1
|
Rios KT, McGee JP, Sebastian A, Gedara SA, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Widespread release of translational repression across Plasmodium's host-to-vector transmission event. PLoS Pathog 2025; 21:e1012823. [PMID: 39777415 PMCID: PMC11750109 DOI: 10.1371/journal.ppat.1012823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, changes in the spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that ~200 transcripts are released for translation soon after fertilization, including those encoding essential functions. Moreover, we identified that many transcripts remain repressed beyond this point. TurboID-based proximity proteomics of the DOZI/CITH/ALBA regulatory complex revealed substantial spatial and/or compositional changes across this transmission event, which are consistent with recent, paradigm-shifting models of translational control. Together, these data provide a model for the essential translational control mechanisms that promote Plasmodium's efficient transmission from mammalian host to mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sanjaya Aththawala Gedara
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
2
|
De Hoest-Thompson C, Marugan-Hernandez V, Dessens JT. Plasmodium LCCL domain-containing modular proteins have their origins in the ancestral alveolate. Open Biol 2024; 14:230451. [PMID: 38862023 DOI: 10.1098/rsob.230451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Plasmodium species encode a unique set of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs) that operate as a complex and that are essential for malaria parasite transmission from mosquito to vertebrate. LAPs possess complex architectures obtained through unique assemblies of conserved domains associated with lipid, protein and carbohydrate interactions, including the name-defining LCCL domain. Here, we assessed the prevalence of Plasmodium LAP orthologues across eukaryotic life. Our findings show orthologous conservation in all apicomplexans, with lineage-specific repertoires acquired through differential lap gene loss and duplication. Besides Apicomplexa, LAPs are found in their closest relatives: the photosynthetic chromerids, which encode the broadest repertoire including a novel membrane-bound LCCL protein. LAPs are notably absent from other alveolate lineages (dinoflagellates, perkinsids and ciliates), but are encoded by predatory colponemids, a sister group to the alveolates. These results reveal that the LAPs are much older than previously thought and pre-date not only the Apicomplexa but the Alveolata altogether.
Collapse
Affiliation(s)
| | | | - Johannes T Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine , London WC1E 7HT, UK
| |
Collapse
|
3
|
Rios KT, McGee JP, Sebastian A, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Global Release of Translational Repression Across Plasmodium's Host-to-Vector Transmission Event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577866. [PMID: 38352447 PMCID: PMC10862809 DOI: 10.1101/2024.02.01.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | | | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
4
|
Murata Y, Nishi T, Kaneko I, Iwanaga S, Yuda M. Coordinated regulation of gene expression in Plasmodium female gametocytes by two transcription factors. eLife 2024; 12:RP88317. [PMID: 38252559 PMCID: PMC10945693 DOI: 10.7554/elife.88317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Gametocytes play key roles in the Plasmodium lifecycle. They are essential for sexual reproduction as precursors of the gametes. They also play an essential role in parasite transmission to mosquitoes. Elucidation of the gene regulation at this stage is essential for understanding these two processes at the molecular level and for developing new strategies to break the parasite lifecycle. We identified a novel Plasmodium transcription factor (TF), designated as a partner of AP2-FG or PFG. In this article, we report that this TF regulates the gene expression in female gametocytes in concert with another female-specific TF AP2-FG. Upon the disruption of PFG, majority of female-specific genes were significantly downregulated, and female gametocyte lost the ability to produce ookinetes. ChIP-seq analysis showed that it was located in the same position as AP2-FG, indicating that these two TFs form a complex. ChIP-seq analysis of PFG in AP2-FG-disrupted parasites and ChIP-seq analysis of AP2-FG in PFG-disrupted parasites demonstrated that PFG mediates the binding of AP2-FG to a ten-base motif and that AP2-FG binds another motif, GCTCA, in the absence of PFG. In promoter assays, this five-base motif was identified as another female-specific cis-acting element. Genes under the control of the two forms of AP2-FG, with or without PFG, partly overlapped; however, each form had target preferences. These results suggested that combinations of these two forms generate various expression patterns among the extensive genes expressed in female gametocytes.
Collapse
Affiliation(s)
- Yuho Murata
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease ControlOsakaJapan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| |
Collapse
|
5
|
Ford A, Kepple D, Williams J, Kolesar G, Ford CT, Abebe A, Golassa L, Janies DA, Yewhalaw D, Lo E. Gene Polymorphisms Among Plasmodium vivax Geographical Isolates and the Potential as New Biomarkers for Gametocyte Detection. Front Cell Infect Microbiol 2022; 11:789417. [PMID: 35096643 PMCID: PMC8793628 DOI: 10.3389/fcimb.2021.789417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022] Open
Abstract
The unique biological features of Plasmodium vivax not only make it difficult to control but also to eliminate. For the transmission of the malaria parasite from infected human to the vector, gametocytes play a major role. The transmission potential of a malarial infection is inferred based on microscopic detection of gametocytes and molecular screening of genes in the female gametocytes. Microscopy-based detection methods could grossly underestimate the reservoirs of infection as gametocytes may occur as submicroscopic or as micro- or macro-gametocytes. The identification of genes that are highly expressed and polymorphic in male and female gametocytes is critical for monitoring changes not only in their relative proportions but also the composition of gametocyte clones contributing to transmission over time. Recent transcriptomic study revealed two distinct clusters of highly correlated genes expressed in the P. vivax gametocytes, indicating that the male and female terminal gametocytogeneses are independently regulated. However, the detective power of these genes is unclear. In this study, we compared genetic variations of 15 and 11 genes expressed, respectively, in the female and male gametocytes among P. vivax isolates from Southeast Asia, Africa, and South America. Further, we constructed phylogenetic trees to determine the resolution power and clustering patterns of gametocyte clones. As expected, Pvs25 (PVP01_0616100) and Pvs16 (PVP01_0305600) expressed in the female gametocytes were highly conserved in all geographical isolates. In contrast, genes including 6-cysteine protein Pvs230 (PVP01_0415800) and upregulated in late gametocytes ULG8 (PVP01_1452800) expressed in the female gametocytes, as well as two CPW-WPC family proteins (PVP01_1215900 and PVP01_1320100) expressed in the male gametocytes indicated considerably high nucleotide and haplotype diversity among isolates. Parasite samples expressed in male and female gametocyte genes were observed in separate phylogenetic clusters and likely represented distinct gametocyte clones. Compared to Pvs25, Pvs230 (PVP01_0415800) and a CPW-WPC family protein (PVP01_0904300) showed higher expression in a subset of Ethiopian P. vivax samples. Thus, Pvs230, ULG8, and CPW-WPC family proteins including PVP01_0904300, PVP01_1215900, and PVP01_1320100 could potentially be used as novel biomarkers for detecting both sexes of P. vivax gametocytes in low-density infections and estimating transmission reservoirs.
Collapse
Affiliation(s)
- Anthony Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States
| | - Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Jonathan Williams
- Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Gabrielle Kolesar
- Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Colby T Ford
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States.,School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Abnet Abebe
- Department of Parasitology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel A Janies
- Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States
| | - Delenasaw Yewhalaw
- Tropical and Infectious Disease Research Center, Jimma University, Jimma, Ethiopia.,School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC, United States.,School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
6
|
Qi Y, Zhang Y, Mu Q, Zheng G, Zhang M, Chen B, Huang J, Ma C, Wang X. RNA Secondary Structurome Revealed Distinct Thermoregulation in Plasmodium falciparum. Front Cell Dev Biol 2022; 9:766532. [PMID: 35059397 PMCID: PMC8763798 DOI: 10.3389/fcell.2021.766532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
The development of Plasmodium parasites, a causative agent of malaria, requests two hosts and the completion of 11 different parasite stages during development. Therefore, an efficient and fast response of parasites to various complex environmental changes, such as ambient temperature, pH, ions, and nutrients, is essential for parasite development and survival. Among many of these environmental changes, temperature is a decisive factor for parasite development and pathogenesis, including the thermoregulation of rRNA expression, gametogenesis, and parasite sequestration in cerebral malaria. However, the exact mechanism of how Plasmodium parasites rapidly respond and adapt to temperature change remains elusive. As a fundamental and pervasive regulator of gene expression, RNA structure can be a specific mechanism for fine tuning various biological processes. For example, dynamic and temperature-dependent changes in RNA secondary structures can control the expression of different gene programs, as shown by RNA thermometers. In this study, we applied the in vitro and in vivo transcriptomic-wide secondary structurome approach icSHAPE to measure parasite RNA structure changes with temperature alteration at single-nucleotide resolution for ring and trophozoite stage parasites. Among 3,000 probed structures at different temperatures, our data showed structural changes in the global transcriptome, such as S-type rRNA, HRPII gene, and the erythrocyte membrane protein family. When the temperature drops from 37°C to 26°C, most of the genes in the trophozoite stage cause significantly more changes to the RNA structure than the genes in the ring stage. A multi-omics analysis of transcriptome data from RNA-seq and RNA structure data from icSHAPE reveals that the specific RNA secondary structure plays a significant role in the regulation of transcript expression for parasites in response to temperature changes. In addition, we identified several RNA thermometers (RNATs) that responded quickly to temperature changes. The possible thermo-responsive RNAs in Plasmodium falciparum were further mapped. To this end, we identified dynamic and temperature-dependent RNA structural changes in the P. falciparum transcriptome and performed a comprehensive characterization of RNA secondary structures over the course of temperature stress in blood stage development. These findings not only contribute to a better understanding of the function of the RNA secondary structure but may also provide novel targets for efficient vaccines or drugs.
Collapse
Affiliation(s)
- Yanwei Qi
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuhong Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Quankai Mu
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Guixing Zheng
- Department of Blood Transfusion, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Mengxin Zhang
- The Third Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Bingxia Chen
- The Third Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Changling Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Dessens JT, Tremp AZ, Saeed S. Crystalloids: Fascinating Parasite Organelles Essential for Malaria Transmission. Trends Parasitol 2021; 37:581-584. [PMID: 33941493 DOI: 10.1016/j.pt.2021.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Crystalloids are malaria parasite organelles exclusive to the ookinete and young oocyst life stages that infect the mosquito. The organelles have key roles in sporozoite development and infectivity but the way this is facilitated on a molecular level remains poorly understood. Recent discoveries have shed new light on these processes.
Collapse
Affiliation(s)
- Johannes T Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - Annie Z Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sadia Saeed
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
8
|
Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N. Drug Resistance in Protozoal Infections. BIOCHEMISTRY OF DRUG RESISTANCE 2021:95-142. [DOI: 10.1007/978-3-030-76320-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Egarter S, Santos JM, Kehrer J, Sattler J, Frischknecht F, Mair GR. Gliding motility protein LIMP promotes optimal mosquito midgut traversal and infection by Plasmodium berghei. Mol Biochem Parasitol 2021; 241:111347. [PMID: 33347893 PMCID: PMC7856051 DOI: 10.1016/j.molbiopara.2020.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022]
Abstract
Substrate-dependent gliding motility is key to malaria transmission. It mediates host cell traversal, invasion and infection by Plasmodium and related apicomplexan parasites. The 110 amino acid-long cell surface protein LIMP is essential for P. berghei sporozoites where it is required for the invasion of the mosquito's salivary glands and the liver cells of the rodent host. Here we define an additional role for LIMP during mosquito invasion by the ookinete. limp mRNA is provided as a translationally repressed mRNP (messenger ribonucleoprotein) by the female gametocyte and the protein translated in the ookinete. Parasites depleted of limp (Δlimp) develop ookinetes with apparent normal morphology and no defect during in vitro gliding motility, and yet display a pronounced reduction in oocyst numbers; compared to wildtype 82 % more Δlimp ookinetes remain within the mosquito blood meal explaining the decrease in oocysts. As in the sporozoite, LIMP exerts a profound role on ookinete infection of the mosquito.
Collapse
Affiliation(s)
- Saskia Egarter
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Jorge M Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Jessica Kehrer
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia Sattler
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal; Iowa State University, Biomedical Sciences, Ames, IA, United States.
| |
Collapse
|
10
|
Rodriguez MC, Martínez-Barnetche J, Lecona-Valera AN, Téllez-Sosa J, Argotte-Ramos RS, Alvarado-Delgado A, Ovilla MT, Saldaña-Navor V, Rodriguez MH. Expression of Heat shock protein 70 (Hsp70-1) in Plasmodium berghei ookinetes and its participation in midgut mosquito infection. Mol Biochem Parasitol 2020; 240:111337. [PMID: 33147473 DOI: 10.1016/j.molbiopara.2020.111337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
The heat shock protein family 70 (Hsp70) comprises chaperone proteins that play major multiple roles in Plasmodium asexual and sexual development. In this study, we analyzed the expression of Hsp70-1 in gametocytes, gametes, zygotes, and its participation in ookinete formation and their transition into oocysts. A monoclonal antibody against recombinant Hsp70-1 revealed its presence in zygotes and micronemes of ookinetes. Compared to wild type parasites, Hsp70-1 knockout ookinetes produced fewer oocysts in Plasmodium-susceptible Anopheles albimanus mosquitoes. This may indicate a defective transformation of ookinetes into oocysts in the absence of Hsp70-1. The presence of this protein in micronemes suggests its participation in mosquito infection, probably aiding to the adequate structural conformation of proteins in charge of motility, recognition and invasion of the insect midgut epithelium.
Collapse
Affiliation(s)
- Maria Carmen Rodriguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico
| | - Alba N Lecona-Valera
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico
| | - Rocio S Argotte-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico
| | - Marbella T Ovilla
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico
| | - Vianey Saldaña-Navor
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico
| | - Mario H Rodriguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
11
|
Sharma J, Rodriguez P, Roy P, Guiton PS. Transcriptional ups and downs: patterns of gene expression in the life cycle of Toxoplasma gondii. Microbes Infect 2020; 22:525-533. [PMID: 32931908 DOI: 10.1016/j.micinf.2020.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii reproduces sexually in felines and asexually in virtually all warm-blooded animals, including humans. This obligate intracellular parasite alternates between biologically distinct developmental stages throughout its complex life cycle. Stage conversion is crucial for T. gondii transmission, persistence, and the maintenance of genetic diversity within the species. Genome-wide comparative transcriptomic studies have contributed invaluable insights into the regulatory gene networks underlying T. gondii development.
Collapse
Affiliation(s)
- Janak Sharma
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Paula Rodriguez
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Proyasha Roy
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Pascale S Guiton
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA.
| |
Collapse
|
12
|
Tremp AZ, Saeed S, Sharma V, Lasonder E, Dessens JT. Plasmodium berghei LAPs form an extended protein complex that facilitates crystalloid targeting and biogenesis. J Proteomics 2020; 227:103925. [PMID: 32736136 PMCID: PMC7487766 DOI: 10.1016/j.jprot.2020.103925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/21/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Passage of malaria parasites through mosquitoes involves multiple developmental transitions, from gametocytes that are ingested with the blood meal, through to sporozoites that are transmitted by insect bite to the host. During the transformation from gametocyte to oocyst, the parasite forms a unique transient organelle named the crystalloid, which is involved in sporozoite formation. In Plasmodium berghei, a complex of six LCCL domain-containing proteins (LAPs) reside in the crystalloid and are required for its biogenesis. However, little else is known about the molecular mechanisms that underlie the crystalloid's role in sporogony. In this study, we have used transgenic parasites stably expressing LAP3 fused to GFP, combined with GFP affinity pulldown and high accuracy mass spectrometry, to identify an extended LAP interactome of some fifty proteins. We show that many of these are targeted to the crystalloid, including members of two protein families with CPW-WPC and pleckstrin homology-like domains, respectively. Our findings indicate that the LAPs are part of an intricate protein complex, the formation of which facilitates both crystalloid targeting and biogenesis. Significance Reducing malaria parasite transmission by mosquitoes is a key component of malaria eradication and control strategies. This study sheds important new light on the molecular composition of the crystalloid, an enigmatic parasite organelle that is essential for sporozoite formation and transmission from the insect to the vertebrate host. Our findings provide new mechanistic insight into how proteins are delivered to the crystalloid, and indicate that the molecular mechanisms that underlie crystalloid function are complex, involving several protein families unique to Plasmodium and closely related organisms. The new crystalloid proteins identified will form a useful starting point for studies aimed at unravelling how the crystalloid organelle facilitates sporogony and transmission. A Plasmodium berghei LAP3 interactome of some 50 proteins was determined. Many proteins in the interactome constitute known or novel crystalloid proteins. The interactome includes protein families with PH-like and CPW-WPC domains.
Collapse
Affiliation(s)
- Annie Z Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sadia Saeed
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Vikram Sharma
- School of Biomedical Sciences, Faculty of Health, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Edwin Lasonder
- School of Biomedical Sciences, Faculty of Health, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK; Department of Applied Sciences, Faculty of Life and Health Sciences, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK
| | - Johannes T Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
13
|
Caldelari R, Dogga S, Schmid MW, Franke-Fayard B, Janse CJ, Soldati-Favre D, Heussler V. Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malar J 2019; 18:330. [PMID: 31551073 PMCID: PMC6760107 DOI: 10.1186/s12936-019-2968-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are well-studied in this respect, relatively little is known about the exo-erythrocytic stages. METHODS In an attempt to fill this gap, genome wide RNA-seq analyses of various exo-erythrocytic stages of Plasmodium berghei including sporozoites, samples from a time-course of liver stage development and detached cells were performed. These latter contain infectious merozoites and represent the final step in exo-erythrocytic development. RESULTS The analysis represents the complete transcriptome of the entire life cycle of P. berghei parasites with temporal detailed analysis of the liver stage allowing comparison of gene expression across the progression of the life cycle. These RNA-seq data from different developmental stages were used to cluster genes with similar expression profiles, in order to infer their functions. A comparison with published data from other parasite stages confirmed stage-specific gene expression and revealed numerous genes that are expressed differentially in blood and exo-erythrocytic stages. One of the most exo-erythrocytic stage-specific genes was PBANKA_1003900, which has previously been annotated as a "gametocyte specific protein". The promoter of this gene drove high GFP expression in exo-erythrocytic stages, confirming its expression profile seen by RNA-seq. CONCLUSIONS The comparative analysis of the genome wide mRNA expression profiles of erythrocytic and different exo-erythrocytic stages could be used to improve the understanding of gene regulation in Plasmodium parasites and can be used to model exo-erythrocytic stage metabolic networks toward the identification of differences in metabolic processes during schizogony in erythrocytes and hepatocytes.
Collapse
Affiliation(s)
- Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| | - Sunil Dogga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | | | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Jenwithisuk R, Kangwanrangsan N, Tachibana M, Thongkukiatkul A, Otsuki H, Sattabongkot J, Tsuboi T, Torii M, Ishino T. Identification of a PH domain-containing protein which is localized to crystalloid bodies of Plasmodium ookinetes. Malar J 2018; 17:466. [PMID: 30545367 PMCID: PMC6291999 DOI: 10.1186/s12936-018-2617-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background For the success of the malaria control and eradication programme it is essential to reduce parasite transmission by mosquito vectors. In the midguts of mosquitoes fed with parasite-infected blood, sexual-stage parasites fertilize to develop into motile ookinetes that traverse midgut epithelial cells and reside adjacent the basal lamina. Therefore, the ookinete is a promising target of transmission-blocking vaccines to break the parasite lifecycle in mosquito vectors. However, the molecular mechanisms of ookinete formation and invasion of epithelial cells have not been fully elucidated. A unique structure called the crystalloid body has been identified in the ookinete cytoplasm by electron microscopy, but its biological functions remain unclear. Methods A recombinant protein of a novel molecule, designated as crystalloid body specific PH domain-containing protein of Plasmodium yoelii (PyCryPH), was synthesized using a wheat germ cell-free system. Specific rabbit antibodies against PyCryPH were obtained to characterize the expression and localization of PyCryPH during sexual-stage parasite development. In addition, PyCryPH knockout parasites were generated by targeted gene disruption to examine PyCryPH function in mosquito-stage parasite development. Results Western blot and immunofluorescence assays using specific antibodies showed that PyCryPH is specifically expressed in zygotes and ookinetes. By immunoelectron microscopy it was demonstrated that PyCryPH is localized within crystalloid bodies. Parasites with a disrupted PyCryPH gene developed normally into ookinetes and formed oocysts on the basal lamina of midguts. In addition, the number of sporozoites residing in salivary glands was comparable to that of wild-type parasites. Conclusions CryPH, containing a signal peptide and PH domain, is predominantly expressed in zygotes and ookinetes and is localized to crystalloid bodies in P. yoelii. CryPH accumulates in vesicle-like structures prior to the appearance of typical crystalloid bodies. Unlike other known crystalloid body localized proteins, CryPH does not appear to have a multiple domain architecture characteristic of the LAP/CCp family proteins. Although CryPH is highly conserved among Plasmodium, Babesia, Theileria, and Cryptosporidium, PyCryPH is dispensable for the development of invasive ookinetes and sporozoites in mosquito bodies. Electronic supplementary material The online version of this article (10.1186/s12936-018-2617-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachaneeporn Jenwithisuk
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Amporn Thongkukiatkul
- Department of Biology, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Hitoshi Otsuki
- Division of Medical Zoology, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
15
|
Translational Control in the Latency of Apicomplexan Parasites. Trends Parasitol 2017; 33:947-960. [PMID: 28942109 DOI: 10.1016/j.pt.2017.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. use latent stages to persist in the host, facilitate transmission, and thwart treatment of infected patients. Therefore, it is important to understand the processes driving parasite differentiation to and from quiescent stages. Here, we discuss how a family of protein kinases that phosphorylate the eukaryotic initiation factor-2 (eIF2) function in translational control and drive differentiation. This translational control culminates in reprogramming of the transcriptome to facilitate parasite transition towards latency. We also discuss how eIF2 phosphorylation contributes to the maintenance of latency and provides a crucial role in the timing of reactivation of latent parasites towards proliferative stages.
Collapse
|
16
|
Santos JM, Egarter S, Zuzarte-Luís V, Kumar H, Moreau CA, Kehrer J, Pinto A, da Costa M, Franke-Fayard B, Janse CJ, Frischknecht F, Mair GR. Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts. eLife 2017; 6:e24109. [PMID: 28525314 PMCID: PMC5438254 DOI: 10.7554/elife.24109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion during gliding motility in the rodent malaria model P. berghei. Transcribed in gametocytes, LIMP is translated in the ookinete from maternal mRNA, and later in the sporozoite. The absence of LIMP reduces initial mosquito infection by 50%, impedes salivary gland invasion 10-fold, and causes a complete absence of liver invasion as mutants fail to attach to host cells. GFP tagging of LIMP caused a limping defect during movement with reduced speed and transient curvature changes of the parasite. LIMP is an essential motility and invasion factor necessary for malaria transmission.
Collapse
Affiliation(s)
- Jorge M Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Saskia Egarter
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Hirdesh Kumar
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Catherine A Moreau
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Mário da Costa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
17
|
Siciliano G, Santha Kumar TR, Bona R, Camarda G, Calabretta MM, Cevenini L, Davioud-Charvet E, Becker K, Cara A, Fidock DA, Alano P. A high susceptibility to redox imbalance of the transmissible stages of Plasmodium falciparum revealed with a luciferase-based mature gametocyte assay. Mol Microbiol 2017; 104:306-318. [PMID: 28118506 DOI: 10.1111/mmi.13626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
The goal to prevent Plasmodium falciparum transmission from humans to mosquitoes requires the identification of targetable metabolic processes in the mature (stage V) gametocytes, the sexual stages circulating in the bloodstream. This task is complicated by the apparently low metabolism of these cells, which renders them refractory to most antimalarial inhibitors and constrains the development of specific and sensitive cell-based assays. Here, we identify and functionally characterize the regulatory regions of the P. falciparum gene PF3D7_1234700, encoding a CPW-WPC protein and named here Upregulated in Late Gametocytes (ULG8), which we have leveraged to express reporter genes in mature male and female gametocytes. Using transgenic parasites containing a pfULG8-luciferase cassette, we investigated the susceptibility of stage V gametocytes to compounds specifically affecting redox metabolism. Our results reveal a high sensitivity of mature gametocytes to the glutathione reductase inhibitor and redox cycler drug methylene blue (MB). Using isobologram analysis, we find that a concomitant inhibition of the parasite enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase, a key component of NADPH synthesis, potently synergizes MB activity. These data suggest that redox metabolism and detoxification activity play an unsuspected yet vital role in stage V gametocytes, rendering these cells exquisitely sensitive to decreases in NADPH concentration.
Collapse
Affiliation(s)
- Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Roberta Bona
- Dipartimento Farmaco, Istituto Superiore di Sanità, Rome, Italy
| | - Grazia Camarda
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | | | - Luca Cevenini
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Elisabeth Davioud-Charvet
- European School of Chemistry, Polymers and Materials (ECPM), UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Andrea Cara
- Dipartimento Farmaco, Istituto Superiore di Sanità, Rome, Italy
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|