1
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
2
|
Goldstein DS, Holmes C, Sullivan P, Lopez G, Gelsomino J, Moore S, Isonaka R, Wu T, Sharabi Y. Cardiac noradrenergic deficiency revealed by 18F-dopamine positron emission tomography identifies preclinical central Lewy body diseases. J Clin Invest 2024; 134:e172460. [PMID: 37883190 PMCID: PMC10760969 DOI: 10.1172/jci172460] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND In Lewy body diseases (LBDs) Parkinson disease (PD), and dementia with Lewy bodies (DLB), by the time parkinsonism or cognitive dysfunction manifests clinically, substantial neurodegeneration has already occurred. Biomarkers are needed to identify central LBDs in a preclinical phase, when neurorescue strategies might forestall symptomatic disease. This phase may involve catecholamine deficiency in the autonomic nervous system. We analyzed data from the prospective, observational, long-term PDRisk study to assess the predictive value of low versus normal cardiac 18F-dopamine positron emission tomography (PET), an index of myocardial content of the sympathetic neurotransmitter norepinephrine, in at-risk individuals. METHODS Participants self-reported risk factor information (genetics, olfactory dysfunction, dream enactment behavior, and orthostatic intolerance or hypotension) at a protocol-specific website. Thirty-four with 3 or more confirmed risk factors underwent serial cardiac 18F-dopamine PET at 1.5-year intervals for up to 7.5 years or until PD was diagnosed. RESULTS Nine participants had low initial myocardial 18F-dopamine-derived radioactivity (<6,000 nCi-kg/cc-mCi) and 25 had normal radioactivity. At 7 years of follow-up, 8 of 9 with low initial radioactivity and 1 of 11 with normal radioactivity were diagnosed with a central LBD (LBD+) (P = 0.0009 by Fisher's exact test). Conversely, all 9 LBD+ participants had low 18F-dopamine-derived radioactivity before or at the time of diagnosis of a central LBD, whereas among 25 participants without a central LBD only 1 (4%) had persistently low radioactivity (P < 0.0001 by Fisher's exact test). CONCLUSION Cardiac 18F-dopamine PET highly efficiently distinguishes at-risk individuals who are diagnosed subsequently with a central LBD from those who are not. TRIAL REGISTRATION CLINICALTRIALS gov NCT00775853. FUNDING Division of Intramural Research, NIH, NINDS.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Courtney Holmes
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Patti Sullivan
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Grisel Lopez
- Molecular Neurogenetics Section, National Human Genome Research Institute, and
| | - Janna Gelsomino
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Sarah Moore
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Risa Isonaka
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Tianxia Wu
- Clinical Trials Unit, Office of the Clinical Director, DIR, NINDS, NIH, Bethesda, Maryland, USA
| | - Yehonatan Sharabi
- Chaim Sheba Medical Center, Tel-Aviv University, Tel-Hashomer, Israel
| |
Collapse
|
3
|
Khashab R, Gutman-Sharabi N, Shabtai Z, Landau R, Halperin R, Fay-Karmon T, Leibowitz A, Sharabi Y. Dihydroxyphenylacetaldehyde Lowering Treatment Improves Locomotor and Neurochemical Abnormalities in the Rat Rotenone Model: Relevance to the Catecholaldehyde Hypothesis for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:12522. [PMID: 37569897 PMCID: PMC10419703 DOI: 10.3390/ijms241512522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease centers on accumulation of 3,4-dihydroxyphenylacetaldehyde (DOPAL) in dopaminergic neurons. To test the hypothesis, it is necessary to reduce DOPAL and assess if this improves locomotor abnormalities. Systemic administration of rotenone to rats reproduces the motor and central neurochemical abnormalities characterizing Parkinson's disease. In this study, we used the monoamine oxidase inhibitor (MAOI) deprenyl to decrease DOPAL production, with or without the antioxidant N-acetylcysteine (NAC). Adult rats received subcutaneous vehicle, rotenone (2 mg/kg/day via a minipump), or rotenone with deprenyl (5 mg/kg/day i.p.) with or without oral NAC (1 mg/kg/day) for 28 days. Motor function tests included measures of open field activity and rearing. Striatal tissue was assayed for contents of dopamine, DOPAL, and other catechols. Compared to vehicle, rotenone reduced locomotor activity (distance, velocity and rearing); increased tissue DOPAL; and decreased dopamine concentrations and inhibited vesicular sequestration of cytoplasmic dopamine and enzymatic breakdown of cytoplasmic DOPAL by aldehyde dehydrogenase (ALDH), as indicated by DA/DOPAL and DOPAC/DOPAL ratios. The addition of deprenyl to rotenone improved all the locomotor indices, increased dopamine and decreased DOPAL contents, and corrected the rotenone-induced vesicular uptake and ALDH abnormalities. The beneficial effects were augmented when NAC was added to deprenyl. Rotenone evokes locomotor and striatal neurochemical abnormalities found in Parkinson's disease, including DOPAL buildup. Administration of an MAOI attenuates these abnormalities, and NAC augments the beneficial effects. The results indicate a pathogenic role of DOPAL in the rotenone model and suggest that treatment with MAOI+NAC might be beneficial for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Rawan Khashab
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Naama Gutman-Sharabi
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zehava Shabtai
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Regev Landau
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Reut Halperin
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tsviya Fay-Karmon
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avshalom Leibowitz
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yehonatan Sharabi
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Sun J, Lin XM, Lu DH, Wang M, Li K, Li SR, Li ZQ, Zhu CJ, Zhang ZM, Yan CY, Pan MH, Gong HB, Feng JC, Cao YF, Huang F, Sun WY, Kurihara H, Li YF, Duan WJ, Jiao GL, Zhang L, He RR. Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons. J Clin Invest 2023; 133:e165228. [PMID: 37183824 PMCID: PMC10178840 DOI: 10.1172/jci165228] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/17/2023] [Indexed: 05/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual loss of midbrain dopaminergic neurons in association with aggregation of α-synuclein. Oxidative damage has been widely implicated in this disease, though the mechanisms involved remain elusive. Here, we demonstrated that preferential accumulation of peroxidized phospholipids and loss of the antioxidant enzyme glutathione peroxidase 4 (GPX4) were responsible for vulnerability of midbrain dopaminergic neurons and progressive motor dysfunctions in a mouse model of PD. We also established a mechanism wherein iron-induced dopamine oxidation modified GPX4, thereby rendering it amenable to degradation via the ubiquitin-proteasome pathway. In conclusion, this study unraveled what we believe to be a novel pathway for dopaminergic neuron degeneration during PD pathogenesis, driven by dopamine-induced loss of antioxidant GPX4 activity.
Collapse
Affiliation(s)
- Jie Sun
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiao-Min Lin
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dan-Hua Lu
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Meng Wang
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Kun Li
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Sheng-Rong Li
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zheng-Qiu Li
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Cheng-Jun Zhu
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhi-Min Zhang
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Chang-Yu Yan
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ming-Hai Pan
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hai-Biao Gong
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jing-Cheng Feng
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, National Health Commission Key Laboratory of Reproduction Regulation, Shanghai, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Wan-Yang Sun
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hiroshi Kurihara
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wen-Jun Duan
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Gen-Long Jiao
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration, Ministry of Education, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Rong-Rong He
- The First Affiliated Hospital of Jinan University, Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
5
|
Mamelak M. The Treatment of Parkinson's Disease with Sodium Oxybate. Curr Mol Pharmacol 2023; 16:564-579. [PMID: 36330625 DOI: 10.2174/1874467216666221103121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Lamotte G, Goldstein DS. What new can we learn from cardiac sympathetic neuroimaging in synucleinopathies? Clin Auton Res 2022; 32:95-98. [PMID: 35201527 PMCID: PMC10691841 DOI: 10.1007/s10286-022-00859-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Guillaume Lamotte
- Sleep and Movement Disorders Division, Department of Neurology, Movement Disorders and Autonomic Disorders Clinic, University of Utah, Salt Lake City, UT, 84108, USA.
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA.
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Kumakura Y, Shimizu Y, Hariu M, Ichikawa KI, Yoshida N, Suzuki M, Oji S, Narukawa S, Yoshimasu H, Nomura K. Dynamic planar scintigraphy for the rapid kinetic measurement of myocardial 123I-MIBG turnover can identify Lewy body disease. EJNMMI Res 2021; 11:122. [PMID: 34905123 PMCID: PMC8671580 DOI: 10.1186/s13550-021-00864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Using two static scans for 123I-meta-iodobenzyl-guanidine (123I-MIBG) myocardial scintigraphy ignores the dynamic response from vesicular trapping in nerve terminals. Moreover, the long pause between scans is impractical for patients with Lewy body diseases (LBDs). Here, we optimized indices that capture norepinephrine kinetics, tested their diagnostic performance, and determined the differences in 123I-MIBG performance among disease groups. METHODS We developed a new 30-min protocol for 123I-MIBG dynamic planar imaging for suspected LBD patients. Pharmacokinetic modelling of time-activity curves (TACs) was used to calculate three new indices: unidirectional uptake of 123I-MIBG to vesicular trapping (iUp), rate of myocardial 123I-MIBG loss (iLoss), and non-specific fractional distribution of 123I-MIBG in the interstitial space. We compared the performance of the new and existing indices with regard to discrimination of patients with or without LBDs. Subgroup analysis was performed to examine differences in 123I-MIBG turnover between patients in a dementia with Lewy bodies (DLB) group and two Parkinson's disease (PD) groups, one with and the other without REM sleep behaviour disorder (RBD). RESULTS iLoss was highly discriminative, particularly for patients with low myocardial 123I-MIBG trapping, and the new indices outperformed existing ones. ROC analysis revealed that the AUC of iLoss (0.903) was significantly higher than that of early HMR (0.863), while comparable to that of delayed HMR (0.892). The RBD-positive PD group and the DLB group had higher turnover rates than the RBD-negative PD group, indicating a potential association between prognosis and iLoss. CONCLUSION 123I-MIBG turnover can be quantified in 30 min using a three-parameter model based on 123I-MIBG TACs. The discriminatory performance of the new model-based indices might help explain the neurotoxicity or neurodegeneration that occurs in LBD patients.
Collapse
Affiliation(s)
- Yoshitaka Kumakura
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Center (SMC), Saitama Medical University (SMU), 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan.
| | - Yuji Shimizu
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Center (SMC), Saitama Medical University (SMU), 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | | | | | | | | | - Satoru Oji
- Department of Neurology, SMC, SMU, Kawagoe, Japan
| | | | | | | |
Collapse
|
8
|
Liguori C, Stefani A, Fernandes M, Cerroni R, Mercuri NB, Pierantozzi M. Biomarkers of Cerebral Glucose Metabolism and Neurodegeneration in Parkinson's Disease: A Cerebrospinal Fluid-Based Study. JOURNAL OF PARKINSON'S DISEASE 2021; 12:537-544. [PMID: 34864690 DOI: 10.3233/jpd-212936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Several biomarkers have been evaluated in Parkinson's disease (PD); cerebrospinal fluid (CSF) levels of lactate may reflect cerebral metabolism function and CSF amyloid-β42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau) concentrations may detect an underlying neurodegenerative process. OBJECTIVE CSF levels of lactate, Aβ42, t-tau, and p-tau were measured in patients with mild to moderate PD. CSF levels of dopamine (DA) and its metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) were also assessed, exploring their relations with the other CSF biomarkers. METHODS 101 drug-naive PD patients and 60 controls were included. Participants underwent clinical assessments and CSF biomarker analysis. Patients were divided into subgroups according to their Hoehn & Yahr stage (PD-1, PD-2, PD-3). RESULTS PD patients showed higher lactate levels (M = 1.91; p = 0.03) and lower Aβ42 (M = 595; p < 0.001) and DA levels (M = 0.32; p = 0.04) than controls (Mlactate = 1.72; MAβ42 = 837; MDA = 0.50), while no significant differences were found in t-tau, p-tau and DOPAC concentrations. Considering the subgroup analysis, PD-3 group had higher lactate (M = 2.12) and t-tau levels (M = 333) than both PD-1 (Mlactate = 1.75, p = 0.006; Mt - tau = 176, p = 0.008) and PD-2 groups (Mlactate = 1.91, p = 0.01; Mt - tau = 176, p = 0.03), as well as the controls (Mlactate = 1.72, p = 0.04; Mt - tau = 205, p = 0.04). PD-2 group showed higher lactate levels than PD-1 group (p = 0.04) and controls (p = 0.03). Finally, CSF lactate levels negatively correlated with DA (r = -0.42) and positively with t-tau CSF levels (r = 0.33). CONCLUSION This CSF-based study shows that lactate levels in PD correlated with both clinical disease progression and neurodegeneration biomarkers, such as tau proteins and DA. Further studies should explore the clinical potential of measuring CSF biomarkers for better understanding the role of brain energy metabolism in PD, for research and therapeutic options.
Collapse
Affiliation(s)
- Claudio Liguori
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Alessandro Stefani
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Mariana Fernandes
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Rocco Cerroni
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mariangela Pierantozzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| |
Collapse
|
9
|
Cagle BS, Sturgeon ML, O'Brien JB, Wilkinson JC, Cornell RA, Roman DL, Doorn JA. Stable expression of the human dopamine transporter in N27 cells as an in vitro model for dopamine cell trafficking and metabolism. Toxicol In Vitro 2021; 76:105210. [PMID: 34252731 PMCID: PMC8419135 DOI: 10.1016/j.tiv.2021.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022]
Abstract
Dopamine (DA) metabolism and cell trafficking are critical for the proper functioning of DA neurons. Disruption of these DA processes can yield toxic products and is implicated in neurological conditions including Parkinson's disease (PD). To investigate pathogenic mechanisms involving DA neurons, in vitro models that recapitulate DA metabolism and trafficking in vivo are crucial. N27 cells are a widely used model for PD; however, these cells exhibit little expression of the DA transporter (DAT) confounding studies of DA uptake and metabolism. This lack of adequate DAT expression calls into question the use of this cell line as a model to study DA cell trafficking and metabolism. To overcome this problem, we stably expressed the human DAT (hDAT) in N27 cells to develop cells that we named N27-BCD. This approach allows for characterization of toxicants that may alter DA metabolism, trafficking, and/or interactions with DAT. N27-BCD cells are more sensitive to the neurotoxins 1-methyl-4-phenylpyridinium (MPTP/MPP+) and 6-hydroxydopamine (6-OHDA). N27-BCD cells allowed for clear observation of DA metabolism, whereas N27 cells did not. Here, we propose that stable expression of hDAT in N27 cells yields a useful model of DA neurons to study the impact of altered DA cell trafficking and metabolism.
Collapse
Affiliation(s)
- B S Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| | - M L Sturgeon
- The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, Iowa 52242, USA.
| | - J B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| | - J C Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| | - R A Cornell
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 51 Newton Road Iowa City, Iowa 52242, USA.
| | - D L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| | - J A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave. Iowa City, Iowa 52242, USA.
| |
Collapse
|
10
|
Lamotte G, Benarroch EE. What Is the Clinical Correlation of Cardiac Noradrenergic Denervation in Parkinson Disease? Neurology 2021; 96:748-753. [PMID: 33970873 DOI: 10.1212/wnl.0000000000011805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/15/2023] Open
|
11
|
Lenka A, Lamotte G, Goldstein DS. Cardiac 18F-Dopamine PET Distinguishes PD with Orthostatic Hypotension from Parkinsonian MSA. Mov Disord Clin Pract 2021; 8:582-586. [PMID: 33981791 PMCID: PMC8088110 DOI: 10.1002/mdc3.13190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Parkinson's disease with orthostatic hypotension (PD + OH) can be difficult to distinguish clinically from the parkinsonian form of multiple system atrophy (MSA-P). Previous studies examined cardiac sympathetic neuroimaging to differentiate PD from MSA but without focusing specifically on PD + OH versus MSA-P, which often is the relevant differential diagnostic issue. OBJECTIVE To investigate the utility of cardiac sympathetic neuroimaging by 18F-dopamine positron emission tomographic (PET) scanning for separating PD + OH from MSA-P. METHODS Cardiac 18F-dopamine PET data were analyzed from 50 PD + OH and 68 MSA-P patients evaluated at the NIH Clinical Center from 1990 to 2020. Noradrenergic deficiency was defined by interventricular septal 18F-dopamine-derived radioactivity <6000 nCi-kg/cc-mCi in the 5' frame with mid-point 8' after initiation of 3' tracer injection. RESULTS 18F-Dopamine PET separated the PD + OH from the MSA-P group with a sensitivity of 92% and specificity of 96%. CONCLUSION Cardiac 18F-dopamine PET scanning efficiently distinguishes PD + OH from MSA-P.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of NeurologyMedstar Georgetown University HospitalWashington, DCUSA
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Guillaume Lamotte
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - David S. Goldstein
- Autonomic Medicine Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
12
|
Lamotte G, Takahashi M, Wu T, Sullivan P, Cherup J, Holmes C, Goldstein DS. Do indices of baroreflex failure and peripheral noradrenergic deficiency predict the magnitude of orthostatic hypotension in Lewy body diseases? Clin Auton Res 2021; 31:543-551. [PMID: 33710459 DOI: 10.1007/s10286-021-00788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Patients with neurogenic orthostatic hypotension in the setting of Lewy body diseases (LBnOH) typically have baroreflex failure and peripheral noradrenergic deficiency. Either or both of these abnormalities might determine the magnitude of OH in individual patients. We retrospectively correlated the orthostatic fall in systolic blood pressure (∆BPs) during active standing or 5 min of head-up tilt at 90° from horizontal as a function of several baroreflex and sympathetic noradrenergic indices. METHODS Physiological, neurochemical, and sympathetic neuroimaging data from the Valsalva maneuver, head-up tilt table testing, and thoracic 18F-dopamine positron emission tomographic scanning (18F-DA PET) were analyzed from 72 patients with LBnOH [44 with Parkinson disease (PD) and nOH, 28 with pure autonomic failure]. Comparison subjects had PD without OH (N = 44) or PD risk factors without parkinsonism or OH (N = 28) or were healthy volunteers (N = 8). Indices of baroreflex function included the Valsalva maneuver-associated baroreflex areas in Phase II (BRA-II) and IV (BRA-IV), the pressure recovery time (PRT), and baroreflex-cardiovagal and adrenergic sensitivities (BRS-V and BRS-A). The fractional orthostatic increment in plasma norepinephrine (Fx∆NE) provided a neurochemical index of baroreflex-sympathoneural function. RESULTS As expected, the LBnOH group had baroreflex-sympathoneural and baroreflex-cardiovagal impairment and low cardiac 18F-DA-derived radioactivity. Among patients, values for ∆BPs correlated with BRA-II, BRA-IV, BRS-V, and Fx∆NE but not with values for PRT, BRS-A, supine plasma NE, or 18F-DA-derived radioactivity. CONCLUSION Across individual patients with LBnOH, quantitative indices of baroreflex dysfunctions and peripheral noradrenergic deficiency are inconsistently associated with the magnitude of OH, even under controlled laboratory conditions.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Autonomic Medicine Section, National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Makoto Takahashi
- Autonomic Medicine Section, National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA
- Department of Neurology, Kanto Central Hospital, Tokyo, Japan
| | - Tianxia Wu
- Clinical Trials Unit, NINDS, NIH, Bethesda, MD, USA
| | - Patricia Sullivan
- Autonomic Medicine Section, National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA
| | - Jamie Cherup
- Autonomic Medicine Section, National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA
| | - Courtney Holmes
- Autonomic Medicine Section, National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA
| | - David S Goldstein
- Autonomic Medicine Section, National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA
| |
Collapse
|
13
|
Goldstein DS. "Sick-but-not-dead": multiple paths to catecholamine deficiency in Lewy body diseases. Stress 2020; 23:633-637. [PMID: 32372682 PMCID: PMC10680065 DOI: 10.1080/10253890.2020.1765158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Profound depletion of the catecholamines dopamine (DA) and norepinephrine in the brain, heart, or both characterizes Lewy body diseases such as Parkinson disease, dementia with Lewy bodies, and pure autonomic failure. Although one might presume that catecholamine deficiency in these disorders results directly and solely from loss of catecholaminergic neurons, there is increasing evidence that functional abnormalities in extant residual neurons contribute to the neurotransmitter deficiencies-the "sick-but-not-dead" phenomenon. This brief review highlights two such functional abnormalities-decreased vesicular sequestration of cytoplasmic catecholamines and decreased catecholamine biosynthesis. Another abnormality, decreased activity of aldehyde dehydrogenase, may have pathogenetic significance and contribute indirectly to the loss of catecholamine stores via interactions between the autotoxic catecholaldehyde 3,4-dihydroxyphenylacetaldehyde and the protein alpha-synuclein, which is a major component of Lewy bodies. Theoretically, chronically repeated stress responses could accelerate these abnormalities, via increased exocytosis and neuronal reuptake, which indirectly shifts tissue catecholamines from vesicular stores into the cytoplasm, and via increased tyrosine hydroxylation, which augments intra-cytoplasmic DA production. The discovery of specific paths mediating the sick-but-not-dead phenomenon offers novel targets for multi-pronged therapeutic approaches.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Goldstein DS. The "Sick-but-not-Dead" Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases. Semin Neurol 2020; 40:502-514. [PMID: 32906170 PMCID: PMC10680399 DOI: 10.1055/s-0040-1713874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catecholamines dopamine and norepinephrine are key central neurotransmitters that participate in many neurobehavioral processes and disease states. Norepinephrine is also the main neurotransmitter mediating regulation of the circulation by the sympathetic nervous system. Several neurodegenerative disorders feature catecholamine deficiency. The most common is Parkinson's disease (PD), in which putamen dopamine content is drastically reduced. PD also entails severely decreased myocardial norepinephrine content, a feature that characterizes two other Lewy body diseases-pure autonomic failure and dementia with Lewy bodies. It is widely presumed that tissue catecholamine depletion in these conditions results directly from loss of catecholaminergic neurons; however, as highlighted in this review, there are also important functional abnormalities in extant residual catecholaminergic neurons. We refer to this as the "sick-but-not-dead" phenomenon. The malfunctions include diminished dopamine biosynthesis via tyrosine hydroxylase (TH) and L-aromatic-amino-acid decarboxylase (LAAAD), inefficient vesicular sequestration of cytoplasmic catecholamines, and attenuated neuronal reuptake via cell membrane catecholamine transporters. A unifying explanation for catecholaminergic neurodegeneration is autotoxicity exerted by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediate in cytoplasmic dopamine metabolism. In PD, putamen DOPAL is built up with respect to dopamine, associated with a vesicular storage defect and decreased aldehyde dehydrogenase activity. Probably via spontaneous oxidation, DOPAL potently oligomerizes and forms quinone-protein adducts with ("quinonizes") α-synuclein (AS), a major constituent in Lewy bodies, and DOPAL-induced AS oligomers impede vesicular storage. DOPAL also quinonizes numerous intracellular proteins and inhibits enzymatic activities of TH and LAAAD. Treatments targeting DOPAL formation and oxidation therefore might rescue sick-but-not-dead catecholaminergic neurons in Lewy body diseases.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Goldstein DS, Isonaka R, Holmes C, Ding YS, Sharabi Y. Cardiac sympathetic innervation and vesicular storage in pure autonomic failure. Ann Clin Transl Neurol 2020; 7:1908-1918. [PMID: 32945121 PMCID: PMC7545586 DOI: 10.1002/acn3.51184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Objective Pure autonomic failure (PAF) is a rare disease characterized by neurogenic orthostatic hypotension (nOH), absence of signs of central neurodegeneration, and profound deficiency of the sympathetic neurotransmitter norepinephrine. Reports have disagreed about mechanisms of the noradrenergic lesion. Neuropathological studies have highlighted denervation, while functional studies have emphasized deficient vesicular sequestration of cytoplasmic catecholamines in extant neurons. We examined both aspects by a combined positron emission tomographic (PET) neuroimaging approach using 11C‐methylreboxetine (11C‐MRB), a selective ligand for the cell membrane norepinephrine transporter, to quantify interventricular septal myocardial noradrenergic innervation and using 18F‐dopamine (18F‐DA) to assess intraneuronal vesicular storage in the same subjects. Methods Seven comprehensively tested PAF patients and 11 controls underwent 11C‐MRB PET scanning for 45 minutes (dynamic 5X1’, 3X5’, 1X10’, static 15 minutes) and 18F‐DA scanning for 30 minutes (same dynamic imaging sequence) after 3‐minute infusions of the tracers on separate days. Results In the PAF group septal 11C‐MRB‐derived radioactivity in the static frame was decreased by 26.7% from control (p = 0.012). After adjustment for nonspecific binding of 11C‐MRB, the PAF group had a 41.1% mean decrease in myocardial 11C‐MRB‐derived radioactivity (p = 0.015). The PAF patients had five times faster postinfusion loss of 18F‐DA‐derived radioactivity (70 ± 3% vs. 14 ± 8% by 30 minutes, p < 0.0001). At all time points after infusion of 18F‐DA and 11C‐MRB mean 18F/11C ratios in septal myocardium were lower in the PAF than control group. Interpretation PAF entails moderately decreased cardiac sympathetic innervation and a substantial vesicular storage defect in residual nerves.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Risa Isonaka
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Courtney Holmes
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Yu-Shin Ding
- Department of Radiology, New York University Langone Medical Center, New York, NY
| | - Yehonatan Sharabi
- Department of Internal Medicine, Chaim Sheba Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|
16
|
Cerroni R, Liguori C, Stefani A, Conti M, Garasto E, Pierantozzi M, Mercuri NB, Bernardini S, Fucci G, Massoud R. Increased Noradrenaline as an Additional Cerebrospinal Fluid Biomarker in PSP-Like Parkinsonism. Front Aging Neurosci 2020; 12:126. [PMID: 32612521 PMCID: PMC7308889 DOI: 10.3389/fnagi.2020.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Academic centers utilize sequential clinical and neuroimaging assessments, including morphometric ratios, to obtain an unequivocal diagnosis of the non-synucleinopathic forms of Parkinsonism, such as progressive supranuclear palsy (PSP), however, a 1-2 year follow-up is required. The on-going long-lasting trials using anti-tau antibodies for PSP patients might therefore be biased by the incorrect enrollment of Parkinson's disease (PD) patients manifesting early axial signs. This perspective study aimed at achieving two major goals: first, to summarize the established biomarker candidates found in cerebrospinal fluid (CSF) in probable PSP patients, including low p-tau and altered neurofilaments. Second, we share our recent data, from CSF samples of well-selected PSP subjects, attributable to both main variants (and revisited in light of MDS criteria), who were followed for 1 year before and 2 years after lumbar puncture. We found a significantly high level of noradrenaline (NE) in these patients, similar to controls, when compared to PD patients. In contrast, CSF samples, in PD, showed a significant reduction in CSF NE and its major metabolite, which confirmed that PD is a multi-system disease involving several endogenous pathways. The NE axis impairments were prominent in PSP featuring worse NPI. It might represent a counterpart to the early and peculiar psycho-pathological profiles that are observed in tauopathies. In conclusion, we highlight that CSF biomarkers, which are easy to collect, can provide rapid insights as diagnostic tools. Early alterations in endogenous NE machinery in atypical Parkinsonism may represent a specific risk trait in forms characterized by a worse prognosis.
Collapse
Affiliation(s)
- Rocco Cerroni
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Alessandro Stefani
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | | | - Nicola B. Mercuri
- UOC Neurology, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| | - Giorgio Fucci
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Lamotte G, Holmes C, Wu T, Goldstein DS. Long-term trends in myocardial sympathetic innervation and function in synucleinopathies. Parkinsonism Relat Disord 2019; 67:27-33. [PMID: 31621602 DOI: 10.1016/j.parkreldis.2019.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Parkinson disease (PD), pure autonomic failure (PAF), and multiple system atrophy (MSA) are characterized by intra-cerebral deposition of the protein alpha-synuclein and are termed synucleinopathies. Lewy body synucleinopathies involve decreased cardiac sympathetic innervation and functional abnormalities in residual noradrenergic terminals. This observational, retrospective, cohort study describes long-term trends in indices of cardiac sympathetic innervation and function in synucleinopathies. METHODS Patients with PD (N = 31), PAF (N = 9), or MSA (N = 9) underwent repeated 18F-dopamine positron emission tomography (median follow-up 3.5 years). Interventricular septal 18F-dopamine-derived radioactivity 8 min after tracer injection (8' Radioactivity) was used as an index of sympathetic innervation and the slope of mono-exponential decline of radioactivity between 8 and 25 min (k8'-25') as an index of intraneuronal vesicular storage. Healthy volunteers (HVs) (N = 33) and individuals at high risk of PD (N = 15) were controls. RESULTS Upon initial evaluation the groups with PD and orthostatic hypotension (OH), PAF, or PD and no OH had low mean 8' Radioactivity compared to HVs (p < 0.0001, p = 0.0002, p = 0.006) and had elevated k8'-25' (p = 0.0007, p = 0.007, p = 0.06). There was no significant difference between MSA and HVs. In PD 8' Radioactivity decreased by a median of 4% per year and did not decrease in MSA. k8'-25' values did not change during follow-up in any group. CONCLUSIONS Neuroimaging evidence of decreased vesicular uptake in cardiac sympathetic nerves is present upon initial evaluation of patients with Lewy body synucleinopathies and may provide a biomarker of catecholaminergic dysfunction early in the disease process.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Clinical Neurosciences Program (CNP), Division of Intramural Research (CNP), National Institute of Neurological Disorders and Stroke (NINDS), 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA; Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA. /
| | - Courtney Holmes
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA.
| | - Tianxia Wu
- Clinical Trials Unit, NINDS, 9000 Rockville Pike 10/2A23B, Bethesda, MD, 20892, USA.
| | - David S Goldstein
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike 10/8C260, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Goldstein DS, Pekker MJ, Eisenhofer G, Sharabi Y. Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases. JCI Insight 2019; 5:130441. [PMID: 31335324 DOI: 10.1172/jci.insight.130441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lewy body diseases, a family of aging-related neurodegenerative disorders, entail loss of the catecholamine dopamine in the nigrostriatal system and equally severe deficiency of the closely related catecholamine norepinephrine in the heart. The myocardial noradrenergic lesion is associated with major non-motor symptoms and decreased survival. Numerous mechanisms determine norepinephrine stores, and which of these are altered in Lewy body diseases has not been examined in an integrated way. We used a computational modeling approach to assess comprehensively pathways of cardiac norepinephrine synthesis, storage, release, reuptake, and metabolism in Lewy body diseases. Application of a novel kinetic model identified a pattern of dysfunctional steps contributing to norepinephrine deficiency. We then tested predictions from the model in a new cohort of Parkinson disease patients. METHODS Rate constants were calculated for 17 reactions determining intra-neuronal norepinephrine stores. Model predictions were tested by measuring post-mortem apical ventricular concentrations and concentration ratios of catechols in controls and patients with Parkinson disease. RESULTS The model identified low rate constants for three types of processes in the Lewy body group-catecholamine biosynthesis via tyrosine hydroxylase and L-aromatic-amino-acid decarboxylase, vesicular storage of dopamine and norepinephrine, and neuronal norepinephrine reuptake via the cell membrane norepinephrine transporter. Post-mortem catechols and catechol ratios confirmed this triad of model-predicted functional abnormalities. CONCLUSION Denervation-independent impairments of neurotransmitter biosynthesis, vesicular sequestration, and norepinephrine recycling contribute to the myocardial norepinephrine deficiency attending Lewy body diseases. A proportion of cardiac sympathetic nerves are "sick but not dead," suggesting targeted disease-modification strategies might retard clinical progression. TRIAL REGISTRATION This study was not a clinical trial. FUNDING The research reported here was supported by the Division of Intramural Research, NINDS.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section (formerly Clinical Neurocardiology Section), Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, USA
| | - Mark J Pekker
- Mathematical Sciences, University of Alabama at Huntsville, Huntsville, Alabama, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Yehonatan Sharabi
- Tel Aviv University Sackler Faculty of Medicine and Chaim Sheba Medical Center, Tel HaShomer, Israel
| |
Collapse
|
19
|
Isonaka R, Rosenberg AZ, Sullivan P, Corrales A, Holmes C, Sharabi Y, Goldstein DS. Alpha-Synuclein Deposition Within Sympathetic Noradrenergic Neurons Is Associated With Myocardial Noradrenergic Deficiency in Neurogenic Orthostatic Hypotension. Hypertension 2019; 73:910-918. [PMID: 30798661 PMCID: PMC6472912 DOI: 10.1161/hypertensionaha.118.12642] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lewy body diseases involve neurogenic orthostatic hypotension (nOH), cardiac noradrenergic deficiency, and deposition of the protein AS (alpha-synuclein) in sympathetic ganglion tissue. Mechanisms linking these abnormalities are poorly understood. One link may be AS deposition within sympathetic neurons. We validated methodology to quantify AS colocalization with TH (tyrosine hydroxylase), a marker of sympathetic noradrenergic innervation, and assessed associations of AS/TH colocalization with myocardial norepinephrine content and cardiac sympathetic neuroimaging data in nOH. Postmortem sympathetic ganglionic AS/TH colocalization indices and myocardial norepinephrine contents were measured in 4 Lewy body and 3 rare non-Lewy body nOH patients. Sixteen Lewy body and 11 non-Lewy body nOH patients underwent in vivo skin biopsies and thoracic 18F-dopamine positron emission tomographic scanning, with cutaneous colocalization indices expressed versus cardiac 18F-dopamine-derived radioactivity. Ganglionic AS/TH colocalization indices were higher and myocardial norepinephrine lower in Lewy body than non-Lewy body nOH ( P=0.0020, P=0.014). The Lewy body nOH group had higher AS/TH colocalization indices in skin biopsies and lower myocardial 18F-dopamine-derived radioactivity than did the non-Lewy body nOH group ( P<0.0001 each). All Lewy body nOH patients had colocalization indices >1.5 in skin biopsies and 18F-dopamine-derived radioactivity <6000 nCi-kg/cc-mCi, a combination not seen in non-Lewy body nOH patients ( P<0.0001). In Lewy body nOH, AS deposition in sympathetic noradrenergic nerves is related to postmortem neurochemical and in vivo neuroimaging evidence of myocardial noradrenergic deficiency. These associations raise the possibility that intraneuronal AS deposition plays a pathophysiological role in the myocardial sympathetic neurodegeneration attending Lewy body nOH.
Collapse
Affiliation(s)
- Risa Isonaka
- Autonomic Medicine Section (formerly Clinical Neurocardiology Section), Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Avi Z. Rosenberg
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD
| | - Patti Sullivan
- Autonomic Medicine Section (formerly Clinical Neurocardiology Section), Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Abraham Corrales
- Autonomic Medicine Section (formerly Clinical Neurocardiology Section), Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Courtney Holmes
- Autonomic Medicine Section (formerly Clinical Neurocardiology Section), Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | | - David S. Goldstein
- Autonomic Medicine Section (formerly Clinical Neurocardiology Section), Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Patients with Parkinson's disease (PD) often display gastrointestinal and genitourinary autonomic symptoms years or even decades prior to diagnosis. These symptoms are thought to be caused in part by pathological α-synuclein inclusions in the peripheral autonomic and enteric nervous systems. It has been proposed that the initial α-synuclein aggregation may in some PD patients originate in peripheral nerve terminals and then spread centripetally to the spinal cord and brainstem. In vivo imaging methods can directly quantify the degeneration of the autonomic nervous system as well as the functional consequences such as perturbed motility. Here, we review the methodological principles of these imaging techniques and the major findings in patients with PD and atypical parkinsonism. RECENT FINDINGS Loss of sympathetic and parasympathetic nerve terminals in PD can be visualized using radiotracer imaging, including 123I-MIBG scintigraphy, and 18F-dopamine and 11C-donepezil PET. Recently, ultrasonographical studies disclosed reduced diameter of the vagal nerves in PD patients. Radiological and radioisotope techniques have demonstrated dysmotility and prolonged transit time throughout all subdivisions of the gastrointestinal tract in PD. The prevalence of objective dysfunction as measured with these imaging methods is often considerably higher compared to the prevalence of subjective symptoms experienced by the patients. Degeneration of the autonomic nervous system may play a key role in the pathogenesis of PD. In vivo imaging techniques provide powerful and noninvasive tools to quantify the degree and extent of this degeneration and its functional consequences.
Collapse
Affiliation(s)
- Karoline Knudsen
- Department of Nuclear Medicine and PET Centre Aarhus University Hospital, Institute of Clinical Medicine Aarhus University, Norrebrogade 44, Building 10, 8000, Aarhus C, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre Aarhus University Hospital, Institute of Clinical Medicine Aarhus University, Norrebrogade 44, Building 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
21
|
Isonaka R, Sullivan P, Jinsmaa Y, Corrales A, Goldstein DS. Spectrum of abnormalities of sympathetic tyrosine hydroxylase and alpha-synuclein in chronic autonomic failure. Clin Auton Res 2018; 28:223-230. [PMID: 29396794 DOI: 10.1007/s10286-017-0495-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Lewy body forms of primary chronic autonomic failure (CAF) such as incidental Lewy body disease (ILBD), Parkinson's disease (PD), and pure autonomic failure evolving into dementia with Lewy bodies (PAF+DLB) feature cardiac sympathetic denervation, whereas multiple system atrophy (MSA) in most cases does not. What links Lewy bodies with cardiac sympathetic denervation in CAF? In familial PD, abnormalities of the alpha-synuclein (AS) gene cause CAF and cardiac sympathetic denervation; and in sporadic PD, brainstem Lewy bodies contain AS co-localized with tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Cytotoxicity from AS deposition within sympathetic neurons might explain noradrenergic denervation in Lewy body forms of CAF. We used immunofluorescence microscopy (IM) to explore this possibility in sympathetic ganglia obtained at autopsy from CAF patients. METHODS Immunoreactive AS and TH were imaged in sympathetic ganglion tissue from 6 control subjects (2 with ILBD), 5 PD patients (1 with concurrent PSP), and 3 patients with CAF (2 PAF + DLB, 1 MSA). RESULTS MSA involved normal ganglionic TH and no AS deposition. In ILBD TH was variably decreased, and TH and AS were co-localized in Lewy bodies. In PD TH was substantially decreased, and TH and AS were co-localized in Lewy bodies. In PAF + DLB TH was virtually absent, but AS was present in Lewy bodies. The PD + PSP patient had AS co-localized with tau but not TH. CONCLUSIONS Sympathetic denervation and intraneuronal AS deposition are correlated across CAF syndromes, consistent with a pathogenic contribution of synucleinopathy to cardiac noradrenergic deficiency in Lewy body diseases.
Collapse
Affiliation(s)
- Risa Isonaka
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA
| | - Patti Sullivan
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA
| | - Yunden Jinsmaa
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA
| | - Abraham Corrales
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA
| | - David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| |
Collapse
|
22
|
Blanco-Lezcano L, Alberti-Amador E, Díaz-Hung ML, González-Fraguela ME, Estupiñán-Díaz B, Serrano-Sánchez T, Francis-Turner L, Jiménez-Martín J, Vega-Hurtado Y, Fernández-Jiménez I. Tyrosine Hydroxylase, Vesicular Monoamine Transporter and Dopamine Transporter mRNA Expression in Nigrostriatal Tissue of Rats with Pedunculopontine Neurotoxic Lesion. Behav Sci (Basel) 2018; 8:bs8020020. [PMID: 29389881 PMCID: PMC5836003 DOI: 10.3390/bs8020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The degeneration of the pedunculopontine nucleus (PPN) precedes the degeneration of the nigral cells in the pre-symptomatic stages of Parkinson's disease (PD). Although the literature recognizes that a lesion of the PPN increases the vulnerability of dopaminergic cells, it is unknown if this risk is associated with the loss of capability of handling the dopaminergic function. METHODS In this paper, the effects of a unilateral neurotoxic lesion of the PPN in tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) mRNA expression in nigrostriatal tissue were evaluated. Three experimental groups were organized: non-treated rats, NMDA-lesioned rats and Sham-operated rats. RESULTS Seven days after the PPN lesion, in nigral tissue, TH mRNA expression was higher in comparison with control groups (p < 0.05); in contrast, VMAT2 mRNA expression showed a significant decrease (p < 0.01). DAT mRNA expression showed a significant decrease (p < 0.001) in the striatal tissue. Comparing nigral neuronal density of injured and control rats revealed no significant difference seven days post-PPN injury. CONCLUSIONS Findings suggest that the PPN lesion modifies the mRNA expression of the proteins associated with dopaminergic homeostasis at nigrostriatal level. It could represent vulnerability signals for nigral dopaminergic cells and further increase the risk of degeneration of these cells.
Collapse
Affiliation(s)
- Lisette Blanco-Lezcano
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - Esteban Alberti-Amador
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| | - Mei-Li Díaz-Hung
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - María Elena González-Fraguela
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - Bárbara Estupiñán-Díaz
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - Teresa Serrano-Sánchez
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
- Latinoamerican School of Medicine, Km 3½ Carretera Panamericana, Santa Fé. Playa, Havana 19148, Cuba.
| | - Liliana Francis-Turner
- Experimental Group: "Experimental Models for Zoo-Human Sciences", Faculty of Sciences, Tolima University, 42nd Street, Barrio Santa Elena, Parte Alta, CP 730001, Colombia.
| | - Javier Jiménez-Martín
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand.
| | - Yamilé Vega-Hurtado
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| | - Isabel Fernández-Jiménez
- Experimental Neurophysiology Department, International Center of Neurological Restoration (CIREN) Ave. 25 No. 15805 e/158 and 160, Playa, Havana 11300, Cuba.
| |
Collapse
|
23
|
Does sympathetic dysfunction occur before denervation in pure autonomic failure? Clin Sci (Lond) 2018; 132:1-16. [PMID: 29162745 DOI: 10.1042/cs20170240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023]
Abstract
Pure autonomic failure (PAF) is a rare sporadic disorder characterized by autonomic failure in the absence of a movement disorder or dementia and is associated with very low plasma norepinephrine (NE) levels-suggesting widespread sympathetic denervation, however due to its rarity the pathology remains poorly elucidated. We sought to correlate clinical and neurochemical findings with sympathetic nerve protein abundances, accessed by way of a forearm vein biopsy, in patients with PAF and in healthy controls and patients with multiple systems atrophy (MSA) in whom sympathetic nerves are considered intact. The abundance of sympathetic nerve proteins, extracted from forearm vein biopsy specimens, in 11 patients with PAF, 8 patients with MSA and 9 age-matched healthy control participants was performed following a clinical evaluation and detailed evaluation of sympathetic nervous system function, which included head-up tilt (HUT) testing with measurement of plasma catecholamines and muscle sympathetic nerve activity (MSNA) in addition to haemodynamic assessment to confirm the clinical phenotype. PAF participants were found to have normal abundance of the NE transporter (NET) protein, together with very low levels of tyrosine hydroxylase (TH) (P<0.0001) and reduced vesicular monoamine transporter 2 (VMAT2) (P<0.05) protein expression compared with control and MSA participants. These findings were associated with a significantly higher ratio of plasma 3,4-dihydroxyphenylglycol (DHPG):NE in PAF participants when compared with controls (P<0.05). The finding of normal NET abundance in PAF suggests intact sympathetic nerves but with reduced NE synthesis. The finding of elevated plasma ratio of DHPG:NE and reduced VMAT2 in PAF indicates a shift towards intraneuronal NE metabolism over sequestration in sympathetic nerves and suggests that sympathetic dysfunction may occur ahead of denervation.
Collapse
|
24
|
Goldstein DS, Kopin IJ. Linking Stress, Catecholamine Autotoxicity, and Allostatic Load with Neurodegenerative Diseases: A Focused Review in Memory of Richard Kvetnansky. Cell Mol Neurobiol 2018; 38:13-24. [PMID: 28488009 PMCID: PMC5680155 DOI: 10.1007/s10571-017-0497-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
In this Focused Review, we provide an update about evolving concepts that may link chronic stress and catecholamine autotoxicity with neurodegenerative diseases such as Parkinson's disease. Richard Kvetnansky's contributions to the field of stress and catecholamine systems inspired some of the ideas presented here. We propose that coordination of catecholaminergic systems mediates adjustments maintaining health and that senescence-related disintegration of these systems leads to disorders of regulation and to neurodegenerative diseases such as Parkinson's disease. Chronically repeated episodes of stress-related catecholamine release and reuptake, with attendant increases in formation of the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, might accelerate this process.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 5N220, Bethesda, MD, 20892-1620, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 5N220, Bethesda, MD, 20892-1620, USA
| |
Collapse
|
25
|
Isingrini E, Guinaudie C, C Perret L, Rainer Q, Moquin L, Gratton A, Giros B. Genetic elimination of dopamine vesicular stocks in the nigrostriatal pathway replicates Parkinson's disease motor symptoms without neuronal degeneration in adult mice. Sci Rep 2017; 7:12432. [PMID: 28963508 PMCID: PMC5622135 DOI: 10.1038/s41598-017-12810-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 11/17/2022] Open
Abstract
The type 2 vesicular monoamine transporter (VMAT2), by regulating the storage of monoamines transmitters into synaptic vesicles, has a protective role against their cytoplasmic toxicity. Increasing evidence suggests that impairment of VMAT2 neuroprotection contributes to the pathogenesis of Parkinson’s disease (PD). Several transgenic VMAT2 mice models have been developed, however these models lack specificity regarding the monoaminergic system targeting. To circumvent this limitation, we created VMAT2-KO mice specific to the dopamine (DA) nigrostriatal pathway to analyze VMAT2’s involvement in DA depletion-induced motor features associated to PD and examine the relevance of DA toxicity in the pathogenesis of neurodegeneration. Adult VMAT2 floxed mice were injected in the substancia nigra (SN) with an adeno-associated virus (AAV) expressing the Cre-recombinase allowing VMAT2 removal in DA neurons of the nigrostriatal pathway solely. VMAT2 deletion in the SN induced both DA depletion exclusively in the dorsal striatum and motor dysfunction. At 16 weeks post-injection, motor symptoms were accompanied with a decreased in food and water consumption and weight loss. However, despite an accelerating death, degeneration of nigrostriatal neurons was not observed in this model during this time frame. This study highlights a non-cytotoxic role of DA in our genetic model of VMAT2 deletion exclusively in nigrostriatal neurons.
Collapse
Affiliation(s)
- Elsa Isingrini
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Chloé Guinaudie
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Léa C Perret
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Quentin Rainer
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Luc Moquin
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Alain Gratton
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Mental Health Research Center, McGill University, Montreal, Quebec, H4H 1R3, Canada. .,Sorbonne Universités, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
26
|
Pure autonomic failure without synucleinopathy. Clin Auton Res 2017; 27:97-101. [PMID: 28188385 DOI: 10.1007/s10286-017-0404-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
Pure autonomic failure is a rare form of chronic autonomic failure manifesting with neurogenic orthostatic hypotension and evidence of sympathetic noradrenergic denervation unaccompanied by signs of central neurodegeneration. It has been proposed that pure autonomic failure is a Lewy body disease characterized by intra-neuronal deposition of the protein alpha-synuclein in Lewy bodies and neurites. A middle-aged man with previously diagnosed pure autonomic failure experienced a sudden, fatal cardiac arrest. He was autopsied, and tissues were harvested for neurochemical and immunofluorescence studies. Post-mortem microscopic neuropathology showed no Lewy bodies, Lewy neurites, or alpha-synuclein deposition by immunohistochemistry anywhere in the brain. The patient had markedly decreased immunofluorescent tyrosine hydroxylase in sympathetic ganglion tissue without detectable alpha-synuclein even in rare residual nests of tyrosine hydroxylase-containing ganglionic fibers. In pure autonomic failure, sympathetic noradrenergic denervation can occur without concurrent Lewy bodies or alpha-synuclein deposition in the brain or sympathetic ganglion tissue.
Collapse
|
27
|
Wimalasena K. Current Status, Gaps, and Weaknesses of the Mechanism of Selective Dopaminergic Toxicity of MPTP/MPP +. ADVANCES IN MOLECULAR TOXICOLOGY 2017. [DOI: 10.1016/b978-0-12-812522-9.00003-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Van Schoors J, Viaene J, Van Wanseele Y, Smolders I, Dejaegher B, Vander Heyden Y, Van Eeckhaut A. An improved microbore UHPLC method with electrochemical detection for the simultaneous determination of low monoamine levels in in vivo brain microdialysis samples. J Pharm Biomed Anal 2016; 127:136-46. [DOI: 10.1016/j.jpba.2016.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
|
29
|
Elevated cerebrospinal fluid ratios of cysteinyl-dopamine/3,4-dihydroxyphenylacetic acid in parkinsonian synucleinopathies. Parkinsonism Relat Disord 2016; 31:79-86. [PMID: 27474472 DOI: 10.1016/j.parkreldis.2016.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/12/2016] [Accepted: 07/17/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There is intense interest in identifying cerebrospinal fluid (CSF) biomarkers of Parkinson's disease (PD), both for early diagnosis and to track effects of putative treatments. Nigrostriatal dopamine depletion characterizes PD. Predictably, CSF levels of 3,4-dihydroxyphenylacetic acid (DOPAC), the main neuronal metabolite of dopamine, are decreased in PD, even in patients with recent onset of the movement disorder. Whether low CSF DOPAC is associated specifically with parkinsonism has been unclear. In the neuronal cytoplasm dopamine undergoes not only enzymatic oxidation to form DOPAC but also spontaneous oxidation to form 5-S-cysteinyl-dopamine (Cys-DA). Theoretically, oxidative stress or decreased activity of aldehyde dehydrogenase (ALDH) in the residual nigrostriatal dopaminergic neurons would increase CSF Cys-DA levels with respect to DOPAC levels. PD, parkinsonian multiple system atrophy (MSA-P), and pure autonomic failure (PAF) are synucleinopathies; however, PAF does not entail parkinsonism. We examined whether an elevated Cys-DA/DOPAC ratio provides a specific biomarker of parkinsonism in synucleinopathy patients. METHODS CSF catechols were assayed in PD (n = 24), MSA-P (n = 32), PAF (n = 18), and control subjects (n = 32). RESULTS Compared to controls, CSF DOPAC was decreased in PD and MSA-P (p < 0.0001 each). In both diseases Cys-DA/DOPAC ratios averaged more than twice control (0.14 ± 0.02 and 0.13 ± 0.02 vs. 0.05 ± 0.01, p < 0.0001 each), whereas in PAF the mean Cys-DA/DOPAC ratio was normal (0.05 ± 0.01). CONCLUSIONS CSF Cys-DA/DOPAC ratios are substantially increased in PD and MSA-P and are normal in PAF. Thus, in synucleinopathies an elevated CSF Cys-DA/DOPAC ratio seems to provide a specific biomarker of parkinsonism.
Collapse
|