1
|
Williams LJ, Qiu J, Tchan M, Morris J, Morales‐Briceno H, Fung VS. Seeing What Is Not There: Revisiting a Diagnostic Conundrum in the Clinic. Mov Disord Clin Pract 2023; 10:S54-S57. [PMID: 37636225 PMCID: PMC10448618 DOI: 10.1002/mdc3.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Laura J. Williams
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Jessica Qiu
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Michel Tchan
- Department of Medical GeneticsWestmead HospitalWestmeadNew South WalesAustralia
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - John Morris
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Hugo Morales‐Briceno
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Victor S.C. Fung
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Olszewska DA, Rawal S, Fearon C, Alcaide‐Leon P, Stell R, Paramanandan V, Lynch T, Jawad T, Vittal P, Barton B, Miyajima H, Kono S, Kandadai RM, Borgohain R, Lang AE. Neuroimaging Pearls from the MDS Congress Video Challenge. Part 1: Genetic Disorders. Mov Disord Clin Pract 2022; 9:297-310. [PMID: 35402643 PMCID: PMC8974871 DOI: 10.1002/mdc3.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
We selected several "imaging pearls" presented during the Movement Disorder Society (MDS) Video Challenge for this review. While the event, as implicated by its name, was video-centered, we would like to emphasize the important role of imaging in making the correct diagnosis. We divided this anthology into two parts: genetic and acquired disorders. Genetic cases described herein were organized by the inheritance pattern and the focus was put on the imaging findings and differential diagnoses. Despite the overlapping phenotypes, certain described disorders have pathognomonic MRI brain findings that would provide either the "spot" diagnosis or result in further investigations leading to the diagnosis. Despite this, the diagnosis is often challenging with a broad differential diagnosis, and hallmark findings may be present for only a limited time.
Collapse
Affiliation(s)
- Diana A. Olszewska
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Sapna Rawal
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
| | - Conor Fearon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Paula Alcaide‐Leon
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
| | - Rick Stell
- Movement Disorders Unit, Perron Institute of Neurological Translational ScienceSir Charles Gairdner HospitalPerthWestern AustraliaAustralia
| | | | - Tim Lynch
- Centre for Brain HealthDublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
- School of Medicine and Medical ScienceUniversity College DublinDublinIreland
| | - Tania Jawad
- Department of NeurologyThe Royal Free HospitalLondonUnited Kingdom
| | - Padmaja Vittal
- Northwestern Medicine Central Dupage HospitalNeurodegenerative Diseases CenterWinfieldIllinoisUSA
| | - Brandon Barton
- Rush University Medical CenterChicagoIllinoisUSA
- Parkinson's Disease Research, Education, and Clinical Care ConsortiumJesse Brown VA Medical CenterChicagoIllinoisUSA
| | - Hiroaki Miyajima
- First Department of MedicineHamamatsu University School of MedicineHamamatsuJapan
| | | | | | - Rupam Borgohain
- Department of NeurologyNizam's Institute of Medical SciencesHyderabadIndia
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Genetic and phenotypic variability in adult patients with Niemann Pick type C from Serbia: single-center experience. J Neurol 2022; 269:3167-3174. [PMID: 34993563 DOI: 10.1007/s00415-021-10918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Niemann Pick type C is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 and NPC2 genes. It is a neuro-visceral disease with a heterogeneous phenotype. Clinical features depend on the age at onset. Visceral manifestations are more prominent in the early onset (infantile) form, while neuro-psychiatric symptoms are more prominent in the late disease onset (juvenile and adult forms). METHODS A total number of 150 patients have been screened for changes in NPC1 and NPC2 gene at the Neurology Clinic, University Clinical Centre of Serbia in the period 2012-2020. Clinical data were extracted for patients with biallelic mutations. RESULTS Fifteen patients carried biallelic mutations in the NPC1. Out of eight different reported NPC1 variants, four are novel (c.1204_1205TT>GC, p.F402A; c.2486T>G, p.L829R; c.2795+5 G>C; c.3722T>A, p.L1241*). The mean age at the disease onset was 20.3 ± 11.9 years with the average diagnostic delay of 7.7 ± 4.3 years. Movement disorders and psychiatric or cognitive disturbances were the most common initial symptoms (in 33% and 28% patients, respectively). The average age at the first neurological manifestation was 21 ± 12.0 years. At the last examination, eye movement abnormalities (vertical slow saccades or vertical supranuclear gaze palsy), and ataxia were present in all patients, while dystonia was common (in 78.6% of patients). Presence of c.2861C>T, p.S954L mutation in homozygous state was associated with older age at the neurological symptom onset. CONCLUSIONS Clinical findings were in line with the expected, but the diagnostic delay was common. We hypothesize that the presence of c.2861C>T, p.S954L mutation may contribute to the phenotype attenuation.
Collapse
|
4
|
Kafantari E, Andréasson S, Säll T, Puschmann A. Do variants in IRF2BPL cause both neurological disorders and keratoconus 8? Parkinsonism Relat Disord 2020; 79:138-140. [PMID: 33069610 DOI: 10.1016/j.parkreldis.2020.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Efthymia Kafantari
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Sten Andréasson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Ophthalmology, Lund, Sweden
| | - Torbjörn Säll
- Lund University, Department of Biology, Lund, Sweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden.
| |
Collapse
|
5
|
Andelman-Gur MM, Leventer RJ, Hujirat M, Ganos C, Yosovich K, Carmi N, Lev D, Nissenkorn A, Dobyns WB, Bhatia K, Lerman-Sagie T, Blumkin L. Bilateral polymicrogyria associated with dystonia: A new neurogenetic syndrome? Am J Med Genet A 2020; 182:2207-2213. [PMID: 33001581 DOI: 10.1002/ajmg.a.61795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/15/2020] [Accepted: 06/23/2020] [Indexed: 11/07/2022]
Abstract
The clinical presentation of bilateral perisylvian polymicrogyria (PMG) is highly variable, including oromotor dysfunction, epilepsy, intellectual disability, and pyramidal signs. Extrapyramidal features are extremely rare. We present four apparently unrelated patients with a unique association of PMG with dystonia. The clinical, genetic, and radiologic features are described and possible mechanisms of dystonia are discussed. All patients were female and two were born to consanguineous families. All presented with early childhood onset dystonia. Other neurologic symptoms and signs classically seen in bilateral perisylvian PMG were observed, including oromotor dysfunction and speech abnormalities ranging from dysarthria to anarthria (4/4), pyramidal signs (3/4), hypotonia (3/4), postnatal microcephaly (1/4), and seizures (1/4). Neuroimaging showed a unique pattern of bilateral PMG with an infolded cortex originating primarily from the perisylvian region in three out of four patients. Whole exome sequencing was performed in two out of four patients and did not reveal pathogenic variants in known genes for cortical malformations or movement disorders. The dystonia seen in our patients is not described in bilateral PMG and suggests an underlying mechanism of impaired connectivity within the motor network or compromised cortical inhibition. The association of bilateral PMG with dystonia in our patients may represent a new neurogenetic disorder.
Collapse
Affiliation(s)
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | | | - Christos Ganos
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Keren Yosovich
- Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
- Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
- Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel
| | - Nirit Carmi
- Child Development Center, Maccabi Health Services, Bnei Brak, Israel
| | - Dorit Lev
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
- Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Andreea Nissenkorn
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, Washington, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Tally Lerman-Sagie
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Lubov Blumkin
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
- Pediatric Movement Disorders Service, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
6
|
Morales-Briceño H, Mohammad SS, Post B, Fois AF, Dale RC, Tchan M, Fung VSC. Clinical and neuroimaging phenotypes of genetic parkinsonism from infancy to adolescence. Brain 2019; 143:751-770. [DOI: 10.1093/brain/awz345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractGenetic early-onset parkinsonism presenting from infancy to adolescence (≤21 years old) is a clinically diverse syndrome often combined with other hyperkinetic movement disorders, neurological and imaging abnormalities. The syndrome is genetically heterogeneous, with many causative genes already known. With the increased use of next-generation sequencing in clinical practice, there have been novel and unexpected insights into phenotype-genotype correlations and the discovery of new disease-causing genes. It is now recognized that mutations in a single gene can give rise to a broad phenotypic spectrum and that, conversely different genetic disorders can manifest with a similar phenotype. Accurate phenotypic characterization remains an essential step in interpreting genetic findings in undiagnosed patients. However, in the past decade, there has been a marked expansion in knowledge about the number of both disease-causing genes and phenotypic spectrum of early-onset cases. Detailed knowledge of genetic disorders and their clinical expression is required for rational planning of genetic and molecular testing, as well as correct interpretation of next-generation sequencing results. In this review we examine the relevant literature of genetic parkinsonism with ≤21 years onset, extracting data on associated movement disorders as well as other neurological and imaging features, to delineate syndromic patterns associated with early-onset parkinsonism. Excluding PRKN (parkin) mutations, >90% of the presenting phenotypes have a complex or atypical presentation, with dystonia, abnormal cognition, pyramidal signs, neuropsychiatric disorders, abnormal imaging and abnormal eye movements being the most common features. Furthermore, several imaging features and extraneurological manifestations are relatively specific for certain disorders and are important diagnostic clues. From the currently available literature, the most commonly implicated causes of early-onset parkinsonism have been elucidated but diagnosis is still challenging in many cases. Mutations in ∼70 different genes have been associated with early-onset parkinsonism or may feature parkinsonism as part of their phenotypic spectrum. Most of the cases are caused by recessively inherited mutations, followed by dominant and X-linked mutations, and rarely by mitochondrially inherited mutations. In infantile-onset parkinsonism, the phenotype of hypokinetic-rigid syndrome is most commonly caused by disorders of monoamine synthesis. In childhood and juvenile-onset cases, common genotypes include PRKN, HTT, ATP13A2, ATP1A3, FBX07, PINK1 and PLA2G6 mutations. Moreover, Wilson’s disease and mutations in the manganese transporter are potentially treatable conditions and should always be considered in the differential diagnosis in any patient with early-onset parkinsonism.
Collapse
Affiliation(s)
- Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Shekeeb S Mohammad
- Neurology Department, Children’s Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Bart Post
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC) Nijmegen, The Netherlands
| | - Alessandro F Fois
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Russell C Dale
- Neurology Department, Children’s Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
- Department of Genetic Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
7
|
Kumar KR, Davis RL, Tchan MC, Wali GM, Mahant N, Ng K, Kotschet K, Siow SF, Gu J, Walls Z, Kang C, Wali G, Levy S, Phua CS, Yiannikas C, Darveniza P, Chang FCF, Morales-Briceño H, Rowe DB, Drew A, Gayevskiy V, Cowley MJ, Minoche AE, Tisch S, Hayes M, Kummerfeld S, Fung VSC, Sue CM. Whole genome sequencing for the genetic diagnosis of heterogenous dystonia phenotypes. Parkinsonism Relat Disord 2019; 69:111-118. [PMID: 31731261 DOI: 10.1016/j.parkreldis.2019.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Dystonia is a clinically and genetically heterogeneous disorder and a genetic cause is often difficult to elucidate. This is the first study to use whole genome sequencing (WGS) to investigate dystonia in a large sample of affected individuals. METHODS WGS was performed on 111 probands with heterogenous dystonia phenotypes. We performed analysis for coding and non-coding variants, copy number variants (CNVs), and structural variants (SVs). We assessed for an association between dystonia and 10 known dystonia risk variants. RESULTS A genetic diagnosis was obtained for 11.7% (13/111) of individuals. We found that a genetic diagnosis was more likely in those with an earlier age at onset, younger age at testing, and a combined dystonia phenotype. We identified pathogenic/likely-pathogenic variants in ADCY5 (n = 1), ATM (n = 1), GNAL (n = 2), GLB1 (n = 1), KMT2B (n = 2), PRKN (n = 2), PRRT2 (n = 1), SGCE (n = 2), and THAP1 (n = 1). CNVs were detected in 3 individuals. We found an association between the known risk variant ARSG rs11655081 and dystonia (p = 0.003). CONCLUSION A genetic diagnosis was found in 11.7% of individuals with dystonia. The diagnostic yield was higher in those with an earlier age of onset, younger age at testing, and a combined dystonia phenotype. WGS may be particularly relevant for dystonia given that it allows for the detection of CNVs, which accounted for 23% of the genetically diagnosed cases.
Collapse
Affiliation(s)
- Kishore R Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, 2065, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia; Molecular Medicine Laboratory, Concord Hospital, 2139, Australia; Department of Neurology, Concord Hospital, 2139, Australia.
| | - Ryan L Davis
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, 2065, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia.
| | - Michel C Tchan
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia; Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - G M Wali
- Neurospecialities Centre, Jawaharlal Nehru Medical College, Belgaum, India.
| | - Neil Mahant
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, 2145, Australia.
| | - Karl Ng
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia; Department of Neurology and Neurophysiology, Royal North Shore Hospital, Reserve Road, St Leonards, New South Wales, 2065, Australia.
| | - Katya Kotschet
- Florey Neuroscience Institute, University of Melbourne, Parkville, 3052, Australia; Department of Neurology, St Vincent's Hospital, Fitzroy, 3065, Australia.
| | - Sue-Faye Siow
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, 2065, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia; Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Jason Gu
- Department of Neurology, Wollongong Hospital, Wollongong, New South Wales, 2500, Australia.
| | - Zachary Walls
- Faculty of Engineering and Information Technologies, University of Sydney, Darlington, 2008, Australia.
| | - Ce Kang
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia.
| | - Gautam Wali
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, 2065, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia.
| | - Stan Levy
- Campbelltown Hospital, Campbelltown, 2560, Australia.
| | | | - Con Yiannikas
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia; Department of Neurology, Concord Hospital, 2139, Australia; Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, 2065, Australia.
| | - Paul Darveniza
- School of Medicine, University of New South Wales, Sydney, Australia; Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| | - Florence C F Chang
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, 2145, Australia.
| | - Hugo Morales-Briceño
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, 2145, Australia.
| | - Dominic B Rowe
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia.
| | - Alex Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; Children's Cancer Institute, Kensington, 2750, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, 2010, Australia.
| | - Andre E Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
| | - Stephen Tisch
- School of Medicine, University of New South Wales, Sydney, Australia; Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| | - Michael Hayes
- Department of Neurology, Concord Hospital, 2139, Australia.
| | - Sarah Kummerfeld
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, 2145, Australia.
| | - Carolyn M Sue
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, 2065, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, 2050, Australia; Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, 2065, Australia.
| |
Collapse
|
8
|
Ganos C, Zittel S, Hidding U, Funke C, Biskup S, Bhatia KP. IRF2BPL mutations cause autosomal dominant dystonia with anarthria, slow saccades and seizures. Parkinsonism Relat Disord 2019; 68:57-59. [DOI: 10.1016/j.parkreldis.2019.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 11/27/2022]
|
9
|
Darling A, Aguilera-Albesa S, Tello CA, Serrano M, Tomás M, Camino-León R, Fernández-Ramos J, Jiménez-Escrig A, Poó P, O'Callaghan M, Ortez C, Nascimento A, Fernández Mesaque RC, Madruga M, Arrabal L, Roldan S, Gómez-Martín H, Garrido C, Temudo T, Jou-Muñoz C, Muchart J, Huisman TAGM, Poretti A, Lupo V, Espinós C, Pérez-Dueñas B. PLA2G6-associated neurodegeneration: New insights into brain abnormalities and disease progression. Parkinsonism Relat Disord 2018; 61:179-186. [PMID: 30340910 DOI: 10.1016/j.parkreldis.2018.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION PLA2G6-associated neurodegeneration (PLAN) comprises a continuum of three phenotypes with overlapping clinical and radiologic features. METHODS Observational clinical study in a cohort of infantile and childhood onset PLAN patients and genetic analysis of the PLA2G6 gene. We analysed chronological evolution in terms of age at onset and disease course through a 66-item questionnaire. We performed qualitative and quantitative assessment of MRI abnormalities and searched for clinical and radiological phenotype and genotype correlations. RESULTS Sixteen PLAN patients (mean age: 10.2 years, range 3-33) were evaluated, with a median onset (years) of signs/symptoms as follows: neurological regression (1.5), oculomotor abnormalities (1.5), hypotonia (1.8), gait loss (2.2), pyramidal signs (3.0), axonal neuropathy (3.0), dysphagia (4.0), optic atrophy (4.0), psychiatric symptoms (4.0), seizures (5.9), joint contractures (6.0), dystonia (8.0), bladder dysfunction (13.0) and parkinsonism (15.0). MRI assessment identified cerebellar atrophy (19/19), brain iron deposition (10/19), clava hypertrophy (8/19) and T2/FLAIR hyperintensity of the cerebellar cortex (6/19). The mid-sagittal vermis relative diameter (MVRD) correlated with age at onset of clinical variants, meaning that the earlier the onset, the more severe the cerebellar atrophy. All patients harboured missense, nonsense and frameshift mutations in PLA2G6, including four novel variants. CONCLUSIONS Cerebellar atrophy was a universal radiological sign in infantile and childhood onset PLAN, and correlated with the severity of the phenotype. Iron accumulation within the globus pallidum and substantia nigra was also a common and strikingly uniform feature regardless of the phenotype.
Collapse
Affiliation(s)
- Alejandra Darling
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, Pamplona, Spain
| | - Cristina Aisha Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, CIBERER, Instituto de Salud Carlos III, Spain
| | - Miguel Tomás
- Pediatric Neurology Department, Hospital Universitario Politécnico La Fe, Valencia, Spain
| | - Rafael Camino-León
- Pediatric Neurology Department, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | | | - Pilar Poó
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Mar O'Callaghan
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Carlos Ortez
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Andrés Nascimento
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Marcos Madruga
- Pediatric Neurology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Luisa Arrabal
- Pediatric Neurology Department, Hospital Virgen de las Nieves, Granada, Spain
| | - Susana Roldan
- Pediatric Neurology Department, Hospital Virgen de las Nieves, Granada, Spain
| | - Hilario Gómez-Martín
- Pediatric Neurology Department, Hospital San Pedro de Alcántara, Complejo Hospitalario Universitario de Cáceres, Spain
| | - Cristina Garrido
- Pediatric Neurology Department, Centro Materno-Infantil, Centro Hospitalario do Porto, Porto, Portugal
| | - Teresa Temudo
- Pediatric Neurology Department, Centro Materno-Infantil, Centro Hospitalario do Porto, Porto, Portugal
| | - Cristina Jou-Muñoz
- Pathology Department, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, CIBERER, Instituto de Salud Carlos III, Spain
| | - Jordi Muchart
- Neuroradiology Department, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
| | - Thierry A G M Huisman
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Poretti
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Belén Pérez-Dueñas
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|