1
|
Zhang N, Jiang N, Chen Q. Key Regulators of Parasite Biology Viewed Through a Post-Translational Modification Repertoire. Proteomics 2024:e202400120. [PMID: 39690890 DOI: 10.1002/pmic.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Parasites are the leading causes of morbidity and mortality in both humans and animals, imposing substantial socioeconomic burdens worldwide. Controlling parasitic diseases has become one of the key issues in achieving "One Health". Most parasites have sophisticated life cycles exhibiting progressive developmental stages, morphologies, and host-switching, which are controlled by various regulatory machineries including protein post-translational modifications (PTMs). PTMs have emerged as a key mechanism by which parasites modulate their virulence, developmental transitions, and environmental adaptations. PTMs are enzyme-mediated additions or removals of chemical groups that dynamically regulate the stability and functions of proteins and confer novel properties, playing vital roles in a variety of biological processes and cellular functions. In this review, we circumscribe how parasites utilize various PTMs to regulate their intricate lives, with a focus on the biological role of PTMs in parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
2
|
He ZX, An Q, Wei B, Zhou WJ, Wei BF, Gong YP, Zhang X, Gao G, Dong GJ, Huo JL, Zhang XH, Yang FF, Liu HM, Ma LY, Zhao W. Discovery of Potent and Selective 2-(Benzylthio)pyrimidine-based DCN1-UBC12 Inhibitors for Anticardiac Fibrotic Effects. J Med Chem 2022; 65:163-190. [PMID: 34939411 DOI: 10.1021/acs.jmedchem.1c01207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DCN1, a co-E3 ligase, interacts with UBC12 and activates cullin-RING ligases (CRLs) by catalyzing cullin neddylation. Although DCN1 has been recognized as an important therapeutic target for human diseases, its role in the cardiovascular area remains unknown. Here, we first found that DCN1 was upregulated in isolated cardiac fibroblasts (CFs) treated by angiotensin (Ang) II and in mouse hearts after pressure overload. Then, structure-based optimizations for DCN1-UBC12 inhibitors were performed based on our previous work, yielding compound DN-2. DN-2 specifically targeted DCN1 at molecular and cellular levels as shown by molecular modeling studies, HTRF, cellular thermal shift and co-immunoprecipitation assays. Importantly, DN-2 effectively reversed Ang II-induced cardiac fibroblast activation, which was associated with the inhibition of cullin 3 neddylation. Our findings indicate a potentially unrecognized role of DCN1 inhibition for anticardiac fibrotic effects. DN-2 may be used as a lead compound for further development.
Collapse
Affiliation(s)
- Zhang-Xu He
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Qi An
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Bo Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wen-Juan Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Bing-Fei Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yun-Peng Gong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Guan-Jun Dong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jin-Ling Huo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Hui Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
3
|
Harnischfeger J, Beutler M, Salzig D, Rahlfs S, Becker K, Grevelding CG, Czermak P. Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Huber RJ, Kim WD, Mathavarajah S. Inhibiting Neddylation with MLN4924 Suppresses Growth and Delays Multicellular Development in Dictyostelium discoideum. Biomolecules 2021; 11:482. [PMID: 33807046 PMCID: PMC8005062 DOI: 10.3390/biom11030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Neddylation is a post-translational modification that is essential for a variety of cellular processes and is linked to many human diseases including cancer, neurodegeneration, and autoimmune disorders. Neddylation involves the conjugation of the ubiquitin-like modifier neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target proteins, and has been studied extensively in various eukaryotes including fungi, plants, and metazoans. Here, we examine the biological processes influenced by neddylation in the social amoeba, Dictyostelium discoideum, using a well-established inhibitor of neddylation, MLN4924 (pevonedistat). NEDD8, and the target of MLN4924 inhibition, NEDD8-activating enzyme E1 (NAE1), are highly conserved in D. discoideum (Nedd8 and Nae1, respectively). Treatment of D. discoideum cells with MLN4924 increased the amount of free Nedd8, suggesting that MLN4924 inhibited neddylation. During growth, MLN4924 suppressed cell proliferation and folic acid-mediated chemotaxis. During multicellular development, MLN4924 inhibited cyclic adenosine monophosphate (cAMP)-mediated chemotaxis, delayed aggregation, and suppressed fruiting body formation. Together, these findings indicate that neddylation plays an important role in regulating cellular and developmental events during the D. discoideum life cycle and that this organism can be used as a model system to better understand the essential roles of neddylation in eukaryotes, and consequently, its involvement in human disease.
Collapse
Affiliation(s)
- Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada;
| | | |
Collapse
|
5
|
Pereira RV, de S Gomes M, Olmo RP, Souza DM, Cabral FJ, Jannotti-Passos LK, Baba EH, Andreolli ABP, Rodrigues V, Castro-Borges W, Guerra-Sá R. Ubiquitin-specific proteases are differentially expressed throughout the Schistosoma mansoni life cycle. Parasit Vectors 2015; 8:349. [PMID: 26112833 PMCID: PMC4485857 DOI: 10.1186/s13071-015-0957-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/17/2015] [Indexed: 01/27/2023] Open
Abstract
Background The ubiquitination process can be reversed by deubiquitinating enzymes (DUBs). These proteases are involved in ubiquitin processing, in the recovery of modified ubiquitin trapped in inactive forms, and in the recycling of ubiquitin monomers from polyubiquitinated chains. The diversity of DUB functions is illustrated by their number and variety of their catalytic domains with specific 3D architectures. DUBs can be divided into five subclasses: ubiquitin C-terminal hydrolases (UCHs), ubiquitin-specific proteases (USPs or UBPs), ovarian tumour proteases (OTUs), Machado-Joseph disease proteases (MJDs) and JAB1/MPN/Mov34 metalloenzymes (JAMMs). Methods Considering the role that the ubiquitin-proteasome system has been shown to play during the development of Schistosoma mansoni, our main goal was to identify and characterize SmUSPs. Here, we showed the identification of putative ubiquitin-specific proteases using bioinformatic approaches. We also evaluated the gene expression profile of representative USP family members using qRT-PCR. Results We reported 17 USP family members in S. mansoni that present a conservation of UCH domains. Furthermore, the putative SmUSP transcripts analysed were detected in all investigated stages, showing distinct expression during S. mansoni development. The SmUSPs exhibiting high expression profiles were SmUSP7, SmUSP8, SmUSP9x and SmUSP24. Conclusion S. mansoni USPs showed changes in expression levels for different life cycle stages indicating their involvement in cellular processes required for S. mansoni development. These data will serve as a basis for future functional studies of USPs in this parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0957-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberta V Pereira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, Brasil.
| | - Matheus de S Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil.
| | - Roenick P Olmo
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, Brasil.
| | - Daniel M Souza
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, Brasil.
| | - Fernanda J Cabral
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, Butantã, SP, Brasil.
| | | | - Elio H Baba
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, MG, Brasil.
| | | | - Vanderlei Rodrigues
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil.
| | - William Castro-Borges
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, Brasil.
| | - Renata Guerra-Sá
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG, Brasil. .,Departamento de Ciências Biológicas/Núcleo de Pesquisas em Ciências Biológicas - Instituto de Ciências Exatas e Biológicas - ICEB2, Universidade Federal de Ouro Preto, Sala 045, Campus Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brasil.
| |
Collapse
|
6
|
Costa MP, Oliveira VF, Pereira RV, de Abreu FCP, Jannotti-Passos LK, Borges WC, Guerra-Sá R. In silico analysis and developmental expression of ubiquitin-conjugating enzymes in Schistosoma mansoni. Parasitol Res 2015; 114:1769-77. [PMID: 25663106 DOI: 10.1007/s00436-015-4362-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/30/2015] [Indexed: 12/01/2022]
Abstract
Ubiquitin-conjugating enzymes (Ub-E2) perform the second step of ubiquitination and, consequently, are essential for regulating proteolysis and for modulating protein function, interactions and trafficking. Previously, our group demonstrated the crucial role of ubiquitination and the Ub-proteasome pathway during the Schistosoma mansoni life cycle. In the present investigation, we used a homology-based genome-wide bioinformatics approach to identify and molecularly characterise the Ub-E2 enzymes in S. mansoni. The putative functions were further investigated through molecular phylogenetic and expression profile analyses using cercariae, adult worms, eggs and mechanically transformed schistosomula (MTS) cultured in vitro for 3.5 h or 1 or 3 days. We identified, via in silico analysis, 17 Ub-E2 enzymes with conserved structural characteristics: the beta-sheet and the helix-2 form a central core bordered by helix-1 at one side and helix-3 and helix-4 at the other. The observed quantitative differences in the steady-state transcript levels between the cercariae and adult worms may contribute to the differential protein ubiquitination observed during the parasite's life cycle. This study is the first to identify and characterise the E2 ubiquitin conjugation family in S. mansoni and provides fundamental information regarding their molecular phylogenetics and developmental expression during intra-mammalian stages.
Collapse
Affiliation(s)
- Marcela P Costa
- Departamento de Ciências Biológicas/Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Sala 045, Morro do Cruzeiro, Ouro Preto, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|