treatment with L-703606 could down-regulate these expressions but failed to salvage the deteriorated trabecular microstructure and reduced compressive strength in ovariectomized mice. CONCLUSIONS Estrogen deficiency-induced hyperalgesia is achieved through up-regulation of SP and NK1-R expressions. Blockade of SP receptor can alleviate pain but cannot ameliorate bone loss. NK1-R antagonist is not recommended for the treatment of estrogen deficiency osteoporosis.
Collapse
|
44
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
45
|
Rogoz K, Andersen HH, Kullander K, Lagerström MC. Glutamate, substance P, and calcitonin gene-related peptide cooperate in inflammation-induced heat hyperalgesia. Mol Pharmacol 2014; 85:322-34. [PMID: 24275230 DOI: 10.1124/mol.113.089532] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is known as a thermosensor and integrator of inflammation-induced hyperalgesia. TRPV1 is expressed in a subpopulation of primary afferent neurons that express several different neurotransmitters. The role of the TRPV1 channel in the development of hyperalgesia is established, but the role of the neurotransmitter glutamate, used partially by the same neuronal population and thus probably mediating the response, is still under investigation. We have used a Trpv1-Cre mouse line in which we either ablated Trpv1-Cre expressing neurons or induced vesicular glutamate transporter 2 (Vglut2) deficiency in Trpv1-Cre expressing neurons and investigated specific states of hyperalgesia after persistent inflammation. Furthermore, by pharmacologic inhibition of substance P (SP) or calcitonin gene-related peptide (CGRP) signaling in Vglut2-deficient mice, we also evaluated the contribution of SP or CGRP to inflammation-induced hyperalgesia, with or without the presence of vesicular glutamate transporter 2 (VGLUT2)-mediated glutamatergic transmission in Trpv1-Cre neurons. This examination, together with c-Fos analyses, showed that VGLUT2-mediated glutamatergic transmission in Trpv1-Cre afferents together with SP or CGRP is essential for the development of the heat hyperalgesia associated with persistent inflammation. Additionally, SP-, CGRP-, and VGLUT2-mediated transmission together were found to play a role in the development of mechanical hyperalgesia after persistent inflammation.
Collapse
Affiliation(s)
- Katarzyna Rogoz
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
46
|
Zhang RX, Ren K, Dubner R. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthritis Cartilage 2013; 21:1308-15. [PMID: 23973145 PMCID: PMC3771690 DOI: 10.1016/j.joca.2013.06.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a complex and painful disease of the whole joint. At present there are no satisfying agents for treating OA. To promote OA research and improved treatment, this review summarizes current preclinical evidence on the development of OA. METHODS Preclinical OA research was searched and key findings are summarized and commented. RESULTS Mechanisms of OA-associated pain have been studied in rodent knee OA models produced by intra-knee injection of the chondrocyte glycolytic inhibitor mono-iodoacetate (MIA), surgery, or spontaneous development in some species. These models are clinically relevant in terms of histological damage and functional changes, and are used to study mechanisms underlying mechanical, thermal, ambulatory, body weight supporting-evoked, and ongoing OA pain. Recent peripheral, spinal, and supraspinal biochemical and electrophysiological studies in these models suggest that peripheral pro-inflammatory mediators and neuropeptides sensitize knee nociceptors. Spinal cytokines and neuropeptides promote OA pain, and peripheral and spinal cannabinoids inhibit OA pain respectively through cannabinoid-1 (CB1) and CB1/CB2 receptors. TRPV1 and metalloproteinases contribute and supraspinal descending facilitation of 5-hydroxytryptamine (5-HT)/5-HT 3 receptors may also contribute to OA pain. Conditioned place preference tests demonstrate that OA pain induces aversive behaviors, suggesting the involvement of brain. During OA, brain functional connectivity is enhanced, but at present it is unclear how this change is related to OA pain. CONCLUSION Animal studies demonstrate that peripheral and central sensitization contributes to OA pain, involving inflammatory cytokines, neuropeptides, and a variety of chemical mediators. Interestingly, brainstem descending facilitation of 5-HT/5-HT3 receptors plays a role OA pain.
Collapse
Affiliation(s)
- Rui-Xin Zhang
- Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Ke Ren
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201 USA
| | - Ronald Dubner
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
47
|
Mogg AJ, Mill CEJ, Folly EA, Beattie RE, Blanco MJ, Beck JP, Broad LM. Altered pharmacology of native rodent spinal cord TRPV1 after phosphorylation. Br J Pharmacol 2013; 168:1015-29. [PMID: 23062150 DOI: 10.1111/bph.12005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/06/2012] [Accepted: 09/14/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Evidence suggests that phosphorylation of TRPV1 is an important component underlying its aberrant activation in pathological pain states. To date, the detailed pharmacology of diverse TRPV1 receptor agonists and antagonists has yet to be reported for native TRPV1 under phosphorylating conditions. Our goal was to optimize a relatively high-throughput methodology to allow pharmacological characterization of the native TRPV1 receptor using a spinal cord neuropeptide release assay under naive and phosphorylating states. EXPERIMENTAL APPROACH Herein, we describe characterization of rodent TRPV1 by measurement of CGRP release from acutely isolated lumbar (L1-L6) spinal cord using a 96-well technique that combines use of native, adult tissue with quantitation of CGRP release by ELISA. KEY RESULTS We have studied a diverse panel of TRPV1 agonists and antagonists under basal and phosphorylating conditions. We show that TRPV1-mediated CGRP release is evoked, in a temperature-dependent manner, by a PKC activator, phorbol 12,13-dibutyrate (PDBu); and that treatment with PDBu increases the potency and efficacy of known TRPV1 chemical agonists, in an agonist-specific manner. We also show that the pharmacological profile of diverse TRPV1 antagonists is dependent on whether the stimulus is PDBu or capsaicin. Of note, HPPB was identified as an antagonist of capsaicin-evoked, but a potentiator of PDBu-evoked, CGRP release. CONCLUSIONS AND IMPLICATIONS Our findings indicate that both TRPV1 agonist and antagonist profiles can be differentially altered by PKC activation. These findings may offer new insights for targeting TRPV1 in pain states.
Collapse
Affiliation(s)
- A J Mogg
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kitagawa Y, Tamai I, Hamada Y, Usui K, Wada M, Sakata M, Matsushita M. The Orally Administered Selective TRPV1 Antagonist, JTS-653, Attenuates Chronic Pain Refractory to Non-steroidal Anti-inflammatory Drugs in Rats and Mice Including Post-herpetic Pain. J Pharmacol Sci 2013; 122:128-37. [DOI: 10.1254/jphs.12276fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
49
|
Rashid MH, Theberge Y, Elmes SJ, Perkins MN, McIntosh F. Pharmacological validation of early and late phase of rat mono-iodoacetate model using the Tekscan system. Eur J Pain 2012; 17:210-22. [PMID: 22968802 DOI: 10.1002/j.1532-2149.2012.00176.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Previous pharmacological validations of the rat mono-iodoacetate (MIA)-induced chronic joint pain model were mostly performed by measuring weight-bearing (WB) deficit with an incapacitance tester. However, conventional incapacitance testers have several drawbacks including restrain stress on animal and sole use of hind limbs WB. OBJECTIVES The aim of the present study was to compare pharmacological sensitivity of the early (up to 1 week after MIA) versus late (between 2 and 4 weeks after MIA) phase of the rat MIA model using a highly sensitive tactile pressure measurement system (Tekscan(®)), which can measure weight borne by all four limbs and the tail in a non-restrained animal. METHODS The Tekscan(®) WB measurement system was used in MIA rats to examine the acute and chronic dosing effects of drugs that targeted different mechanisms. Electrophysiological recordings from joint afferents and biochemical analysis of synovial fluid were also performed. RESULTS Dexamethasone, duloxetine and morphine significantly alleviated WB deficits in the Tekscan(®) system during both early and late phase of the MIA model while celecoxib and naproxen alleviated WB deficit only during the early phase. Similarly, naproxen was able to inhibit spontaneous neuronal activity from MIA joint afferents only during the early phase. Finally, concentrations of prostaglandin E(2) in synovial fluid were elevated only during the early phase of the rat MIA model. CONCLUSIONS Our pharmacological validation studies using the Tekscan(®) system along with electrophysiological and biochemical results suggest different mechanisms for early and late phase of MIA-induced chronic joint pain in rat.
Collapse
|
50
|
Han P, Korepanova AV, Vos MH, Moreland RB, Chiu ML, Faltynek CR. Quantification of TRPV1 Protein Levels in Rat Tissues to Understand its Physiological Roles. J Mol Neurosci 2012; 50:23-32. [DOI: 10.1007/s12031-012-9849-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022]
|