1
|
Li WR, Ren LL, Zhao TT, Dai DQ, Gao XF, Liang HZ, Xiong LZ. Multidimensional Analgesia of Acupuncture by Increasing Expression of MD2 in Central Nervous System. Chin J Integr Med 2024; 30:1035-1044. [PMID: 39073516 DOI: 10.1007/s11655-024-4106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To investigate changes of myeloid differentiation factor 2 (MD2) in inflammation-induced pain and acupuncture-mediated analgesia. METHODS Mice were randomly divided into three groups by a random number table method: saline group (n=16), complete Freund's adjuvant (CFA) group (n=24) and CFA+electroacupuncture (EA) group (n=26). Inflammation-induced pain was modelled by injecting CFA to the plantar surface of the hind paw of mice and EA was applied to bilateral Zusanli (ST 36) to alleviate pain. Only mice in the CFA+EA group received EA treatment (30 min/d for 2 weeks) 24 h after modelling. Mice in the saline and CFA groups received sham EA. von-Frey test and Hargreaves test were used to assess the pain threshold. Brain and spinal tissues were collected for immunofluorescence staining or Western blotting to quantify changes of MD2 expression. RESULTS CFA successfully induced plantar pain and EA significantly alleviated pain 3 days after modelling (P<0.01). Compared with the CFA group, the number of MD2+/c-fos+ neurons was significantly increased in the dorsal horn of the spinal cord 7 and 14 days after EA, especially in laminae I - IIo (P<0.01). The proportion of double positive cells to the number of c-fos positive cells and the mean fluorescence intensity of MD2 neurons were also significantly increased in laminae I - IIo (P<0.01). Western blotting showed that the level of MD2 was significantly decreased by EA only in the hippocampus on day 7 and 14 (both P<0.01) and no significant changes were observed in the cortex, thalamus, cerebellum, or the brainstem (P<0.05). Fluorescence staining showed significant decrease in the level of MD2 in periagueductal gray (PAG) and locus coeruleus (LC) after CFA injection on day 7 (P<0.01 for PAG, P<0.05 for LC) and EA significantly reversed this decrease (P<0.01 for PAG, P<0.05 for LC). CONCLUSION The unique changes of MD2 suggest that EA may exert the analgesic effect through modulating neuronal activities of the superficial laminae of the spinal cord and certain regions of the brain.
Collapse
Affiliation(s)
- Wan-Rong Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Lu-Lu Ren
- School of Rehabilitation, Southwest Jiaotong University, Chengdu, Sichuan Province, 618099, China
| | - Tian-Tian Zhao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Dan-Qing Dai
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xiao-Fei Gao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Hua-Zheng Liang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Monash Suzhou Research Institute, Suzhou, Jiangsu Province, 215125, China
| | - Li-Ze Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| |
Collapse
|
2
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
3
|
Yang L, Ton H, Zhao R, Geron E, Li M, Dong Y, Zhang Y, Yu B, Yang G, Xie Z. Sevoflurane induces neuronal activation and behavioral hyperactivity in young mice. Sci Rep 2020; 10:11226. [PMID: 32641746 PMCID: PMC7343864 DOI: 10.1038/s41598-020-66959-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Sevoflurane, a commonly used anesthetic, may cause agitation in patients. However, the mechanism underlying this clinical observation remains largely unknown. We thus assessed the effects of sevoflurane on neuronal activation and behaviors in mice. Ten-day-old mice received 2% sevoflurane, 1% isoflurane, or 6% desflurane for 10 minutes. The behavioral activities were recorded and evaluated at one minute after the loss of righting reflex in the mice, which was about two minutes after the anesthetic administration. The neuronal activation was evaluated by c-Fos expression and calcium imaging at one minute after the anesthetic administration. Propofol, which reduces neuronal activation, was used to determine the cause-and-effect of sevoflurane. We found that sevoflurane caused an increase in neuronal activation in primary somatosensory cortex of young mice and behavioral hyperactivity in the mice at one minute after the loss of righting reflex. Desflurane did not induce behavioral hyperactivity and isoflurane only caused behavioral hyperactivity with borderline significance. Finally, propofol attenuated the sevoflurane-induced increase in neuronal activation and behavioral hyperactivity in young mice. These results demonstrate an unexpected sevoflurane-induced increase in neuronal activation and behavioral hyperactivity in young mice. These findings suggest the potential mechanisms underlying the sevoflurane-induced agitation and will promote future studies to further determine whether anesthetics can induce behavioral hyperactivity via increasing neuronal activation.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, P. R. China.,Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Hoai Ton
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Ruohe Zhao
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Erez Geron
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Mengzhu Li
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA.,Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Yiying Zhang
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, P. R. China
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA.
| |
Collapse
|
4
|
HCN channel antagonist ZD7288 ameliorates neuropathic pain and associated depression. Brain Res 2019; 1717:204-213. [DOI: 10.1016/j.brainres.2019.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
5
|
Li S, Ye F, Farber JP, Linderoth B, Zhang T, Gu JW, Moffitt M, Garrett K, Chen J, Foreman RD. Dependence of c-fos Expression on Amplitude of High-Frequency Spinal Cord Stimulation in a Rodent Model. Neuromodulation 2018; 22:172-178. [PMID: 30221804 DOI: 10.1111/ner.12852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/01/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Clinical high-frequency spinal cord stimulation (hfSCS) (>250 Hz) applied at subperception amplitudes reduces leg and low back pain. This study investigates, via labeling for c-fos-a marker of neural activation, whether 500 Hz hfSCS applied at amplitudes above and below the dorsal column (DC) compound action potential (CAP) threshold excites dorsal horn neurons. MATERIALS AND METHODS DC CAP thresholds in rats were determined by applying single biphasic pulses of SCS to T12 -T13 segments using pulse widths of 40 or 200 μsec via a ball electrode placed over the left DC and increasing amplitude until a short latency CAP was observed on the L5 DC and sciatic nerve. The result of this comparison allowed us to substitute sciatic nerve CAP for DC CAP. SCS at T12 -T13 was applied continuously for two hours using: sham or hfSCS at 500 Hz SCS, 40 μsec pulse width, and 50, 70, 90, or 140% CAP threshold. Spinal cord slices from T11 -L1 were immunolabeled for c-fos, and the number of c-fos-positive cells was quantified. RESULTS 500 Hz hfSCS applied at 90 and 140% CAP threshold produced substantial (≥6 c-fos + neurons on average per slice per segment) c-fos expression in more segments between T11 and L1 than did sham stimulation (p < 0.025, 90% CAP; p < 0.001, 140% CAP, Fisher's Exact Tests) and resulted in more c-fos-positive neurons on average per slice per segment ipsilateral to than contralateral to the SCS electrode at 70, 90, and 140% CAP threshold (p < 0.01, Wilcoxon Signed Rank Tests). CONCLUSIONS The finding of enhanced c-fos expression in the ipsilateral superficial dorsal horn provides evidence for activation/modulation of neuronal circuitry associated with subperception hfSCS.
Collapse
Affiliation(s)
- Shiying Li
- Veterans Research Education Foundation, VA Medical Center, Oklahoma City, OK, USA.,Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Feng Ye
- Veterans Research Education Foundation, VA Medical Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,Infectious Disease Department, the First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jay P Farber
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Bengt Linderoth
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Kennon Garrett
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jiande Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Robert D Foreman
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,Department of Anesthesiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Deng X, Wang D, Wang S, Wang H, Zhou H. Identification of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing. Biol Res 2018; 51:25. [PMID: 30119702 PMCID: PMC6098572 DOI: 10.1186/s40659-018-0174-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose This aim of this study was to investigate the key genes and pathways involved in the response to pain in goat and sheep by transcriptome sequencing. Methods Chronic pain was induced with the injection of the complete Freund’s adjuvant (CFA) in sheep and goats. The animals were divided into four groups: CFA-treated sheep, control sheep, CFA-treated goat, and control goat groups (n = 3 in each group). The dorsal root ganglions of these animals were isolated and used for the construction of a cDNA library and transcriptome sequencing. Differentially expressed genes (DEGs) were identified in CFA-induced sheep and goats and gene ontology (GO) enrichment analysis was performed. Results In total, 1748 and 2441 DEGs were identified in CFA-treated goat and sheep, respectively. The DEGs identified in CFA-treated goats, such as C-C motif chemokine ligand 27 (CCL27), glutamate receptor 2 (GRIA2), and sodium voltage-gated channel alpha subunit 3 (SCN3A), were mainly enriched in GO functions associated with N-methyl-d-aspartate (NMDA) receptor, inflammatory response, and immune response. The DEGs identified in CFA-treated sheep, such as gamma-aminobutyric acid (GABA)-related DEGs (gamma-aminobutyric acid type A receptor gamma 3 subunit [GABRG3], GABRB2, and GABRB1), SCN9A, and transient receptor potential cation channel subfamily V member 1 (TRPV1), were mainly enriched in GO functions related to neuroactive ligand-receptor interaction, NMDA receptor, and defense response. Conclusions Our data indicate that NMDA receptor, inflammatory response, and immune response as well as key DEGs such as CCL27, GRIA2, and SCN3A may regulate the process of pain response during chronic pain in goats. Neuroactive ligand-receptor interaction and NMDA receptor as well as GABA-related DEGs, SCN9A, and TRPV1 may modulate the process of response to pain in sheep. These DEGs may serve as drug targets for preventing chronic pain. Electronic supplementary material The online version of this article (10.1186/s40659-018-0174-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuling Deng
- College of life Science, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Saihan District, Hohhot, 010018, People's Republic of China.,College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, People's Republic of China
| | - Dong Wang
- Neurology Department, Inner Mongolia People's Hospital, Hohhot, 010017, People's Republic of China
| | - Shenyuan Wang
- College of life Science, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Saihan District, Hohhot, 010018, People's Republic of China
| | - Haisheng Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, People's Republic of China
| | - Huanmin Zhou
- College of life Science, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Saihan District, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
7
|
Sathyamurthy A, Johnson KR, Matson KJE, Dobrott CI, Li L, Ryba AR, Bergman TB, Kelly MC, Kelley MW, Levine AJ. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Rep 2018; 22:2216-2225. [PMID: 29466745 PMCID: PMC5849084 DOI: 10.1016/j.celrep.2018.02.003] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq) to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease.
Collapse
Affiliation(s)
- Anupama Sathyamurthy
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, Information Technology Program, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Courtney I Dobrott
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Anna R Ryba
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Tzipporah B Bergman
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Zeilhofer HU, Acuña MA, Gingras J, Yévenes GE. Glycine receptors and glycine transporters: targets for novel analgesics? Cell Mol Life Sci 2018; 75:447-465. [PMID: 28791431 PMCID: PMC11105467 DOI: 10.1007/s00018-017-2622-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/29/2023]
Abstract
Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized-among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Gonzalo E Yévenes
- Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
9
|
Tran M, Kuhn JA, Bráz JM, Basbaum AI. Neuronal aromatase expression in pain processing regions of the medullary and spinal cord dorsal horn. J Comp Neurol 2017. [PMID: 28649695 DOI: 10.1002/cne.24269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In both acute and chronic pain conditions, women tend to be more sensitive than men. This sex difference may be regulated by estrogens, such as estradiol, that are synthesized in the spinal cord and brainstem and act locally to influence pain processing. To identify a potential cellular source of local estrogen, here we examined the expression of aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol. Our studies focused on primary afferent neurons and on their central targets in the spinal cord and medulla as well as in the nucleus of the solitary tract, the target of nodose ganglion-derived visceral afferents. Immunohistochemical staining in an aromatase reporter mouse revealed that many neurons in laminae I and V of the spinal cord dorsal horn and caudal spinal trigeminal nucleus and in the nucleus of the solitary tract express aromatase. The great majority of these cells also express inhibitory interneuron markers. We did not find sex differences in aromatase expression and neither the pattern nor the number of neurons changed in a sciatic nerve transection model of neuropathic pain or in the Complete Freund's adjuvant model of inflammatory pain. A few aromatase neurons express Fos after cheek injection of capsaicin, formalin, or chloroquine. In total, given their location, these aromatase neurons are poised to engage nociceptive circuits, whether it is through local estrogen synthesis or inhibitory neurotransmitter release.
Collapse
Affiliation(s)
- May Tran
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Julia A Kuhn
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - João M Bráz
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| |
Collapse
|
10
|
Abstract
Migraine and other primary headache disorders affect a large population and cause debilitating pain. Establishing animal models that display behavioral correlates of long-lasting and ongoing headache, the most common and disabling symptom of migraine, is vital for the elucidation of disease mechanisms and identification of drug targets. We have developed a mouse model of headache, using dural application of capsaicin along with a mixture of inflammatory mediators (IScap) to simulate the induction of a headache episode. This elicited intermittent head-directed wiping and scratching as well as the phosphorylation of c-Jun N-terminal kinase in trigeminal ganglion neurons. Interestingly, dural application of IScap preferentially induced FOS protein expression in the excitatory but not inhibitory cervical/medullary dorsal horn neurons. The duration of IScap-induced behavior and the number of FOS-positive neurons correlated positively in individual mice; both were reduced to the control level by the pretreatment of antimigraine drug sumatriptan. Dural application of CGRP(8-37), the calcitonin gene-related peptide (CGRP) receptor antagonist, also effectively blocked IScap-induced behavior, which suggests that the release of endogenous CGRP in the dura is necessary for IScap-induced nociception. These data suggest that dural IScap-induced nocifensive behavior in mice may be mechanistically related to the ongoing headache in humans. In addition, dural application of IScap increased resting time in female mice. Taken together, we present the first detailed study using dural application of IScap in mice. This headache model can be applied to genetically modified mice to facilitate research on the mechanisms and therapeutic targets for migraine headache.
Collapse
|
11
|
Abstract
Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists reduces neuropathic pain-like behavior and associated changes in glial activation in the spinal cord dorsal horn. As PPARγ is a nuclear receptor, sustained changes in gene expression are widely believed to be the mechanism of pain reduction. However, we recently reported that a single intrathecal (i.t.) injection of pioglitazone, a PPARγ agonist, reduced hyperalgesia within 30 minutes, a time frame that is typically less than that required for genomic mechanisms. To determine the very rapid antihyperalgesic actions of PPARγ activation, we administered pioglitazone to rats with spared nerve injury and evaluated hyperalgesia. Pioglitazone inhibited hyperalgesia within 5 minutes of injection, consistent with a nongenomic mechanism. Systemic or i.t. administration of GW9662, a PPARγ antagonist, inhibited the antihyperalgesic actions of intraperitoneal or i.t. pioglitazone, suggesting a spinal PPARγ-dependent mechanism. To further address the contribution of nongenomic mechanisms, we blocked new protein synthesis in the spinal cord with anisomycin. When coadministered intrathecally, anisomycin did not change pioglitazone antihyperalgesia at an early 7.5-minute time point, further supporting a rapid nongenomic mechanism. At later time points, anisomycin reduced pioglitazone antihyperalgesia, suggesting delayed recruitment of genomic mechanisms. Pioglitazone reduction of spared nerve injury-induced increases in GFAP expression occurred more rapidly than expected, within 60 minutes. We are the first to show that activation of spinal PPARγ rapidly reduces neuropathic pain independent of canonical genomic activity. We conclude that acute pioglitazone inhibits neuropathic pain in part by reducing astrocyte activation and through both genomic and nongenomic PPARγ mechanisms.
Collapse
|
12
|
Schüttenhelm BN, Duraku LS, Dijkstra JF, Walbeehm ET, Holstege JC. Differential Changes in the Peptidergic and the Non-Peptidergic Skin Innervation in Rat Models for Inflammation, Dry Skin Itch, and Dermatitis. J Invest Dermatol 2015; 135:2049-2057. [PMID: 25848979 DOI: 10.1038/jid.2015.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023]
Abstract
Skin innervation is a dynamic process that may lead to changes in nerve fiber density during pathological conditions. We have investigated changes in epidermal nerve fiber density in three different rat models that selectively produce chronic itch (the dry skin model), or itch and inflammation (the dermatitis model), or chronic inflammation without itch (the CFA model). In the epidermis, we identified peptidergic fibers-that is, immunoreactive (IR) for calcitonin gene-related peptide or substance P—and non-peptidergic fibers—that is, IR for P2X3. The overall density of nerve fibers was determined using IR for the protein gene product 9.5. In all three models, the density of epidermal peptidergic nerve fibers increased up to five times when compared with a sham-treated control group. In contrast, the density of epidermal non-peptidergic fibers was not increased, except for a small but significant increase in the dry skin model. Chronic inflammation showed an increased density of peptidergic fibers without itch, indicating that increased nerve fiber density is not invariably associated with itch. The finding that different types of skin pathology induced differential changes in nerve fiber density may be used as a diagnostic tool in humans, through skin biopsies, to identify different types of pathology and to monitor the effect of therapies.
Collapse
Affiliation(s)
- Barthold N Schüttenhelm
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Liron S Duraku
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jouke F Dijkstra
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Erik T Walbeehm
- Department of Plastic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan C Holstege
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Jongen JLM, Smits H, Pederzani T, Bechakra M, Hossaini M, Koekkoek SK, Huygen FJPM, De Zeeuw CI, Holstege JC, Joosten EAJ. Spinal autofluorescent flavoprotein imaging in a rat model of nerve injury-induced pain and the effect of spinal cord stimulation. PLoS One 2014; 9:e109029. [PMID: 25279562 PMCID: PMC4184817 DOI: 10.1371/journal.pone.0109029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022] Open
Abstract
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.
Collapse
Affiliation(s)
| | - Helwin Smits
- Pain Management and Research Center, UMC+, Maastricht, the Netherlands
| | | | - Malik Bechakra
- Dept. of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Mehdi Hossaini
- Dept. of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Chris I. De Zeeuw
- Dept. of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Jan C. Holstege
- Dept. of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | |
Collapse
|
14
|
Loss of central inhibition: implications for behavioral hypersensitivity after contusive spinal cord injury in rats. PAIN RESEARCH AND TREATMENT 2014; 2014:178278. [PMID: 25180088 PMCID: PMC4142659 DOI: 10.1155/2014/178278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022]
Abstract
Behavioral hypersensitivity is common following spinal cord injury (SCI), producing significant discomfort and often developing into chronic pain syndromes. While the mechanisms underlying the development of behavioral hypersensitivity after SCI are poorly understood, previous studies of SCI contusion have shown an increase in amino acids, namely, aspartate and glutamate, along with a decrease in GABA and glycine, particularly below the injury. The current study sought to identify alterations in key enzymes and receptors involved in mediating central inhibition via GABA and glycine after a clinically-relevant contusion SCI model. Following thoracic (T8) 25.0 mm NYU contusion SCI in rodents, significant and persistent behavioral hypersensitivity developed as evidenced by cutaneous allodynia and thermal hyperalgesia. Biochemical analyses confirmed upregulation of glutamate receptor GluR3 with downregulation of the GABA synthesizing enzyme (GAD65/67) and the glycine receptor α3 (GLRA3), notably below the injury. Combined, these changes result in the disinhibition of excitatory impulses and contribute to behavioral hyperexcitability. This study demonstrates a loss of central inhibition and the development of behavioral hypersensitivity in a contusive SCI paradigm. Future use of this model will permit the evaluation of different antinociceptive strategies and help in the elucidation of new targets for the treatment of neuropathic pain.
Collapse
|
15
|
Spinal distribution of c-Fos activated neurons expressing enkephalin in acute and chronic pain models. Brain Res 2014; 1543:83-92. [DOI: 10.1016/j.brainres.2013.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/08/2023]
|
16
|
Duraku LS, Niehof SP, Misirli Y, Everaers M, Hoendervangers S, Holstege J, Boele HJJ, Koekkoek SKE, Smits ES, Selles RW, Walbeehm ET. Rotterdam Advanced Multiple Plate: a novel method to measure cold hyperalgesia and allodynia in freely behaving rodents. J Neurosci Methods 2013; 224:1-12. [PMID: 24365047 DOI: 10.1016/j.jneumeth.2013.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND To investigate the pathophysiology of temperature hypersensitivity in neuropathic pain rodent models, it is essential to be able to quantify the phenotype as objective as possible. Current temperature sensitivity measuring paradigms are performed during exposure to external factors, i.e. light, sound and smell, which modulate behavior significantly. In addition the present outcome measure for temperature hypersensitivity in rodents is the examination of the hind paw lift upon exposure to a certain temperature, which reflects more a reflex-flexion than an experience of pain. NEW METHOD Therefore the Rotterdam Advanced Multiple Plate (RAMP) was developed to assess cold hyperalgesia and allodynia objectively in freely behaving neuropathic pain rats, which measures the avoidance for certain temperatures and monitoring the location of the rat with an infrared camera while excluding external environmental influences such as light and sound. RESULTS Compared to sham rats, the spared nerve injury (SNI) rats demonstrated a higher preference for the comfortable plate (27 °C) when the other three plates were set at 5 °C, 14 °C, 17 °C and 19 °C. We were unable to detect heat hyperalgesia and allodynia with the RAMP. COMPARISON WITH EXISTING METHOD The paw withdrawal method displays similar results during cold hypersensitivity measurements as observed with the RAMP. The SNI group did display heat hypersensitivity during the paw withdrawal test. CONCLUSIONS The results indicate that the RAMP is able to quantify cold hyperalgesia and allodynia in neuropathic pain rats while resolves some of the problems of conventional temperature sensitivity measuring paradigms in rodents.
Collapse
Affiliation(s)
- Liron S Duraku
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Sjoerd P Niehof
- Pain Treatment Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Yesim Misirli
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Marco Everaers
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Sieske Hoendervangers
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Joan Holstege
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Henk-Jan J Boele
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Sebastiaan K E Koekkoek
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Ernst S Smits
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Ruud W Selles
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Department of Rehabilitation Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Erik T Walbeehm
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Abstract
Dysaesthetic pain is a common neuropathic pain in patients with multiple sclerosis. Both tricyclic antidepressants (i.e., amitriptyline and duloxetine) and antiepileptic drugs (i.e., carbamazepine, gabapentin and pregabalin) represent first-line treatment of neuropathic pain. However, topiramate, an antiepileptic drug, also demonstrated clinical efficacy in these patients. In this report we describe the case of a 42-year-old woman with an 8-year history of multiple sclerosis who developed dysaesthetic pain in the lower limbs, and was successfully treated with topiramate at a final dose of 150 mg/day. About 8 months after beginning topiramate treatment, the patient had not shown any dysaesthetic pain, and no adverse events related to topiramate had been recorded.
Collapse
|
18
|
Volz MS, Medeiros LF, Tarragô MDG, Vidor LP, Dall'Agnol L, Deitos A, Brietzke A, Rozisky JR, Razzolini B, Torres ILS, Fregni F, Caumo W. The relationship between cortical excitability and pain catastrophizing in myofascial pain. THE JOURNAL OF PAIN 2013; 14:1140-7. [PMID: 23810270 DOI: 10.1016/j.jpain.2013.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/16/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Pain catastrophizing regularly occurs in chronic pain patients. It has been suggested that pain catastrophizing is a stable, person-based construct. These findings highlight the importance of investigating catastrophizing in conceptualizing specific approaches for pain management. One important area of investigation is the mechanism underlying pain catastrophizing. Therefore, this study explored the relationship between a neurophysiological marker of cortical excitability, as assessed by transcranial magnetic stimulation, and catastrophizing, as assessed by the Brazilian Portuguese Pain Catastrophizing Scale, in patients with chronic myofascial pain syndrome. The Pain Catastrophizing Scale is a robust questionnaire used to examine rumination, magnification and helplessness that are associated with the experience of pain. We include 24 women with myofascial pain syndrome. The Brazilian Portuguese Pain Catastrophizing Scale and cortical excitability were assessed. Functional and behavioral aspects of pain were evaluated with a version of the Profile of Chronic Pain scale and by multiple pain measurements (eg, pain intensity, pressure pain threshold, and other quantitative sensory measurements). Intracortical facilitation was found to be significantly associated with pain catastrophizing (β = .63, P = .001). Our results did not suggest that these findings were influenced by other factors, such as age or medication use. Furthermore, short intracortical inhibition showed a significant association with pressure pain threshold (β = .44, P = .04). This study elaborates on previous findings indicating a relationship between cortical excitability and catastrophizing. The present findings suggest that glutamatergic activity may be associated with mechanisms underlying pain catastrophizing; thus, the results highlight the need to further investigate the neurophysiological mechanisms associated with pain and catastrophizing. PERSPECTIVE This study highlights the relationship between cortical excitability and catastrophizing. Cortical measures may illuminate how catastrophizing responses may be related to neurophysiological mechanisms associated with chronic pain.
Collapse
Affiliation(s)
- Magdalena Sarah Volz
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts; Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Polgár E, Sardella TCP, Tiong SYX, Locke S, Watanabe M, Todd AJ. Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn. Pain 2013; 154:2606-2615. [PMID: 23707280 PMCID: PMC3858808 DOI: 10.1016/j.pain.2013.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 11/25/2022]
Abstract
In order to understand how nociceptive information is processed in the spinal dorsal horn we need to unravel the complex synaptic circuits involving interneurons, which constitute the vast majority of the neurons in laminae I-III. The main limitation has been the difficulty in defining functional populations among these cells. We have recently identified 4 non-overlapping classes of inhibitory interneuron, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) and parvalbumin, in the rat spinal cord. In this study we demonstrate that these form distinct functional populations that differ in terms of sst(2A) receptor expression and in their responses to painful stimulation. The sst(2A) receptor was expressed by nearly all of the nNOS- and galanin-containing inhibitory interneurons but by few of those with NPY and none of the parvalbumin cells. Many galanin- and NPY-containing cells exhibited phosphorylated extracellular signal-regulated kinases (pERK) after mechanical, thermal or chemical noxious stimuli, but very few nNOS-containing cells expressed pERK after any of these stimuli. However, many nNOS-positive inhibitory interneurons up-regulated Fos after noxious thermal stimulation or injection of formalin, but not after capsaicin injection. Parvalbumin cells did not express either activity-dependent marker following any of these stimuli. These results suggest that interneurons belonging to the NPY, nNOS and galanin populations are involved in attenuating pain, and for NPY and nNOS cells this is likely to result from direct inhibition of nociceptive projection neurons. They also suggest that the nociceptive inputs to the nNOS cells differ from those to the galanin and NPY populations.
Collapse
Affiliation(s)
- Erika Polgár
- Spinal Cord Group, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
21
|
Bráz JM, Sharif-Naeini R, Vogt D, Kriegstein A, Alvarez-Buylla A, Rubenstein JL, Basbaum AI. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain. Neuron 2012; 74:663-75. [PMID: 22632725 DOI: 10.1016/j.neuron.2012.02.033] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- João M Bráz
- Department of Anatomy, W.M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
The spinal precerebellar nuclei: Calcium binding proteins and gene expression profile in the mouse. Neurosci Lett 2012; 518:161-6. [DOI: 10.1016/j.neulet.2012.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/18/2012] [Accepted: 05/01/2012] [Indexed: 11/17/2022]
|
23
|
Hossaini M, Goos JAC, Kohli SK, Holstege JC. Distribution of glycine/GABA neurons in the ventromedial medulla with descending spinal projections and evidence for an ascending glycine/GABA projection. PLoS One 2012; 7:e35293. [PMID: 22558137 PMCID: PMC3340372 DOI: 10.1371/journal.pone.0035293] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022] Open
Abstract
The ventromedial medulla (VM), subdivided in a rostral (RVM) and a caudal (CVM) part, has a powerful influence on the spinal cord. In this study, we have identified the distribution of glycine and GABA containing neurons in the VM with projections to the cervical spinal cord, the lumbar dorsal horn, and the lumbar ventral horn. For this purpose, we have combined retrograde tracing using fluorescent microspheres with fluorescent in situ hybridization (FISH) for glycine transporter 2 (GlyT2) and GAD67 mRNAs to identify glycinergic and/or GABAergic (Gly/GABA) neurons. Since the results obtained with FISH for GlyT2, GAD67, or GlyT2 + GAD67 mRNAs were not significantly different, we concluded that glycine and GABA coexisted in the various projection neurons. After injections in the cervical cord, we found that 29% ± 1 (SEM) of the retrogradely labeled neurons in the VM were Gly/GABA (RVM: 43%; CVM: 21%). After lumbar dorsal horn injections 31% ± 3 of the VM neurons were Gly/GABA (RVM: 45%; CVM: 12%), and after lumbar ventral horn injections 25% ± 2 were Gly/GABA (RVM: 35%; CVM: 17%). In addition, we have identified a novel ascending Gly/GABA pathway originating from neurons in the area around the central canal (CC) throughout the spinal cord and projecting to the RVM, emphasizing the interaction between the ventromedial medulla and the spinal cord. The present study has now firmly established that GABA and glycine are present in many VM neurons that project to the spinal cord. These neurons strongly influence spinal processing, most notably the inhibition of nociceptive transmission.
Collapse
Affiliation(s)
- Mehdi Hossaini
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jacqueline A. C. Goos
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Somesh K. Kohli
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan C. Holstege
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Zeilhofer HU, Wildner H, Yévenes GE. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 2012; 92:193-235. [PMID: 22298656 DOI: 10.1152/physrev.00043.2010] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The two amino acids GABA and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes.
Collapse
|
25
|
Ramachandran R, Bhatt DK, Ploug KB, Olesen J, Jansen-Olesen I, Hay-Schmidt A, Gupta S. A naturalistic glyceryl trinitrate infusion migraine model in the rat. Cephalalgia 2011; 32:73-84. [PMID: 22174360 DOI: 10.1177/0333102411430855] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIM Glyceryl trinitrate (GTN) infusion is a reliable method to provoke migraine-like headaches in humans. Previous studies have simulated this human model in anaesthetized or in awake rodents using GTN doses 10,000 times higher than used in humans. The relevance of such toxicological doses to migraine is not certain. Anaesthesia and low blood pressure caused by high GTN doses both can affect the expression of nociceptive marker c-fos. Therefore, our aim was to simulate the human GTN migraine model in awake rats using a clinically relevant dose. METHODS Awake rats were infused with GTN (4 µg/kg/min, for 20 min, i.v.), a dose just 8 times higher than in humans. mRNA and protein expression for c-fos were analysed in the trigeminal vascular system at various time points using RT-PCR and immunohistochemistry, respectively. RESULTS A significant upregulation of c-fos mRNA was observed in the trigeminal nucleus caudalis at 30 min and 2 h that was followed by an upregulation of Fos protein in the trigeminal nucleus caudalis at 2 h and 4 h after GTN infusion. Pre-treatment with sumatriptan attenuated the activation of Fos at 4 h, demonstrating the specificity of this model for migraine. CONCLUSION We present a validated naturalistic rat model suitable for screening of acute anti-migraine drugs.
Collapse
|
26
|
Hossaini M, Saraç Ç, Jongen J, Holstege J. Spinal glycinergic and GABAergic neurons expressing C-FOS after capsaicin stimulation are increased in rats with contralateral neuropathic pain. Neuroscience 2011; 196:265-75. [DOI: 10.1016/j.neuroscience.2011.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 11/26/2022]
|
27
|
Nowak A, Mathieson HR, Chapman RJ, Janzsó G, Yanagawa Y, Obata K, Szabo G, King AE. Kv3.1b and Kv3.3 channel subunit expression in murine spinal dorsal horn GABAergic interneurones. J Chem Neuroanat 2011; 42:30-8. [PMID: 21440618 PMCID: PMC3161392 DOI: 10.1016/j.jchemneu.2011.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/30/2022]
Abstract
GABAergic interneurones, including those within spinal dorsal horn, contain one of the two isoforms of the synthesizing enzyme glutamate decarboxylase (GAD), either GAD65 or GAD67. The physiological significance of these two GABAergic phenotypes is unknown but a more detailed anatomical and functional characterization may help resolve this issue. In this study, two transgenic Green Fluorescent Protein (GFP) knock-in murine lines, namely GAD65-GFP and GAD67-GFP (Δneo) mice, were used to profile expression of Shaw-related Kv3.1b and Kv3.3 K(+)-channel subunits in dorsal horn interneurones. Neuronal expression of these subunits confers specific biophysical characteristic referred to as 'fast-spiking'. Immuno-labelling for Kv3.1b or Kv3.3 revealed the presence of both of these subunits across the dorsal horn, most abundantly in laminae I-III. Co-localization studies in transgenic mice indicated that Kv3.1b but not Kv3.3 was associated with GAD65-GFP and GAD67-GFP immunopositive neurones. For comparison the distributions of Kv4.2 and Kv4.3 K(+)-channel subunits which are linked to an excitatory neuronal phenotype were characterized. No co-localization was found between GAD-GFP +ve neurones and Kv4.2 or Kv4.3. In functional studies to evaluate whether either GABAergic population is activated by noxious stimulation, hindpaw intradermal injection of capsaicin followed by c-fos quantification in dorsal horn revealed co-expression c-fos and GAD65-GFP (quantified as 20-30% of GFP +ve population). Co-expression was also detected for GAD67-GFP +ve neurones and capsaicin-induced c-fos but at a much reduced level of 4-5%. These data suggest that whilst both GAD65-GFP and GAD67-GFP +ve neurones express Kv3.1b and therefore may share certain biophysical traits, their responses to peripheral noxious stimulation are distinct.
Collapse
Affiliation(s)
- A Nowak
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Haghparast A, Taslimi Z, Ramin M, Azizi P, Khodagholi F, Hassanpour-Ezatti M. Changes in phosphorylation of CREB, ERK, and c-fos induction in rat ventral tegmental area, hippocampus and prefrontal cortex after conditioned place preference induced by chemical stimulation of lateral hypothalamus. Behav Brain Res 2011; 220:112-8. [PMID: 21295078 DOI: 10.1016/j.bbr.2011.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Experimental evidence indicates that chemical stimulation of lateral hypothalamus (LH) by carbachol can produce conditioned place preference (CPP) in rats. Several lines of evidence have shown that cAMP-response element binding protein (CREB), extracellular signal-regulated kinase (ERK), and c-fos have pivotal role in CPP induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated-CREB (p-CREB) and -ERK (p-ERK), and c-fos induction within ventral tegmental area (VTA), hippocampus and prefrontal cortex (PFC) after the acquisition of CPP induced by intra-LH administration of carbachol. Animals were unilaterally implanted by cannula into LH. For chemical stimulation of LH, carbachol (250 nmol/0.5 μl saline) was microinjected once each day, during 3-day conditioning phase (acquisition period) of CPP paradigm. After the acquisition period, the brains were removed, and p-CREB and p-ERK, and c-fos induction in the ipsilateral VTA, hippocampus and PFC were measured by Western blot analysis. The results indicated a significant increase in level of phosphorylated CREB (P<0.01) in VTA, and PFC (P<0.05), during LH stimulation-induced CPP, while its level decreased in hippocampus (P<0.05). Also, in aforementioned regions, an increase in c-fos level was observed, but this enhancement in PFC was not significant. Moreover, p-ERK changed in these areas, but not significantly. Our findings suggest that studying the intracellular signals and their changes, such as phosphorylated-CREB, can elucidate a functional relationship between LH and other brain structures involved in reward processing in rats.
Collapse
Affiliation(s)
- Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|