1
|
Meirelles GDC, Bridi H, Santana Filho PC, Reiter KC, Dos Passos AAZ, Dorneles GP, Bordignon S, Rodrigues Júnior LC, Schripsema J, Romão PRT, von Poser GL. Anti-Leishmania effect of icetexanes from Salvia procurrens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155796. [PMID: 38852475 DOI: 10.1016/j.phymed.2024.155796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND PURPOSE Leishmaniasis is a globally prevalent vector-borne disease caused by parasites of the genus Leishmania. The available chemotherapeutic drugs present problems related to efficacy, emergence of parasite resistance, toxicity and high cost, justifying the search for new drugs. Several classes of compounds have demonstrated activity against Leishmania, including icetexane-type diterpenes, previously isolated from Salvia and other Lamiaceae genera. Thus, in this study, compounds of Salvia procurrens were investigated for their leishmanicidal and immunomodulatory activities. METHODS The exudate of S. procurrens was obtained by rapidly dipping the aerial parts in dichloromethane. The compounds were isolated by column and centrifugal planar chromatography over silica gel. The effects on L. amazonensis growth, survival, membrane integrity, reactive oxygen species (ROS) generation, mitochondrial membrane potential and cytotoxicity of the compounds towards human erythrocytes, peripheral blood mononuclear cells and macrophages were evaluated. The effects on intracellular amastigote forms, nitric oxide (NO) and TNF-α production were also investigated. RESULTS The exudate from the leaves afforded the novel icetexane 7-hydroxyfruticulin A (1) as well as the known demethylisofruticulin A (2), fruticulin A (3) and demethylfruticulin A (4). The compounds (1-4) were tested against promastigotes of L. amazonensis and showed an effective inhibition of the parasite survival (IC50 = 4.08-16.26 μM). In addition, they also induced mitochondrial ROS production, plasma membrane permeability and mitochondrial dysfunction in treated parasites, and presented low cytotoxicity against macrophages. Furthermore, all diterpenes tested reduced the number of parasites inside macrophages, by mechanisms involving TNF-α, NO and ROS. CONCLUSION The results suggest the potential of 7-hydroxyfruticulin A (1) as well as the known demethylisofruticulin A (2),fruticulin A (3) and demethylfruticulin A (4) as candidates for use in further studies on the design of anti-leishmanial drugs.
Collapse
Affiliation(s)
- Gabriela de Carvalho Meirelles
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Henrique Bridi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Paulo Cesar Santana Filho
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Keli Cristine Reiter
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Aline Aparecida Zonin Dos Passos
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Gilson Pires Dorneles
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Sérgio Bordignon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Luiz Carlos Rodrigues Júnior
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Jan Schripsema
- Grupo Metabolômica, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, Rio de Janeiro, RJ, Brasil
| | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| |
Collapse
|
2
|
Cezarotto CS, Dorneles A, Baldissera FG, da Silva MB, Markoski MM, Júnior LCR, Peres A, Fazolo T, Bordignon SAL, Apel MA, Romão PRT, von Poser GL. Leishmanicidal and antichemotactic activities of icetexanes from Salvia uliginosa Benth. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152748. [PMID: 31005722 DOI: 10.1016/j.phymed.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Several species of Salvia are used as medicinal plants around the world. Biological activities of isolated compounds have been described, being diterpenes frequently responsible for the effects. PURPOSE Isolation of diterpenes from Salvia uliginosa Benth. and evaluation of the antichemotactic and leishmanicidal activities of the isolated compounds. STUDY DESIGN To isolate diterpenes from S. uliginosa and evaluate their antichemotactic and leishmanicidal activities in vitro. METHODS The exudate of S. uliginosa was obtained by rapidly dipping the aerial parts in dichloromethane. The compounds were isolated by repeated column chromatography over silica gel. The effects on L. amazonensis growth, survival, DNA degradation, ROS generation, as well as the antichemotactic activity and cytotoxicity of the compounds towards human erythrocytes and macrophages were evaluated. RESULTS A novel icetexane diterpene, isoicetexone (IsoICT) along with the known diterpenes icetexone (ICT), and 7-acetoxy-6,7-dihydroicetexone were isolated from the dichloromethane surface exudate of S. uliginosa. The structures were elucidated using NMR and MS experiments, and by comparison with previously reported data. IsoICT and ICT at low concentrations caused completely inhibition of neutrophils migration in vitro. In addition, IsoICT and ICT showed high leishmanicidal activity against L. amazonensis, induced ROS production in parasites and presented low cytotoxicity against macrophages and human erythrocytes, and moderate to high selectivity index. CONCLUSION These data indicated that IsoICT and ICT exhibit potent antichemotactic and leishmanicidal effects. Further studies are needed in order to evaluate the in vivo activities as well as the toxicity of the compounds.
Collapse
Affiliation(s)
- Caroll Schneider Cezarotto
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ariane Dorneles
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Giesel Baldissera
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Matheus Brasil da Silva
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Melissa M Markoski
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Luiz C Rodrigues Júnior
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Tiago Fazolo
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Sérgio A L Bordignon
- Postgraduate Program of Environmental Impact Assessment, Unilasalle University, Canoas, Rio Grande do Sul, Brazil
| | - Miriam Anders Apel
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.
| | - Gilsane Lino von Poser
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Spina RM, Lozano E, Barrera PA, Agüero MB, Tapia A, Feresin GE, Sosa MÁ. Antiproliferative effect and ultrastructural alterations induced by 5-O-methylembelin on Trypanosoma cruzi. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:111-118. [PMID: 30097111 DOI: 10.1016/j.phymed.2018.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Embelin (EMB), obtained from Oxalis erythrorhiza Gillies ex Hooker et Arnott (Oxalidaceae), was reported against Trypanosoma cruzi and Leishmania spp. Additionally, antiprotozoan activity against Plasmodium falciparum was reported for its methylated derivative (ME). PURPOSE To evaluate the potential anti-Trypanosoma cruzi activity of EMB, ME and 2,5-di-O-methylembelin (DME) and analyze the possible mechanism of action. STUDY DESIGN/METHODS EMB was isolated by a chromatographic method from the air-dried ground whole plant. To evaluate the effects of methylation, ME and DME were synthesized and tested against T. cruzi epimastigotes and trypomastigotes. The most active compound ME was evaluated against amastigotes. Ultrastructural alterations, ROS generation and the effect on mitochondrial activity of ME were measured. RESULTS Compounds inhibited the proliferation of epimastigotes. ME was also active against intracellular amastigotes. Mitochondrial alterations were observed by TEM. Additionally, ME modified the mitochondrial activity, and induced an increase in ROS levels. These evidences postulate the mitochondrion as a possible target of ME. CONCLUSION ME inhibited amastigotes proliferation, thus being a potential lead compound for the treatment of Chagas' disease.
Collapse
Affiliation(s)
- Renata María Spina
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología "Dr. Mario H. Burgos", Universidad Nacional de Cuyo-CONICET, CC 56 (5500) Mendoza, Argentina
| | - Esteban Lozano
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo, Av. Ruiz Leal s/n Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Patricia Andrea Barrera
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología "Dr. Mario H. Burgos", Universidad Nacional de Cuyo-CONICET, CC 56 (5500) Mendoza, Argentina
| | - María Belén Agüero
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP5400 San Juan, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP5400 San Juan, Argentina
| | - Gabriela Egly Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP5400 San Juan, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Miguel Ángel Sosa
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología "Dr. Mario H. Burgos", Universidad Nacional de Cuyo-CONICET, CC 56 (5500) Mendoza, Argentina.
| |
Collapse
|
4
|
González ML, Joray MB, Laiolo J, Crespo MI, Palacios SM, Ruiz GM, Carpinella MC. Cytotoxic Activity of Extracts from Plants of Central Argentina on Sensitive and Multidrug-Resistant Leukemia Cells: Isolation of an Active Principle from Gaillardia megapotamica. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:9185935. [PMID: 29861776 PMCID: PMC5971282 DOI: 10.1155/2018/9185935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/20/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Plants are a significant reservoir of cytotoxic agents, including compounds with the ability to interfere with multidrug-resistant (MDR) cells. With the aim of finding promising candidates for chemotherapy, 91 native and naturalized plants collected from the central region of Argentina were screened for their cytotoxic effect toward sensitive and MDR P-glycoprotein (P-gp) overexpressing human leukemia cells by means of MTT assays. The ethanol extracts obtained from Aldama tucumanensis, Ambrosia elatior, Baccharis artemisioides, Baccharis coridifolia, Dimerostemma aspilioides, Gaillardia megapotamica, and Vernonanthura nudiflora presented outstanding antiproliferative activity at 50 μg/mL, with inhibitory values from 93 to 100%, when tested on the acute lymphoblastic leukemia (ALL) cell line CCRF-CEM and the resistant derivative CEM-ADR5000, while 70-90% inhibition was observed against the chronic myelogenous leukemia (CML) cell K562 and its corresponding resistant subline, Lucena 1. Subsequent investigation showed these extracts to possess marked cytotoxicity with IC50 values ranging from 0.37 to 29.44 μg/mL, with most of them being below 7 μg/mL and with ALL cells, including the drug-resistant phenotype, being the most affected. G. megapotamica extract found to be one of the most effective and bioguided fractionation yielded helenalin (1). The sesquiterpene lactone displayed IC50 values of 0.63, 0.19, 0.74, and 0.16 μg/mL against K562, CCRF-CEM, Lucena 1, and CEM/ADR5000, respectively. These results support the potential of these extracts as a source of compounds for treating sensitive and multidrug-resistant leukemia cells and support compound 1 as a lead for developing effective anticancer agents.
Collapse
Affiliation(s)
- María Laura González
- Fine Chemical and Natural Products Laboratory, School of Chemistry, IRNASUS-CONICET, Catholic University of Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - Mariana Belén Joray
- Fine Chemical and Natural Products Laboratory, School of Chemistry, IRNASUS-CONICET, Catholic University of Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, School of Chemistry, IRNASUS-CONICET, Catholic University of Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - María Inés Crespo
- Fine Chemical and Natural Products Laboratory, School of Chemistry, IRNASUS-CONICET, Catholic University of Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - Sara María Palacios
- Fine Chemical and Natural Products Laboratory, School of Chemistry, IRNASUS-CONICET, Catholic University of Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - Gustavo Miguel Ruiz
- Herbarium Marcelino Sayago, School of Agricultural Science, Catholic University of Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - María Cecilia Carpinella
- Fine Chemical and Natural Products Laboratory, School of Chemistry, IRNASUS-CONICET, Catholic University of Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| |
Collapse
|
5
|
Llurba-Montesino N, Schmidt TJ. Salvia Species as Sources of Natural Products with Antiprotozoal Activity. Int J Mol Sci 2018; 19:E264. [PMID: 29337909 PMCID: PMC5796210 DOI: 10.3390/ijms19010264] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022] Open
Abstract
Natural products from plants have been used since ancestral times to treat a wide variety of diseases worldwide. Plants of the genus Salvia (Sage) have been reported to be used for the prevention and treatment of various diseases and ailments. In particular, some Salvia species have been used in traditional medicine to treat diseases caused by protozoan parasites of the genera Trypanosoma, Leishmania and Plasmodium and scientific studies have demonstrated the activity of various isolated constituents from these plants against these pathogens. The current review attempts to give a critical overview of published information about the antiprotozoal activity of species of the genus Salvia and their chemical constituents. It is meant to give a unified overview of these results in order to avoid repetitions caused, e.g., by limited access to some primary reports, and to stimulate further research to possibly facilitate the development of new molecular leads against protozoal neglected tropical diseases (NTDs) based on Salvia constituents.
Collapse
Affiliation(s)
- Núria Llurba-Montesino
- Institut für Pharmazeutische Biologie und Phytochemie (IPBP), University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany.
| | - Thomas J Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie (IPBP), University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
6
|
Hartmann AP, de Carvalho MR, Bernardes LSC, Moraes MHD, de Melo EB, Lopes CD, Steindel M, da Silva JS, Carvalho I. Synthesis and 2D-QSAR studies of neolignan-based diaryl-tetrahydrofuran and -furan analogues with remarkable activity against Trypanosoma cruzi and assessment of the trypanothione reductase activity. Eur J Med Chem 2017; 140:187-199. [DOI: 10.1016/j.ejmech.2017.08.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/07/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
|
7
|
Barros de Alencar MVO, de Castro E Sousa JM, Rolim HML, de Medeiros MDGF, Cerqueira GS, de Castro Almeida FR, Citó AMDGL, Ferreira PMP, Lopes JAD, de Carvalho Melo-Cavalcante AA, Islam MT. Diterpenes as lead molecules against neglected tropical diseases. Phytother Res 2016; 31:175-201. [PMID: 27896890 DOI: 10.1002/ptr.5749] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 01/19/2023]
Abstract
Nowadays, neglected tropical diseases (NTDs) are reported to be present everywhere. Poor and developing areas in the world have received great attention to NTDs. Drug resistance, safety profile, and various challenges stimulate the search for alternative medications. Plant-based drugs are viewed with great interest, as they are believed to be devoid of side effects. Diterpenes, a family of essential oils, have showed attractive biological effects. A systematic review of the literature was carried out to summarize available evidences of diterpenes against NTDs. For this, databases were searched using specific search terms. Among the 2338 collected reports, a total of 181 articles were included in this review. Of them, 148 dealt with investigations using single organisms, and 33 used multiple organisms. No mechanisms of action were reported in the case of 164 reports. A total of 93.92% were related to nonclinical studies, and 4.42% and 1.66% dealt with preclinical and clinical studies, respectively. The review displays that many diterpenes are effective upon Chagas disease, chikungunya, echinococcosis, dengue, leishmaniasis, leprosy, lymphatic filariasis, malaria, schistosomiasis, and tuberculosis. Indeed, diterpenes are amazing drug candidates against NTDs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - João Marcelo de Castro E Sousa
- Department of Biological Sciences, Federal University of Piauí, Picos, (Piauí), 64.607-670, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Maria das Graças Freire de Medeiros
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Gilberto Santos Cerqueira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Biotechnology, Biotechnology and Biodiversity Center for Research (BIOTEC), Federal University of Piauí (LAFFEX), Parnaíba, Piauí, 64.218-470, Brazil
| | - Fernanda Regina de Castro Almeida
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antônia Maria das Graças Lopes Citó
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Chemistry, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Md Torequl Islam
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Southern University Bangladesh, Mehedibag, Chittagong, 4000, Bangladesh
| |
Collapse
|
8
|
Muschietti LV, Ulloa JL. Natural Sesquiterpene Lactones as Potential Trypanocidal Therapeutic Agents: A Review. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chagas’ disease and Human African Trypanosomiasis are parasitic diseases that remain major health problems, mainly among the poorest and the most marginalized communities from Latin America and Africa. The scarcity of effective chemotherapy, due to the low investment in the research and development (R&D) of new drugs, together with a high incidence of side effects, and the emergence of drug resistance phenomena emphasize the urgent need for new prophylactic and therapeutic agents. Over the ages, humans have employed natural products to treat a wide spectrum of diseases. Recently, the pharmaceutical industry has focused on plant research and a large body of evidence has been collected to demonstrate the immense potential of medicinal plants as a source of bioactive compounds and lead molecules. In the field of parasitic diseases, drug development from plants has been successful for the sesquiterpene lactone (STL) artemisinin, which is employed as an antimalarial agent. STLs are a large group of naturally occurring terpenoids derived from plants that mostly belong to the Asteraceae family which exhibit a variety of skeletal arrangements and are the largest and most diverse category of natural products with an α-methylene-λ-lactone motif. STLs display a broad spectrum of biological activities such as antitumor, cytotoxic, antibacterial, anthelmintic, uterus contracting, antimalarial, neurotoxic, antiprotozoal and allergic (contact dermatitis) activities. In this context, the purpose of the present review is to provide an overview of the trypanocidal activity reported for STLs against Trypanosoma cruzi and T. brucei rhodesiense over the period 1993–2015.
Collapse
Affiliation(s)
- Liliana V. Muschietti
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA (UBA-CONICET). Junín 956 (1113), CABA, Argentina
| | - Jerónimo L. Ulloa
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA (UBA-CONICET). Junín 956 (1113), CABA, Argentina
| |
Collapse
|
9
|
Lozano E, Strauss M, Spina R, Cifuente D, Tonn C, Rivarola H, Sosa M. The in vivo trypanocidal effect of the diterpene 5-epi-icetexone obtained from Salvia gilliesii. Parasitol Int 2016; 65:23-26. [DOI: 10.1016/j.parint.2015.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/30/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
|
10
|
An abietane diterpene from Salvia cuspidata and some new derivatives are active against Trypanosoma cruzi. Bioorg Med Chem Lett 2015; 25:5481-4. [DOI: 10.1016/j.bmcl.2015.10.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
|
11
|
Sülsen VP, Cazorla SI, Frank FM, Laurella LC, Muschietti LV, Catalán CA, Martino VS, Malchiodi EL. Natural terpenoids from Ambrosia species are active in vitro and in vivo against human pathogenic trypanosomatids. PLoS Negl Trop Dis 2013; 7:e2494. [PMID: 24130916 PMCID: PMC3794960 DOI: 10.1371/journal.pntd.0002494] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Among the natural compounds, terpenoids play an important role in the drug discovery process for tropical diseases. The aim of the present work was to isolate antiprotozoal compounds from Ambrosia elatior and A. scabra. The sesquiterpene lactone (STL) cumanin was isolated from A. elatior whereas two other STLs, psilostachyin and cordilin, and one sterol glycoside, daucosterol, were isolated from A. scabra. Cumanin and cordilin were active against Trypanosoma cruzi epimastigotes showing 50% inhibition concentrations (IC50) values of 12 µM and 26 µM, respectively. Moreover, these compounds are active against bloodstream trypomastigotes, regardless of the T. cruzi strain tested. Psilostachyin and cumanin were also active against amastigote forms with IC50 values of 21 µM and 8 µM, respectively. By contrast, daucosterol showed moderate activity on epimastigotes and trypomastigotes and was inactive against amastigote forms. We also found that cumanin and psilostachyin exhibited an additive effect in their trypanocidal activity when these two drugs were tested together. Cumanin has leishmanicidal activity with growth inhibition values greater than 80% at a concentration of 5 µg/ml (19 µM), against both L. braziliensis and L. amazonensis promastigotes. In an in vivo model of T. cruzi infection, cumanin was more active than benznidazole, producing an 8-fold reduction in parasitemia levels during the acute phase of the infection compared with the control group, and more importantly, a reduction in mortality with 66% of the animals surviving, in comparison with 100% mortality in the control group. Cumanin also showed nontoxic effects at the doses assayed in vivo, as determined using markers of hepatic damage.
Collapse
Affiliation(s)
- Valeria P. Sülsen
- Cátedra de Farmacognosia, IQUIMEFA (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia I. Cazorla
- Cátedra de Inmunología, IDEHU (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina and Instituto de Microbiología y Parasitología Médica, IMPaM (UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Fernanda M. Frank
- Cátedra de Inmunología, IDEHU (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina and Instituto de Microbiología y Parasitología Médica, IMPaM (UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Laura C. Laurella
- Cátedra de Farmacognosia, IQUIMEFA (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana V. Muschietti
- Cátedra de Farmacognosia, IQUIMEFA (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cesar A. Catalán
- INQUINOA-CONICET, Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Virginia S. Martino
- Cátedra de Farmacognosia, IQUIMEFA (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail: (VSM); r (ELM)
| | - Emilio L. Malchiodi
- Cátedra de Inmunología, IDEHU (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina and Instituto de Microbiología y Parasitología Médica, IMPaM (UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
- * E-mail: (VSM); r (ELM)
| |
Collapse
|
12
|
Natural Sesquiterpene Lactones Induce Oxidative Stress in Leishmania mexicana. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:163404. [PMID: 23861697 PMCID: PMC3687511 DOI: 10.1155/2013/163404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/20/2013] [Indexed: 11/17/2022]
Abstract
Leishmaniasis is a worldwide parasitic disease, caused by monoflagellate parasites of the genus Leishmania. In the search for more effective agents against these parasites, the identification of molecular targets has been attempted to ensure the efficiency of drugs and to avoid collateral damages on the host's cells. In this work, we have investigated some of the mechanisms of action of a group of natural sesquiterpene lactones that are effective against Leishmania mexicana mexicana promastigotes. We first observed that the antiproliferative effect of mexicanin I (Mxc), dehydroleucodine (DhL), psilostachyin (Psi), and, at lesser extent, psilostachyin C (Psi C) is blocked by 1.5 mM reduced glutathione. The reducing agent was also able to reverse the early effect of the compounds, suggesting that lactones may react with intracellular sulfhydryl groups. Moreover, we have shown that all the sesquiterpene lactones, except Psi C, significantly decreased the endogenous concentration of glutathione within the parasite. Consistent with these findings, the active sesquiterpene lactones increased between 2.7 and 5.4 times the generation of ROS by parasites. These results indicate that the induction of oxidative stress is at least one of the mechanisms of action of DhL, Mxc, and Psi on parasites while Psi C would act by another mechanism.
Collapse
|