1
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Siggins RW, McTernan PM, Simon L, Souza-Smith FM, Molina PE. Mitochondrial Dysfunction: At the Nexus between Alcohol-Associated Immunometabolic Dysregulation and Tissue Injury. Int J Mol Sci 2023; 24:8650. [PMID: 37239997 PMCID: PMC10218577 DOI: 10.3390/ijms24108650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Alcohol misuse, directly or indirectly as a result of its metabolism, negatively impacts most tissues, including four with critical roles in energy metabolism regulation: the liver, pancreas, adipose, and skeletal muscle. Mitochondria have long been studied for their biosynthetic roles, such as ATP synthesis and initiation of apoptosis. However, current research has provided evidence that mitochondria participate in myriad cellular processes, including immune activation, nutrient sensing in pancreatic β-cells, and skeletal muscle stem and progenitor cell differentiation. The literature indicates that alcohol impairs mitochondrial respiratory capacity, promoting reactive oxygen species (ROS) generation and disrupting mitochondrial dynamics, leading to dysfunctional mitochondria accumulation. As discussed in this review, mitochondrial dyshomeostasis emerges at a nexus between alcohol-disrupted cellular energy metabolism and tissue injury. Here, we highlight this link and focus on alcohol-mediated disruption of immunometabolism, which refers to two distinct, yet interrelated processes. Extrinsic immunometabolism involves processes whereby immune cells and their products influence cellular and/or tissue metabolism. Intrinsic immunometabolism describes immune cell fuel utilization and bioenergetics that affect intracellular processes. Alcohol-induced mitochondrial dysregulation negatively impacts immunometabolism in immune cells, contributing to tissue injury. This review will present the current state of literature, describing alcohol-mediated metabolic and immunometabolic dysregulation from a mitochondrial perspective.
Collapse
Affiliation(s)
- Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick M. McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Flavia M. Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Agnetti J, Bou Malham V, Desterke C, Benzoubir N, Peng J, Jacques S, Rahmouni S, Di Valentin E, Tan TZ, Samuel D, Thiery JP, Gassama-Diagne A. PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun Biol 2022; 5:740. [PMID: 35879421 PMCID: PMC9314410 DOI: 10.1038/s42003-022-03637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
The stem cells involved in formation of the complex human body are epithelial cells that undergo apicobasal polarization and form a hollow lumen. Epithelial plasticity manifests as epithelial to mesenchymal transition (EMT), a process by which epithelial cells switch their polarity and epithelial features to adopt a mesenchymal phenotype. The connection between the EMT program and acquisition of stemness is now supported by a substantial number of reports, although what discriminates these two processes remains largely elusive. In this study, based on 3D organoid culture of hepatocellular carcinoma (HCC)-derived cell lines and AAV8-based protein overexpression in the mouse liver, we show that activity modulation of isoform δ of phosphoinositide 3-kinase (PI3Kδ) controls differentiation and discriminates between stemness and EMT by regulating the transforming growth factor β (TGFβ) signaling. This study provides an important tool to control epithelial cell fate and represents a step forward in understanding the development of aggressive carcinoma.
Collapse
Affiliation(s)
- Jean Agnetti
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Vanessa Bou Malham
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | | | - Nassima Benzoubir
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Juan Peng
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Sophie Jacques
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Emanuel Di Valentin
- Plateforme des vecteurs viraux, GIGA B34, GIGA-institute, Université de Liège, Liège, Belgium
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore National University of Singapore, Center for Translational Medicine, 14 Medical Drive, #12-01, 117599, Singapore, Singapore
| | - Didier Samuel
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
- AP-HP Hôpital Paul Brousse, Centre Hepato-Biliaire, F-94800, Villejuif, France
| | - Jean Paul Thiery
- Guangzhou Laboratory, International biological Island Guangzhou, 510005, Guangzhou, China
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, F-94800, France.
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France.
| |
Collapse
|
4
|
Madácsy T, Varga Á, Papp N, Tél B, Pallagi P, Szabó V, Kiss A, Fanczal J, Rakonczay Z, Tiszlavicz L, Rázga Z, Hohwieler M, Kleger A, Gray M, Hegyi P, Maléth J. Impaired regulation of PMCA activity by defective CFTR expression promotes epithelial cell damage in alcoholic pancreatitis and hepatitis. Cell Mol Life Sci 2022; 79:265. [PMID: 35484438 PMCID: PMC11073305 DOI: 10.1007/s00018-022-04287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Alcoholic pancreatitis and hepatitis are frequent, potentially lethal diseases with limited treatment options. Our previous study reported that the expression of CFTR Cl- channel is impaired by ethanol in pancreatic ductal cells leading to more severe alcohol-induced pancreatitis. In addition to determining epithelial ion secretion, CFTR has multiple interactions with other proteins, which may influence intracellular Ca2+ signaling. Thus, we aimed to investigate the impact of ethanol-mediated CFTR damage on intracellular Ca2+ homeostasis in pancreatic ductal epithelial cells and cholangiocytes. Human and mouse pancreas and liver samples and organoids were used to study ion secretion, intracellular signaling, protein expression and interaction. The effect of PMCA4 inhibition was analyzed in a mouse model of alcohol-induced pancreatitis. The decreased CFTR expression impaired PMCA function and resulted in sustained intracellular Ca2+ elevation in ethanol-treated and mouse and human pancreatic organoids. Liver samples derived from alcoholic hepatitis patients and ethanol-treated mouse liver organoids showed decreased CFTR expression and function, and impaired PMCA4 activity. PMCA4 co-localizes and physically interacts with CFTR on the apical membrane of polarized epithelial cells, where CFTR-dependent calmodulin recruitment determines PMCA4 activity. The sustained intracellular Ca2+ elevation in the absence of CFTR inhibited mitochondrial function and was accompanied with increased apoptosis in pancreatic epithelial cells and PMCA4 inhibition increased the severity of alcohol-induced AP in mice. Our results suggest that improving Ca2+ extrusion in epithelial cells may be a potential novel therapeutic approach to protect the exocrine pancreatic function in alcoholic pancreatitis and prevent the development of cholestasis in alcoholic hepatitis.
Collapse
Affiliation(s)
- Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Árpád Varga
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Bálint Tél
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Viktória Szabó
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Aletta Kiss
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Júlia Fanczal
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, 6720, Hungary
| | | | - Zsolt Rázga
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Mike Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, England
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine and Division for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary.
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
5
|
Ogawa M, Jiang JX, Xia S, Yang D, Ding A, Laselva O, Hernandez M, Cui C, Higuchi Y, Suemizu H, Dorrell C, Grompe M, Bear CE, Ogawa S. Generation of functional ciliated cholangiocytes from human pluripotent stem cells. Nat Commun 2021; 12:6504. [PMID: 34764255 PMCID: PMC8586142 DOI: 10.1038/s41467-021-26764-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
The derivation of mature functional cholangiocytes from human pluripotent stem cells (hPSCs) provides a model for studying the pathogenesis of cholangiopathies and for developing therapies to treat them. Current differentiation protocols are not efficient and give rise to cholangiocytes that are not fully mature, limiting their therapeutic applications. Here, we generate functional hPSC-derived cholangiocytes that display many characteristics of mature bile duct cells including high levels of cystic fibrosis transmembrane conductance regulator (CFTR) and the presence of primary cilia capable of sensing flow. With this level of maturation, these cholangiocytes are amenable for testing the efficacy of cystic fibrosis drugs and for studying the role of cilia in cholangiocyte development and function. Transplantation studies show that the mature cholangiocytes generate ductal structures in the liver of immunocompromised mice indicating that it may be possible to develop cell-based therapies to restore bile duct function in patients with biliary disease.
Collapse
Affiliation(s)
- Mina Ogawa
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Jia-Xin Jiang
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Sunny Xia
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Donghe Yang
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Avrilynn Ding
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Onofrio Laselva
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Marcela Hernandez
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Changyi Cui
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Yuichiro Higuchi
- grid.452212.20000 0004 0376 978XCentral Institute for Experimental Animals, Kawasaki, Kanagawa Japan
| | - Hiroshi Suemizu
- grid.452212.20000 0004 0376 978XCentral Institute for Experimental Animals, Kawasaki, Kanagawa Japan
| | - Craig Dorrell
- grid.5288.70000 0000 9758 5690Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Markus Grompe
- grid.5288.70000 0000 9758 5690Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Christine E. Bear
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, Toronto, ON Canada
| | - Shinichiro Ogawa
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada. .,Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Rodrigues MA, Gomes DA, Nathanson MH. Calcium Signaling in Cholangiocytes: Methods, Mechanisms, and Effects. Int J Mol Sci 2018; 19:ijms19123913. [PMID: 30563259 PMCID: PMC6321159 DOI: 10.3390/ijms19123913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Calcium (Ca2+) is a versatile second messenger that regulates a number of cellular processes in virtually every type of cell. The inositol 1,4,5-trisphosphate receptor (ITPR) is the only intracellular Ca2+ release channel in cholangiocytes, and is therefore responsible for Ca2+-mediated processes in these cells. This review will discuss the machinery responsible for Ca2+ signals in these cells, as well as experimental models used to investigate cholangiocyte Ca2+ signaling. We will also discuss the role of Ca2+ in the normal and abnormal regulation of secretion and apoptosis in cholangiocytes, two of the best characterized processes mediated by Ca2+ in this cell type.
Collapse
Affiliation(s)
- Michele Angela Rodrigues
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| | - Dawidson Assis Gomes
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
- Department of Biochemistry and Immunology, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Belo Horizonte-MG 31270-901, Brazil.
| | - Michael Harris Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
7
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Qin L, Crawford JM. Anatomy and Cellular Functions of the Liver. ZAKIM AND BOYER'S HEPATOLOGY 2018:2-19.e4. [DOI: 10.1016/b978-0-323-37591-7.00001-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Dong R, Shen Z, Zheng C, Chen G, Zheng S. Serum microRNA microarray analysis identifies miR-4429 and miR-4689 are potential diagnostic biomarkers for biliary atresia. Sci Rep 2016; 6:21084. [PMID: 26879603 PMCID: PMC4754688 DOI: 10.1038/srep21084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/12/2016] [Indexed: 01/08/2023] Open
Abstract
This study aimed to investigate pathogenesis and novel diagnostic biomarkers of biliary atresia (BA). Serum samples from infants with BA and non-BA neonatal cholestasis (NC) were collected for miRNA microarray analysis, and then differentially expressed miRNAs were screened. Differentially expressed miRNAs were validated by qRT-PCR using an independent serum samples from infants with BA and NC. Diagnostic utility of validated miRNAs was further analyzed using serum samples by receiver-operating characteristic curve analysis. Totally, 13 differentially expressed miRNAs were identified including 11 down-regulated and 2 up-regulated ones. Target genes of hsa-miR-4429 and hsa-miR-4689 were significantly involved in FoxO signaling pathway. Eight differentially expressed miRNAs were chosen for validation by qRT-PCR analysis, and four miRNAs (hsa-miR-150-3p, hsa-miR-4429, hsa-miR-4689 and hsa-miR-92a-3p) were differentially expressed. The area under the curve of hsa-miR-4429 and hsa-miR-4689 was 0.789 (sensitivity = 83.33%, specificity = 80.00%) and 0.722 (sensitivity = 66.67%, specificity = 80.00%), respectively. Differentially expressed miRNAs including hsa-miR-4429 and hsa-miR-4689 might play critical roles in BA by regulating their target genes, and these two miRNAs may have the potential to become diagnostic biomarkers.
Collapse
Affiliation(s)
- Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Zhen Shen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Chao Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| |
Collapse
|