1
|
α-Synuclein Aggregates in the Nigro-Striatal Dopaminergic Pathway Impair Fine Movement: Partial Reversal by the Adenosine A 2A Receptor Antagonist. Int J Mol Sci 2023; 24:ijms24021365. [PMID: 36674880 PMCID: PMC9866360 DOI: 10.3390/ijms24021365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is characterized pathologically by abnormal aggregation of alpha-synuclein (α-Syn) in the brain and clinically by fine movement deficits at the early stage, but the roles of α-Syn and associated neural circuits and neuromodulator bases in the development of fine movement deficits in PD are poorly understood, in part due to the lack of appropriate behavioral testing paradigms and PD models without motor confounding effects. Here, we coupled two unique behavioral paradigms with two PD models to reveal the following: (i) Focally injecting α-Syn fibrils into the dorsolateral striatum (DLS) and the transgenic expression of A53T-α-Syn in the dopaminergic neurons in the substantia nigra (SN, PITX3-IRES2-tTA/tetO-A53T mice) selectively impaired forelimb fine movements induced by the single-pellet reaching task. (ii) Injecting α-Syn fibers into the SN suppressed the coordination of cranial and forelimb fine movements induced by the sunflower seed opening test. (iii) Treatments with the adenosine A2A receptor (A2AR) antagonist KW6002 reversed the impairment of forelimb and cranial fine movements induced by α-Syn aggregates in the SN. These findings established a causal role of α-Syn in the SNc-DLS dopaminergic pathway in the development of forelimb and cranial fine movement deficits and suggest a novel therapeutic strategy to improve fine movements in PD by A2AR antagonists.
Collapse
|
2
|
Carmichael K, Sullivan B, Lopez E, Sun L, Cai H. Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson's disease. AGEING AND NEURODEGENERATIVE DISEASES 2021; 1. [PMID: 34532720 PMCID: PMC8442626 DOI: 10.20517/and.2021.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD), the most common degenerative movement disorder, is clinically manifested with various motor and non-motor symptoms. Degeneration of midbrain substantia nigra pas compacta (SNc) dopaminergic neurons (DANs) is generally attributed to the motor syndrome. The underlying neuronal mechanisms of non-motor syndrome are largely unexplored. Besides SNc, midbrain ventral tegmental area (VTA) DANs also produce and release dopamine and modulate movement, reward, motivation, and memory. Degeneration of VTA DANs also occurs in postmortem brains of PD patients, implying an involvement of VTA DANs in PD-associated non-motor symptoms. However, it remains to be established that there is a distinct segregation of different SNc and VTA DAN subtypes in regulating different motor and non-motor functions, and that different DAN subpopulations are differentially affected by normal ageing or PD. Traditionally, the distinction among different DAN subtypes was mainly based on the location of cell bodies and axon terminals. With the recent advance of single cell RNA sequencing technology, DANs can be readily classified based on unique gene expression profiles. A combination of specific anatomic and molecular markers shows great promise to facilitate the identification of DAN subpopulations corresponding to different behavior modules under normal and disease conditions. In this review, we first summarize the recent progress in characterizing genetically, anatomically, and functionally diverse midbrain DAN subtypes. Then, we provide perspectives on how the preclinical research on the connectivity and functionality of DAN subpopulations improves our current understanding of cell-type and circuit specific mechanisms of the disease, which could be critically informative for designing new mechanistic treatments.
Collapse
Affiliation(s)
- Kathleen Carmichael
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.,The Graduate Partnership Program of NIH and Brown University, National Institutes of Health, Bethesda, MD 20892, USA
| | - Breanna Sullivan
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena Lopez
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Tian W, Chen S. Neurotransmitters, Cell Types, and Circuit Mechanisms of Motor Skill Learning and Clinical Applications. Front Neurol 2021; 12:616820. [PMID: 33716924 PMCID: PMC7947691 DOI: 10.3389/fneur.2021.616820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 02/02/2023] Open
Abstract
Animals acquire motor skills to better survive and adapt to a changing environment. The ability to learn novel motor actions without disturbing learned ones is essential to maintaining a broad motor repertoire. During motor learning, the brain makes a series of adjustments to build novel sensory–motor relationships that are stored within specific circuits for long-term retention. The neural mechanism of learning novel motor actions and transforming them into long-term memory still remains unclear. Here we review the latest findings with regard to the contributions of various brain subregions, cell types, and neurotransmitters to motor learning. Aiming to seek therapeutic strategies to restore the motor memory in relative neurodegenerative disorders, we also briefly describe the common experimental tests and manipulations for motor memory in rodents.
Collapse
Affiliation(s)
- Wotu Tian
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Li HQ, Spitzer NC. Exercise enhances motor skill learning by neurotransmitter switching in the adult midbrain. Nat Commun 2020; 11:2195. [PMID: 32366867 PMCID: PMC7198516 DOI: 10.1038/s41467-020-16053-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Physical exercise promotes motor skill learning in normal individuals and those with neurological disorders but its mechanism of action is unclear. We find that one week of voluntary wheel running enhances the acquisition of motor skills in normal adult mice. One week of running also induces switching from ACh to GABA expression in neurons in the caudal pedunculopontine nucleus (cPPN). Consistent with regulation of motor skills, we show that the switching neurons make projections to the substantia nigra (SN), ventral tegmental area (VTA) and ventrolateral-ventromedial nuclei of the thalamus (VL-VM). Use of viral vectors to override transmitter switching blocks the beneficial effect of running on motor skill learning. We suggest that neurotransmitter switching provides the basis by which sustained running benefits motor skill learning, presenting a target for clinical treatment of movement disorders.
Collapse
Affiliation(s)
- Hui-Quan Li
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, La Jolla, CA, 92093-0357, USA.
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093-0357, USA.
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, La Jolla, CA, 92093-0357, USA.
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093-0357, USA.
| |
Collapse
|
5
|
Ozkan A, Parlak H, Agar A, Özsoy Ö, Tanriover G, Dilmac S, Turgut E, Yargicoglu P. The Effect of Sodium Metabisulphite on Apoptosis in the Experimental Model of Parkinson’s Disease. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401314666180503153444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The aim of this study was to investigate the mechanisms underlying possible
toxic effects of sulphite on neurodegeneration.
Methods:
Male Wistar rats were assigned to each of the four groups: Control (Control),
Sulphite-treated (Sulphite), 6-hydroxydopamine (6-OHDA)-injected (6-OHDA), and sulphite-treated
and 6-OHDA-injected (6-OHDA+Sulphite). Sodium metabisulphite was administered orally by
gavage at a dose of 100 mg/kg/day for 45 days. Experimental PD was created stereotactically via the
unilateral infusion of 6-OHDA into the medial forebrain bundle (MFB). Rotarod performances,
plasma S-sulfonate levels, caspase-3 activities, Bax and Bcl-2 levels, tyrosine hydroxylase (TH) and
cleaved caspase-3 double staining were investigated.
Results:
The rotarod test showed that the 6-OHDA-injected animals exhibited shorter time on the rod
mile compared to the control group; however, there was no difference between 6-OHDA and
6-OHDA+Sulphite groups. Plasma levels of S-sulfonate in Sulphite and 6-OHDA+ Sulphite groups
increased in contrast to their corresponding control groups. Caspase-3 enzyme activity increased in the
6-OHDA group whereas it did not in control. However, sulphite treatment did not affect these activity
levels. Anti-apoptotic protein Bcl-2 concentration decreased, but the concentration of pro-apoptotic
protein Bax increased in the 6-OHDA group compared to the control group. The expression of
caspase-3 increased, while the number of tyrosine hydroxylase (TH)-positive neurons decreased in
6-OHDA group as compared to the control groups. However, sulphite treatment had no effect on these
parameters.
Conclusion:
Sulphite is not a potentially aggravating factor for the activity of caspase-3 in a 6-
OHDA-induced experimental model of Parkinson’s disease.
Collapse
Affiliation(s)
- Ayse Ozkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Aysel Agar
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Özlem Özsoy
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sayra Dilmac
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Eylem Turgut
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
6
|
Ozkan A, Parlak H, Tanriover G, Dilmac S, Ulker SN, Birsen I, Agar A. The protective mechanism of docosahexaenoic acid in mouse model of Parkinson: The role of hemeoxygenase. Neurochem Int 2016; 101:S0197-0186(16)30159-0. [PMID: 27984168 DOI: 10.1016/j.neuint.2016.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the dopaminergic neurons in substantia nigra (SN). Its major clinical symptoms are tremor, rigidity, bradykinesia and postural instability. Docosahexaenoic acid (DHA) is an essential fatty acid for neural functions that resides within the neural membrane. A decline in fatty acid concentration is observed in case of neurodegenerative diseases such as PD. The present study aimed to explore the role of the heme oxygenase (HO) enzyme in protective effects of DHA administration in an experimental model of PD by using the neurotoxin 1-Methly-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Three-month old male C57BL/6 mice were randomly divided into 4 groups as Control, DHA-treated (DHA), MPTP-injected (MPTP) and DHA-treated + MPTP injected (DHA + MPTP). DHA was administered daily (36 mg kg-1 day-1) by gavage to DHA and DHA + MPTP groups for 30 days. On the 23rd day of DHA administration, MPTP was intraperitoneally injected at a dose of 4 × 20 mg kg-1 with 2-hr. intervals. Motor activities of mice were evaluated by pole test, locomotor activity and rotarod tests on the 7th day of the utilization of experimental Parkinson's model. Total brain tissues were used in immunohistochemical analysis of the tyrosine hydroxylase (TH) and Nuclear factor E2 related factor2 (Nrf2). SN tissues were extracted for biochemical analysis. HO-1 and HO-2 protein levels were detected by western blotting. Further, HO activity was measured by spectrophotometric assay. As an indicator of motor coordination and balance, the rotarod test at 40 rpm showed that MPTP-treated animals exhibited shorter time on the rotating rod mill, which was significantly increased by DHA treatment in DHA + MPTP group. The total locomotor activity, ambulatory movement and total distance were decreased in MPTP group, whereas they were improved upon DHA treatment. The results of the pole test indicating the intensity of the bradykinesia showed that the T-turn and T-total were increased in MPTP group, while DHA treatment significantly shortened both parameters. The number of TH-positive cells in SN was significantly reduced in MPTP group compared to the Control and DHA + MPTP groups. Also, immunoreactive Nrf2 levels were clearly increased in MPTP group compared to DHA + MPTP group. HO-1 expression level decreased in the DHA + MPTP group compared to MPTP group. The results of the present study indicated that DHA has protective effects on dopaminergic neurons in MPTP-induced experimental model of PD. In addition, the pathways of HO-1 and HO-2 might participate in this protective mechanism.
Collapse
Affiliation(s)
- Ayse Ozkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey.
| | - Hande Parlak
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gamze Tanriover
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Sayra Dilmac
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | | | - Ilknur Birsen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Aysel Agar
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| |
Collapse
|
7
|
Chagniel L, Robitaille C, Lacharité-Mueller C, Bureau G, Cyr M. Partial dopamine depletion in MPTP-treated mice differentially altered motor skill learning and action control. Behav Brain Res 2011; 228:9-15. [PMID: 22127145 DOI: 10.1016/j.bbr.2011.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/24/2011] [Accepted: 11/15/2011] [Indexed: 11/26/2022]
Abstract
Recent findings suggest that the neurotransmitter dopamine (DA) system plays a role in motor control and the acquisition of habits and skills. However, isolating DA-mediated motor learning from motor performance remains challenging as most studies include often severely DA-depleted mice. Using the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we investigated the effect of various degrees of DA-depletion in mice on three tests of motor behaviors: the accelerating rotarod, wire suspension and pole tests. Three protocols were performed to decrease DA synthesis to various extents: 4 injections (i.p.) of 9 mg/kg in 1 day; 4 injections (i.p.) of 15 mg/kg in 1 day; or 5 injections (s.c.) of 30 mg/kg in 5 days. Severity of DA-depletion was assessed by the evaluation of tyrosine hydroxylase (TH) and dopamine transporter levels in the striatum using the Western blot technique. Mice were gathered into four different groups according their TH levels: mild, moderate, marked and severe. In these mice, the general motor abilities such as coordination, motion speed and muscular strength were relatively intact whereas impaired acquisition of skilled behavior occurred in mice with marked and severe reduction in TH levels. Marked and severely DA-depleted mice exhibited lower scores within the first trials of the first training day as well as a much slower progression in the following days on the accelerating rotarod. Based on these results, we conclude that the learning of a skilled behavior is more vulnerable to DA depletion than the DA-mediated control of motor activity.
Collapse
Affiliation(s)
- Laure Chagniel
- Groupe de recherche en Neurosciences, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, 3351, Des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | | | | | | | | |
Collapse
|