1
|
Neznanov NG, Tanashyan MM, Akarachkova ES, Amelin AV, Bogolepova AN, Vasilieva AV, Ermolenko NA, Zakharov VV, Lebedeva AV, Maksimova MY, Medvedev VE, Mendelevich VD, Solovieva EY, Tabeeva GR, Fedosenko SV. [Comorbid anxiety disorders in patients with neurological pathology: current state of the problem and the role of etifoxine in treatment strategy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:126-136. [PMID: 39731382 DOI: 10.17116/jnevro2024124121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
The article presents theses of the resolution of the Interdisciplinary Council of Experts in Psychiatry and Neurology (Moscow, 2024) on the issue of comorbid anxiety disorders (AD) in patients with neurological pathologies. The authors highlight the high prevalence of comorbid ADs and their significant negative impact on the course of underlying diseases, such as epilepsy, pain syndromes and post-stroke conditions. Modern approaches to the diagnosis and treatment of ADs in this group of patients are discussed. Special attention is given to the role of etifoxine as an effective anxiolytic in the comprehensive therapy of ADs. Etifoxine, due to its dual mechanism of action on GABA receptors, demonstrates high efficacy in reducing anxiety and has neuroprotective, neurotrophic, neuroplastic, analgesic, and anti-inflammatory properties, making it an important tool in the treatment of comorbid ADs in patients with neurological pathologies. The article also reviews recently published data confirming its efficacy and favourable safety profile compared to traditional benzodiazepines and other anxiolytic drugs.
Collapse
Affiliation(s)
- N G Neznanov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- First Pavlov State Medical University, St. Petersburg, Russia
| | | | - E S Akarachkova
- Almatek LLC - Rehabilitation Center «Rehaline», Moscow, Russia
| | - A V Amelin
- First Pavlov State Medical University, St. Petersburg, Russia
| | - A N Bogolepova
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
- Federal Center for Brain and Neurotechnology, Moscow, Russia
| | - A V Vasilieva
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Mechnikov Northwestern State Medical University, St. Petersburg, Russia
| | - N A Ermolenko
- Burdenko Voronezh State Medical University, Voronezh, Russia
| | - V V Zakharov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A V Lebedeva
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
- Federal Center for Brain and Neurotechnology, Moscow, Russia
| | | | - V E Medvedev
- Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
| | | | - E Yu Solovieva
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - G R Tabeeva
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | |
Collapse
|
2
|
Gazzo G, Salgado Ferrer M, Poisbeau P. The non-benzodiazepine anxiolytic etifoxine limits mechanical allodynia and anxiety-like symptoms in a mouse model of streptozotocin-induced diabetic neuropathy. PLoS One 2021; 16:e0248092. [PMID: 34351930 PMCID: PMC8341594 DOI: 10.1371/journal.pone.0248092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022] Open
Abstract
More than 450 million people worldwide suffer from diabetes, or 1 in 11 people. Chronic hyperglycemia degrades patients’ quality of life and the development of neuropathic pain contributes to the burden of this disease. In this study, we used the mouse model of streptozocin-induced diabetic type 1 neuropathy to assess the analgesic potential of etifoxine. Etifoxine is a prescribed anxiolytic that increases GABAAA receptor function through a direct positive allosteric modulation effect and, indirectly, by stimulating the production of endogenous GABAA receptor positive modulators such as allopregnanolone-type neurosteroids. We show that a post-symptomatic or preventive treatment strongly and durably reduces mechanical hyperalgesia and anxiety in diabetic neuropathic mice. This analgesic and neuroprotective effect on painful symptoms and emotional comorbidities is promising and should now be clinically evaluated.
Collapse
Affiliation(s)
- Géraldine Gazzo
- Centre National de la Recherche Scientifique, Institute for Cellular and Integrative Neuroscience (INCI), University of Strasbourg, Strasbourg, France
| | - Marlene Salgado Ferrer
- Centre National de la Recherche Scientifique, Institute for Cellular and Integrative Neuroscience (INCI), University of Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique, Institute for Cellular and Integrative Neuroscience (INCI), University of Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
3
|
Kamoun N, Gazzo G, Goumon Y, Andry V, Yalcin I, Poisbeau P. Long-lasting analgesic and neuroprotective action of the non-benzodiazepine anxiolytic etifoxine in a mouse model of neuropathic pain. Neuropharmacology 2020; 182:108407. [PMID: 33212115 DOI: 10.1016/j.neuropharm.2020.108407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is frequently associated with anxiety and major depressive disorders, which considerably impact the overall patient experience. Favoring GABAergic inhibition through the pain matrix has emerged as a promising strategy to restore proper processing of nociceptive and affective information in neuropathic pain states. In this context, the non-benzodiazepine anxiolytic etifoxine (EFX), known to amplify GABAergic inhibition through positive modulation of GABAA receptors and neurosteroidogenesis, presents several advantages. Therefore, we sought to investigate the preclinical therapeutic potential of EFX on the somatosensory and affective components of neuropathic pain. Here, we used a murine model in which neuropathic pain was induced by the implantation of a compressive cuff around the sciatic nerve (mononeuropathy). We showed that the intraperitoneal EFX treatment for five consecutive days (50 mg/kg) relieved mechanical allodynia in a sustained manner. Besides its effect on evoked mechanical hypersensitivity, EFX also alleviated aversiveness of ongoing pain as well as anxiodepressive-like consequences of neuropathic pain following cuff-induced mononeuropathy. This effect was also seen 12 weeks after induction of the neuropathy when allodynia was no longer present. Analgesic and neuroprotective actions of EFX were also seen by the absence of neuropathic pain symptoms if a second sciatic nerve constriction injury was applied to the contralateral hindpaw. Mass spectrometry analysis revealed a normalization of brainstem serotonin levels in EFX-treated animals and an increase in norepinephrine. This study suggests that EFX presents promising therapeutic potential for the relief of both somatosensory and affective consequences of neuropathic pain, a beneficial effect that is likely to involve monoamine descending controls.
Collapse
Affiliation(s)
- Nisrine Kamoun
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Géraldine Gazzo
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Yannick Goumon
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Mass Spectrometry Facilities of the CNRS UPR3212, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Virginie Andry
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Mass Spectrometry Facilities of the CNRS UPR3212, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France.
| |
Collapse
|
4
|
Riban V, Meunier J, Buttigieg D, Villard V, Verleye M. In Vitro and In Vivo Neuroprotective Effects of Etifoxine in β-Amyloidinduced Toxicity Models. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:227-240. [DOI: 10.2174/1871527319666200601151007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Aim:
The aim of this study is to examine the effect of etifoxine on β-amyloid-induced toxicity
models.
Background:
Etifoxine is an anxiolytic compound with a dual mechanism of action; it is a positive allosteric
modulator of GABAergic receptors as well as a ligand for the 18 kDa mitochondrial Translocator
Protein (TSPO). TSPO has recently raised interest in Alzheimer’s Disease (AD), and experimental studies
have shown that some TSPO ligands could induce neuroprotective effects in animal models.
Objective:
In this study, we examined the potential protective effect of etifoxine in an in vitro and an
in vivo model of amyloid beta (Aβ)-induced toxicity in its oligomeric form, which is a crucial factor in
AD pathologic mechanisms.
Method:
Neuronal cultures were intoxicated with Aβ1-42, and the effects of etifoxine on oxidative
stress, Tau-hyperphosphorylation and synaptic loss were quantified. In a mice model, behavioral deficits
induced by intracerebroventricular administration of Aβ25-35 were measured in a spatial memory
test, the spontaneous alternation and in a contextual memory test, the passive avoidance test.
Results:
In neuronal cultures intoxicated with Aβ1-42, etifoxine dose-dependently decreased oxidative
stress (methionine sulfoxide positive neurons), tau-hyperphosphorylation and synaptic loss (ratio
PSD95/synaptophysin). In a mice model, memory impairments were fully alleviated by etifoxine administered
at anxiolytic doses (12.5-50mg/kg). In addition, markers of oxidative stress and apoptosis
were decreased in the hippocampus of these animals.
Conclusion:
Our results have shown that in these two models, etifoxine could fully prevent neurotoxicity
and pathological changes induced by Aβ. These results confirm that TSPO ligands could offer an
interesting therapeutic approach to Alzheimer’s disease.
Collapse
Affiliation(s)
- Veronique Riban
- Pharmacology Department, Biocodex, 3 Chemin d’Armancourt, 60200 Compiegne, France
| | - Johann Meunier
- Amylgen, 2196 Boulevard de la Lironde, 34980 Montferrier sur Lez, France
| | | | - Vanessa Villard
- Amylgen, 2196 Boulevard de la Lironde, 34980 Montferrier sur Lez, France
| | - Marc Verleye
- Pharmacology Department, Biocodex, 3 Chemin d’Armancourt, 60200 Compiegne, France
| |
Collapse
|
5
|
Shi X, Gao C, Wang L, Chu X, Shi Q, Yang H, Li T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon 2020; 178:33-40. [PMID: 32250746 DOI: 10.1016/j.toxicon.2019.12.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
Chronic inflammatory pain is a serious clinical problem caused by inflammation of the joints and degenerative diseases and greatly affects patients' quality of life. Persistent pain states are thought to result from the central sensitization of nociceptive pathways in the spinal dorsal horn. Spinal microglia-mediated neuroinflammation plays a pivotal role in the development and maintenance of the central sensitization of chronic inflammatory pain. Botulinum toxin type A (BoNT/A) was recently reported to have analgesic and anti-inflammatory effects. However, the precise mechanism underlying its analgesic effect remains unclear. Although several studies have reported that BoNT/A could regulate neuroflammation, the reduction of neuroinflammation regulated by BoNT/A in chronic inflammatory pain in experimentally induced arthritis has not been reported. The aim of this study was to investigate whether BoNT/A could alleviate adjuvant-arthritis pain via modulating microglia-mediated neuroinflammation and intracellular molecular pathway. The pain behavioral tests were performed before and after CFA immunization as well as after BoNT/A injection. Western blotting and immunofluorescence staining were used to assess the changes of microglial activation markers (ionized calcium binding adaptor molecule 1, IBA-1) and phosphorylation of P38MAPK (P-p38MAPK) in the lumbar spinal cord. TNF-αand P2X4R gene expression were studied by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that (1) the activation of spinal microglia can be continued till 21 days after CFA injection, which suggested its role in the development and maintenance of chronic inflammatory pain. (2) The intra-articular administration of a single effective dose of BoNT/A (5U/10 U) on day 21 after CFA injection significantly reduced nociceptive behaviors and decreased protein overexpression and immunoreactivity for IBA-1 and P-p38MAPK in CFA induced rat. Simultaneously, BoNT/A (5 U) also inhibited the increase in TNF-α mRNA and P2X4R mRNA expression induced by CFA injection. These results suggested that BoNT/A is a potential therapeutic agent for relieving the neuroinflammation that occurs in chronic inflammatory pain by inhibiting the activation of microglial cells and the release of microglia-derived TNF-α. This effect is likely mediated by inhibiting the activation of the P2X4R-P38MAPK signaling pathways in spinal microglial cells.
Collapse
Affiliation(s)
- Xiaojuan Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Chengfei Gao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Xiao Chu
- Department of Pharmacy of Qingdao Municipal Hospital, Qingdao, Shandong Province, PR China
| | - Qilin Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Hui Yang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China.
| |
Collapse
|
6
|
Nuss P, Ferreri F, Bourin M. An update on the anxiolytic and neuroprotective properties of etifoxine: from brain GABA modulation to a whole-body mode of action. Neuropsychiatr Dis Treat 2019; 15:1781-1795. [PMID: 31308671 PMCID: PMC6615018 DOI: 10.2147/ndt.s200568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
Treating the signs and symptoms of anxiety is an everyday challenge in clinical practice. When choosing between treatment options, anxiety needs to be understood in the situational, psychiatric, and biological context in which it arises. Etifoxine, a non-benzodiazepine anxiolytic drug belonging to the benzoxazine class, is an effective treatment for anxiety in response to a stressful situation. In the present review, we focused on several aspects of the cerebral and somatic biological mechanisms involved in anxiety and investigated the extent to which etifoxine's mode of action can explain its anxiolytic activity. Its two mechanisms of action are the modulation of GABAergic neurotransmission and neurosteroid synthesis. Recent data suggest that the molecule possesses neuroprotective, neuroplastic, and anti-inflammatory properties. Etifoxine was first shown to be an effective anxiolytic in patients in clinical studies comparing it with clobazam, sulpiride, and placebo. Randomized controlled studies have demonstrated its anxiolytic efficacy in patients with adjustment disorders (ADs) with anxiety, showing it to be superior to buspirone and comparable to lorazepam and phenazepam, with a greater number of markedly improved responders and a better therapeutic index. Etifoxine's noninferiority to alprazolam has also been demonstrated in a comparative trial. Significantly less rebound anxiety was observed after abrupt cessation of etifoxine compared with lorazepam or alprazolam. Consistent with this finding, etifoxine appears to have a very low dependence potential. Unlike lorazepam, it has no effect on psychomotor performance, vigilance, or free recall. Severe adverse events are in general rare. Skin and subcutaneous disorders are the most frequently reported, but these generally resolve after drug cessation. Taken together, its dual mechanisms of action in anxiety and the positive data yielded by clinical trials support the use of etifoxine for treating the anxiety signs and symptoms of individuals with ADs.
Collapse
Affiliation(s)
- Philippe Nuss
- Department of Adult Psychiatry and Medical Psychology, Sorbonne University, Saint-Antoine Hospital, Paris, France
- Inserm UMR_S938, Saint-Antoine Research Centre, Sorbonne University, Paris, France
| | - Florian Ferreri
- Department of Adult Psychiatry and Medical Psychology, Sorbonne University, Saint-Antoine Hospital, Paris, France
| | - Michel Bourin
- Department of Neurobiology of Anxiety and Depression, Faculty of Medicine, Nantes University, Nantes, France
| |
Collapse
|
7
|
Shehadeh M, Palzur E, Apel L, Soustiel JF. Reduction of Traumatic Brain Damage by Tspo Ligand Etifoxine. Int J Mol Sci 2019; 20:ijms20112639. [PMID: 31146356 PMCID: PMC6600152 DOI: 10.3390/ijms20112639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 01/30/2023] Open
Abstract
Experimental studies have shown that ligands of the 18 kDa translocator protein can reduce neuronal damage induced by traumatic brain injury by protecting mitochondria and preventing metabolic crisis. Etifoxine, an anxiolytic drug and 18 kDa translocator protein ligand, has shown beneficial effects in the models of peripheral nerve neuropathy. The present study investigates the potential effect of etifoxine as a neuroprotective agent in traumatic brain injury (TBI). For this purpose, the effect of etifoxine on lesion volume and modified neurological severity score at 4 weeks was tested in Sprague-Dawley adult male rats submitted to cortical impact contusion. Effects of etifoxine treatment on neuronal survival and apoptosis were also assessed by immune stains in the perilesional area. Etifoxine induced a significant reduction in the lesion volume compared to nontreated animals in a dose-dependent fashion with a similar effect on neurological outcome at four weeks that correlated with enhanced neuron survival and reduced apoptotic activity. These results are consistent with the neuroprotective effect of etifoxine in TBI that may justify further translational research.
Collapse
Affiliation(s)
- Mona Shehadeh
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| | - Eilam Palzur
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| | - Liat Apel
- Institute of Pathology, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
- The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed 13100, Israel.
| | - Jean Francois Soustiel
- Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
- The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed 13100, Israel.
- Department of Neurosurgery, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel.
| |
Collapse
|
8
|
Cholecalciferol (Vitamin D 3) Reduces Rat Neuropathic Pain by Modulating Opioid Signaling. Mol Neurobiol 2019; 56:7208-7221. [PMID: 31001801 DOI: 10.1007/s12035-019-1582-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/21/2019] [Indexed: 01/13/2023]
Abstract
The impact of vitamin D on sensory function, including pain processing, has been receiving increasing attention. Indeed, vitamin D deficiency is associated with various chronic pain conditions, and several lines of evidence indicate that vitamin D supplementation may trigger pain relief. However, the underlying mechanisms of action remain poorly understood. We used inflammatory and non-inflammatory rat models of chronic pain to evaluate the benefits of vitamin D3 (cholecalciferol) on pain symptoms. We found that cholecalciferol supplementation improved mechanical nociceptive thresholds in monoarthritic animals and reduced mechanical hyperalgesia and cold allodynia in a model of mononeuropathy. Transcriptomic analysis of cerebrum, dorsal root ganglia, and spinal cord tissues indicate that cholecalciferol supplementation induces a massive gene dysregulation which, in the cerebrum, is associated with opioid signaling (23 genes), nociception (14), and allodynia (8), and, in the dorsal root ganglia, with axonal guidance (37 genes) and nociception (17). Among the identified cerebral dysregulated nociception-, allodynia-, and opioid-associated genes, 21 can be associated with vitamin D metabolism. However, it appears that their expression is modulated by intermediate regulators such as diverse protein kinases and not, as expected, by the vitamin D receptor. Overall, several genes-Oxt, Pdyn, Penk, Pomc, Pth, Tac1, and Tgfb1-encoding for peptides/hormones stand out as top candidates to explain the therapeutic benefit of vitamin D3 supplementation. Further studies are now warranted to detail the precise mechanisms of action but also the most favorable doses and time windows for pain relief.
Collapse
|
9
|
Analgesic and anti-edemic properties of etifoxine in models of inflammatory sensitization. Eur J Pharmacol 2018; 843:316-322. [PMID: 30552900 DOI: 10.1016/j.ejphar.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
Inflammatory processes are critical promoting factors of chronic pain states, mostly by inducing peripheral and central sensitization of the nociceptive system. These processes are associated with a massive increase in glutamatergic transmission, sometimes facilitated by spinal disinhibition. In this study, we used etifoxine, a non-benzodiazepine anxiolytic known to amplify inhibition mediated by gamma-aminobutyric acid type A (GABAA) receptors in pain processing regions, either directly (through allosteric modulation) or indirectly (through the synthesis of endogenous neurosteroids). We used different models of local inflammation to evaluate the possible direct action of etifoxine on analgesia and edema. Pain symptom and edema measurements were performed after intraplantar carrageenan injection or after topical ear inflammation. We found that etifoxine treatment was associated with reduced plantar surface temperature 24 h after intraplantar carrageenan injection. In this model, etifoxine also alleviated thermal hot and mechanical hyperalgesia. A similar finding was observed while analyzing pain symptoms in the late phase of the formalin test. In a model of ear inflammation, etifoxine appeared to have a moderate anti-edemic effect after topical application. This slight action of etifoxine on the limitation of inflammatory processes could be mediated in part by cyclo-oxygenase 1 activity inhibition. Etifoxine appears as a promising therapeutic tool contributing to the limitation of inflammatory pain symptoms. Since etifoxine is already prescribed as an anxiolytic in several countries, it could be a good candidate for the prevention of inflammatory-driven edema and hyperalgesia, although the precise mechanism of action relative to its anti-inflammatory potential remains to be elucidated.
Collapse
|
10
|
Abstract
OBJECTIVES Anxiety and adjustment disorders are among the most prevalent mental health conditions. This review focuses on γ-aminobutyric acid receptor type A (GABAAR)-mediated anxiolysis, describing the action of both endogenous and exogenous modulators of GABAAR. Future directions and innovative strategies to alleviate anxiety symptoms are discussed, with a particular emphasis on etifoxine. METHODS We used available data from the recent literature to update the mode of action of anxiolytics. We focussed our search on anxiolytics acting at GABAARs, as well as on the pharmacological properties of formerly and currently prescribed anxiolytics. RESULTS Considering the adverse effects of current treatments aimed at increasing inhibitory controls, optimisation of existing pharmacotherapies is of crucial importance. Among the alternative compounds targeting the GABAergic system, translocator protein (TSPO) ligands, such as etifoxine (EFX), which promote endogenous neurosteroidogenesis, are emerging as promising candidates for anxiety relief. In several papers comparing the efficacy of benzodiazepines and EFX, EFX showed interesting properties with limited side effects. Indeed, neurosteroids are potent GABAAR modulators with highly underrated anxiolytic properties. CONCLUSIONS Novel therapeutic strategies have been emerging following the recognition of neurosteroids as potent anxiolytics. Featured at the top of the list for well-tolerated anxiety relief, TSPO ligands such as etifoxine appear promising.
Collapse
Affiliation(s)
- Pierrick Poisbeau
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| | - Geraldine Gazzo
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| | - Laurent Calvel
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| |
Collapse
|
11
|
Chagas PM, da Cruz Weber Fulco B, Pesarico AP, Roehrs JA, Nogueira CW. Effectiveness of bis(phenylimidazoselenazolyl) diselenide on a mouse model of inflammatory nociception. Biomed Pharmacother 2017; 96:56-63. [PMID: 28963951 DOI: 10.1016/j.biopha.2017.09.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/11/2017] [Accepted: 09/23/2017] [Indexed: 11/16/2022] Open
Abstract
The injection of complete Freund's adjuvant (CFA) in the hindpaw of rodents induces tissue inflammation and nociceptive hypersensitivity. In addition, it has been reported that organoselenium compounds have antinociceptive properties in animal models. The purpose of this study was to investigate the potential antinociceptive effect of bis(phenylimidazoselenazolyl) diselenide (BPIS) in the inflammatory nociception model in mice and its possible mechanism of action. C57BL/6 mice received CFA intraplantar in right hindpaw and the inflammatory response was verified 24h after injection as well as the antinociceptive effect of BPIS. The CFA-induced mechanical allodynia was reversed by BPIS treatment (1mg/kg, p.o.) observed through the von Frey hair test. Additionally, L-arginine (600mg/kg; i.p.), administered before BPIS treatment, blocked its antinociceptive effect. Regarding myeloperoxidase activity, NOx and 3-nitrotyrosine levels, BPIS administration did not reverse alterations observed in the paw of animals injected with CFA. BPIS reversed the increase in spinal NOx content induced by CFA. In the spinal cord, it was also found that CFA induced an increase in malondialdehyde content and a decrease in glutamate uptake, and these alterations were reversed by BPIS. Moreover, BPIS treatment induced an increase in non-protein thiol levels in spinal cord of animals that received CFA injection. No alterations were found in glutathione peroxidase, reductase and S-transferase activities of experimental groups. The obtained data reinforce the relevance of BPIS as an antinociceptive agent as well as highlight the importance of the nitric oxide pathway in the spinal cord and its antioxidant potential for its mechanism of action.
Collapse
Affiliation(s)
- Pietro Maria Chagas
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Bruna da Cruz Weber Fulco
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Juliano Alex Roehrs
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.
| |
Collapse
|
12
|
Differential effects of the 18-kDa translocator protein (TSPO) ligand etifoxine on steroidogenesis in rat brain, plasma and steroidogenic glands: Pharmacodynamic studies. Psychoneuroendocrinology 2017; 83:122-134. [PMID: 28609670 DOI: 10.1016/j.psyneuen.2017.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 11/20/2022]
Abstract
Etifoxine is indicated in humans for treating anxiety. In rodents, besides its anxiolytic-like properties, it has recently shown neuroprotective and neuroregenerative activities. It acts by enhancing GABAA receptor function and by stimulating acute steroid biosynthesis via the activation of the 18-kDa translocator protein. However, the regulatory action of etifoxine on steroid production is not well characterized. In this work, we performed dose-response, acute and chronic time-course experiments on the effects of intraperitoneal injections of etifoxine on steroid levels in adult male rat brain and plasma analyzed by gas chromatography-mass spectrometry. Concentrations of pregnenolone, progesterone and its 5α-reduced metabolites were significantly increased in both tissues in response to 25 and 50mg/kg of etifoxine, as compared with vehicle controls, and reached maximal values at 0.5-1h post-injection. Daily injections of etifoxine (50mg/kg, 15days) kept them increased at day 15. Comparisons between steroidogenic tissues revealed that 1h after 50mg/kg of etifoxine treatment, levels of pregnenolone, progesterone and corticosterone were highest in adrenal glands and markedly increased together with their reduced metabolites. They were also increased by etifoxine in brain and plasma, but not in testis except for corticosterone and its metabolites. In contrast, testosterone level was significantly decreased in testis while with its 5α-reduced metabolites, it was unchanged in brain. Results demonstrate that the modulation of steroid concentrations by etifoxine is dependent on the type of steroid and on the steroidogenic organ. They further suggest that adrenal steroids upregulated by etifoxine make an important contribution to the steroids present in brain. This work provides a precise and complete view of steroids regulated by etifoxine that could be useful in therapeutic research.
Collapse
|
13
|
Li HD, Li M, Shi E, Jin WN, Wood K, Gonzales R, Liu Q. A translocator protein 18 kDa agonist protects against cerebral ischemia/reperfusion injury. J Neuroinflammation 2017; 14:151. [PMID: 28754131 PMCID: PMC5534039 DOI: 10.1186/s12974-017-0921-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Cerebral ischemia is a leading cause of death and disability with limited treatment options. Although inflammatory and immune responses participate in ischemic brain injury, the molecular regulators of neuroinflammation after ischemia remain to be defined. Translocator protein 18 kDa (TSPO) mainly localized to the mitochondrial outer membrane is predominantly expressed in glia within the central nervous system during inflammatory conditions. This study investigated the effect of a TSPO agonist, etifoxine, on neuroinflammation and brain injury after ischemia/reperfusion. Methods We used a mouse model of middle cerebral artery occlusion (MCAO) to examine the therapeutic potential and mechanisms of neuroprotection by etifoxine. Results TSPO was upregulated in Iba1+ or CD11b+CD45int cells from mice subjected to MCAO and reperfusion. Etifoxine significantly attenuated neurodeficits and infarct volume after MCAO and reperfusion. The attenuation was pronounced in mice subjected to 30, 60, or 90 min MCAO. Etifoxine reduced production of pro-inflammatory factors in the ischemic brain. In addition, etifoxine treatment led to decreased expression of interleukin-1β, interleukin-6, tumor necrosis factor-α, and inducible nitric oxide synthase by microglia. Notably, the benefit of etifoxine against brain infarction was ablated in mice depleted of microglia using a colony-stimulating factor 1 receptor inhibitor. Conclusions These findings indicate that the TSPO agonist, etifoxine, reduces neuroinflammation and brain injury after ischemia/reperfusion. The therapeutic potential of targeting TSPO requires further investigations in ischemic stroke.
Collapse
Affiliation(s)
- Han-Dong Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Elaine Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Rayna Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
| |
Collapse
|
14
|
Li M, Ren H, Sheth KN, Shi FD, Liu Q. A TSPO ligand attenuates brain injury after intracerebral hemorrhage. FASEB J 2017; 31:3278-3287. [PMID: 28416580 PMCID: PMC5503714 DOI: 10.1096/fj.201601377rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/27/2017] [Indexed: 01/25/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease without effective treatment. After ICH, the immediate infiltration of leukocytes and activation of microglia are accompanied by a rapid up-regulation of the 18-kDa translocator protein (TSPO). TSPO ligands have shown anti-inflammatory and neuroprotective properties in models of CNS injury. In this study, we determined the impact of a TSPO ligand, etifoxine, on brain injury and inflammation in 2 mouse models of ICH. TSPO was up-regulated in Iba1+ cells from brains of patients with ICH and in CD11b+CD45int cells from mice subjected to collagenase-induced ICH. Etifoxine significantly reduced neurodeficits and perihematomal brain edema after ICH induction by injection of either autologous blood or collagenase. In collagenase-induced ICH mice, the protection of etifoxine was associated with reduced leukocyte infiltration into the brain and microglial production of IL-6 and TNF-α. Etifoxine improved blood–brain barrier integrity and diminished cell death. Notably, the protective effect of etifoxine was abolished in mice depleted of microglia by using a colony-stimulating factor 1 receptor inhibitor. These results indicate that the TSPO ligand etifoxine attenuates brain injury and inflammation after ICH. TSPO may be a viable therapeutic target that requires further investigations in ICH.—Li, M., Ren, H., Sheth, K. N., Shi, F.-D., Liu, Q. A TSPO ligand attenuates brain injury after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; .,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
15
|
Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28:4-10. [PMID: 25589941 PMCID: PMC4293506 DOI: 10.3344/kjp.2015.28.1.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 02/05/2023] Open
Abstract
Etifoxine (etafenoxine, Stresam®) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by GABAAα2 receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to β2 or β3 subunits of the GABAA receptor complex. It also modulates GABAA receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates GABAA receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.
Collapse
Affiliation(s)
- Yun Mi Choi
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kyung Hoon Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
16
|
Juif PE, Melchior M, Poisbeau P. Characterization of the fast GABAergic inhibitory action of etifoxine during spinal nociceptive processing in male rats. Neuropharmacology 2014; 91:117-22. [PMID: 25545681 DOI: 10.1016/j.neuropharm.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 11/07/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Etifoxine (EFX) is a non-benzodiazepine anxiolytic which potentiate GABAA receptor (GABAAR) function directly or indirectly via the production of 3α-reduced neurosteroids. The later effect is now recognized to account for the long-term reduction of pain symptoms in various neuropathic and inflammatory pain models. In the present study, we characterized the acute antinociceptive properties of EFX during spinal pain processing in naive and monoarthritic rats using in vivo electrophysiology. The topical application of EFX on lumbar spinal cord segment, at concentrations higher than 30 μM, reduced the excitability of wide dynamic range neurons receiving non-nociceptive and nociceptive inputs. Windup discharge resulting from the repetitive stimulation of the peripheral receptive field, and recognized as a short-term plastic process seen in central nociceptive sensitization, was significantly inhibited by EFX at these concentrations. In good agreement, mechanical nociceptive thresholds were also significantly increased following an acute intrathecal injection of EFX. The acute modulatory properties of EFX on spinal pain processing were never seen in the simultaneous presence of bicuculline. This result further confirmed EFX antinociception to result from the potentiation of spinal GABAA receptor function.
Collapse
Affiliation(s)
- P E Juif
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - M Melchior
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - P Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neurosciences, Strasbourg, France.
| |
Collapse
|
17
|
Chua SW, Kassiou M, Ittner LM. The translocator protein as a drug target in Alzheimer's disease. Expert Rev Neurother 2014; 14:439-48. [PMID: 24625007 DOI: 10.1586/14737175.2014.896201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO) recently emerged as a potential drug target in Alzheimer's disease (AD). This has been fuelled mainly by positron emission topography studies that show the upregulation of TSPO in AD, especially in relation to microgliosis and astrogliosis in amyloid-β and tau pathology. Although data as to the exact role of TSPO in AD is still inconclusive, TSPO appears to be involved in neuroinflammatory processes and AD has been shown to involve substantial inflammation. Therefore, further development and investigation of the pharmacological effect of TSPO ligands in AD pathology are warranted.
Collapse
Affiliation(s)
- Sook W Chua
- Dementia Research Unit, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
18
|
Poisbeau P, Keller AF, Aouad M, Kamoun N, Groyer G, Schumacher M. Analgesic strategies aimed at stimulating the endogenous production of allopregnanolone. Front Cell Neurosci 2014; 8:174. [PMID: 24987335 PMCID: PMC4060572 DOI: 10.3389/fncel.2014.00174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023] Open
Abstract
A growing number of studies indicate that 3-alpha reduced neurosteroids are remarkable analgesics in various pain states. This is the case for allopregnanolone (AP), one of the most potent endogenous positive allosteric modulators of GABAA receptor function. From the pioneering work of Hans Selye, who described the sedative properties of steroids, synthetic compounds resembling the progesterone metabolite AP have been developed. If some of them have been used as anesthetics, it seems difficult to propose them as a therapeutic option for pain since they display several adverse side effects such as sedation, amnesia and functional tolerance. An alternative strategy, chosen by few laboratories around the world, is aimed at stimulating the local production of 3-alpha reduced neurosteroids in order to limit these well-known side effects. This pharmacological approach has the advantage of targeting specific structures, fully equipped with the necessary biosynthetic enzymatic machinery, where neurosteroids already act as endogenous pain modulators. The various pharmacological trials which attempted to treat pain symptoms by stimulating the production of 3-alpha reduced neurosteroids are reviewed here, as well as novel neurotransmitter systems possibly regulating their endogenous production.
Collapse
Affiliation(s)
- Pierrick Poisbeau
- Molecular Determinants of Pain, Institute for Cellular and Integrative Neurosciences (INCI), UPR Centre National de la Recherche Scientifique (CNRS) 3212 and University of Strasbourg Strasbourg, France
| | - Anne Florence Keller
- Molecular Determinants of Pain, Institute for Cellular and Integrative Neurosciences (INCI), UPR Centre National de la Recherche Scientifique (CNRS) 3212 and University of Strasbourg Strasbourg, France ; Rhenovia Pharma Mulhouse, France
| | - Maya Aouad
- Molecular Determinants of Pain, Institute for Cellular and Integrative Neurosciences (INCI), UPR Centre National de la Recherche Scientifique (CNRS) 3212 and University of Strasbourg Strasbourg, France
| | - Nisrine Kamoun
- Molecular Determinants of Pain, Institute for Cellular and Integrative Neurosciences (INCI), UPR Centre National de la Recherche Scientifique (CNRS) 3212 and University of Strasbourg Strasbourg, France
| | - Ghislaine Groyer
- UMR 788 Neuroprotection and Neuroregeneration: Neuroactive Small Molecules, Institut National de la Santé et de la Recherche Médicale (INSERM) and University Paris-Sud Kremlin-Bicêtre, France
| | - Michael Schumacher
- UMR 788 Neuroprotection and Neuroregeneration: Neuroactive Small Molecules, Institut National de la Santé et de la Recherche Médicale (INSERM) and University Paris-Sud Kremlin-Bicêtre, France
| |
Collapse
|