1
|
Ng PR, Bush A, Vissani M, McIntyre CC, Richardson RM. Biophysical Principles and Computational Modeling of Deep Brain Stimulation. Neuromodulation 2024; 27:422-439. [PMID: 37204360 DOI: 10.1016/j.neurom.2023.04.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) has revolutionized the treatment of neurological disorders, yet the mechanisms of DBS are still under investigation. Computational models are important in silico tools for elucidating these underlying principles and potentially for personalizing DBS therapy to individual patients. The basic principles underlying neurostimulation computational models, however, are not well known in the clinical neuromodulation community. OBJECTIVE In this study, we present a tutorial on the derivation of computational models of DBS and outline the biophysical contributions of electrodes, stimulation parameters, and tissue substrates to the effects of DBS. RESULTS Given that many aspects of DBS are difficult to characterize experimentally, computational models have played an important role in understanding how material, size, shape, and contact segmentation influence device biocompatibility, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Neural activation is dictated by stimulation parameters including frequency, current vs voltage control, amplitude, pulse width, polarity configurations, and waveform. These parameters also affect the potential for tissue damage, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Activation of the neural substrate also is influenced by the encapsulation layer surrounding the electrode, the conductivity of the surrounding tissue, and the size and orientation of white matter fibers. These properties modulate the effects of the electric field and determine the ultimate therapeutic response. CONCLUSION This article describes biophysical principles that are useful for understanding the mechanisms of neurostimulation.
Collapse
Affiliation(s)
| | - Alan Bush
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Matteo Vissani
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Robert Mark Richardson
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Boogers A, Peeters J, Van Bogaert T, Rusz J, Bogaert-Miclaus C, Loret G, De Vloo P, Vandenberghe W, Nuttin B, Mc Laughlin M. Acute stimulation with symmetric biphasic pulses induces less ataxia compared to cathodic pulses in DBS for essential tremor. Parkinsonism Relat Disord 2023; 111:105435. [PMID: 37187082 DOI: 10.1016/j.parkreldis.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Symmetric biphasic pulses have been shown to acutely increase the therapeutic window of ventralis intermedius deep brain stimulation (Vim-DBS) for essential tremor (ET) compared to cathodic pulses. Acute supratherapeutic stimulation can induce ataxic side effects in Vim-DBS. OBJECTIVE To investigate the effect on tremor, ataxia and dysarthria of 3 h of biphasic stimulation in patients with DBS for ET. METHODS A randomized, doubled-blind, cross-over design was used to compare standard cathodic pulses with symmetric biphasic pulses (anode-first) during a 3-h period per pulse shape. During each 3-h period, all stimulation parameters were identical, except for the pulse shape. Tremor (Fahn-Tolosa-Marin Tremor Rating Scale), ataxia (International Cooperative Ataxia Rating Scale) and speech (acoustic and perceptual measures) were assessed hourly during the 3-h periods. RESULTS Twelve ET patients were included. During the 3-h stimulation period, tremor control was equivalent between the two pulse shapes. Biphasic pulses elicited significantly less ataxia than cathodic pulses (p = 0.006). Diadochokinesis rate of speech was better for the biphasic pulse (p = 0.048), but other measures for dysarthria were not significantly different between the pulses. CONCLUSION Symmetric biphasic pulses induce less ataxia than conventional pulses after 3 h of stimulation DBS in ET patients.
Collapse
Affiliation(s)
- Alexandra Boogers
- Exp ORL, Department of Neurosciences, The Leuven Brain Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Neurology, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jana Peeters
- Exp ORL, Department of Neurosciences, The Leuven Brain Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Tine Van Bogaert
- Exp ORL, Department of Neurosciences, The Leuven Brain Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 160 00, Prague 6, Czech Republic
| | | | - Griet Loret
- Department of Neurology, AZ Sint-Lucas, Groenebriel 1, 9000, Gent, Belgium
| | - Philippe De Vloo
- Department of Neurosurgery, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium; Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium; Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bart Nuttin
- Department of Neurosurgery, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium; Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neurosciences, The Leuven Brain Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Wong JK, Lopes JMLJ, Hu W, Wang A, Au KLK, Stiep T, Frey J, Toledo JB, Raike RS, Okun MS, Almeida L. Double blind, nonrandomized crossover study of active recharge biphasic deep brain stimulation for primary dystonia. Parkinsonism Relat Disord 2023; 109:105328. [PMID: 36827951 DOI: 10.1016/j.parkreldis.2023.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is an effective therapy for select patients with primary dystonia. DBS programming for dystonia is often challenging due to variable time to symptomatic improvement or stimulation induced side effects (SISE) such as capsular or optic tract activation which can prolong device optimization. OBJECTIVE To characterize the safety and tolerability of active recharge biphasic DBS (bDBS) in primary dystonia and to compare it to conventional clinical DBS (clinDBS). METHODS Ten subjects with primary dystonia and GPi DBS underwent a single center, double blind, nonrandomized crossover study comparing clinDBS versus bDBS. The testing occurred over two-days. bDBS and clinDBS were administered on separate days and each was activated for 6 h. Rating scales were collected by video recording and scored by four blinded movement disorders trained neurologists. RESULTS The bDBS paradigm was safe and well-tolerated in all ten subjects. There were no persistent SISE reported. The mean change in the Unified Dystonia Rating Scale after 4 h of stimulation was greater in bDBS when compared to clinDBS (-6.5 vs 0.3, p < 0.04). CONCLUSION In this pilot study, we demonstrated that biphasic DBS is a novel stimulation paradigm which can be administered safely. The biphasic waveform revealed a greater immediate improvement. Further studies are needed to determine whether this immediate improvement persists with chronic stimulation or if clinDBS will eventually achieve similar levels of improvement to bDBS over time.
Collapse
Affiliation(s)
- Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| | - Janine Melo Lobo Jofili Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Anson Wang
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Ka Loong Kelvin Au
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Tamara Stiep
- Department of Neurology, UCSF Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California San Francisco, CA, United States
| | - Jessica Frey
- Department of Neurology, Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States
| | - Jon B Toledo
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| | - Robert S Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Zheng L, Feng Z, Xu Y, Yuan Y, Hu Y. An Anodic Phase Can Facilitate Rather Than Weaken a Cathodic Phase to Activate Neurons in Biphasic-Pulse Axonal Stimulations. Front Neurosci 2022; 16:823423. [PMID: 35368280 PMCID: PMC8968170 DOI: 10.3389/fnins.2022.823423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical pulses have been promisingly utilized in neural stimulations to treat various diseases. Usually, charge-balanced biphasic pulses are applied in the clinic to eliminate the possible side effects caused by charge accumulations. Because of its reversal action to the preceding cathodic phase, the subsequent anodic phase has been commonly considered to lower the activation efficiency of biphasic pulses. However, an anodic pulse itself can also activate axons with its “virtual cathode” effect. Therefore, we hypothesized that the anodic phase of a biphasic pulse could facilitate neuronal activation in some circumstances. To verify the hypothesis, we compared the activation efficiencies of cathodic pulse, biphasic pulse, and anodic pulse applied in both monopolar and bipolar modes in the axonal stimulation of alveus in rat hippocampal CA1 region in vivo. The antidromically evoked population spikes (APS) were recorded and used to evaluate the amount of integrated firing of pyramidal neurons induced by pulse stimulations. We also used a computational model to investigate the pulse effects on axons at various distances from the stimulation electrode. The experimental results showed that, with a small pulse intensity, a cathodic pulse recruited more neurons to fire than a biphasic pulse. However, the situation was reversed with an increased pulse intensity. In addition, setting an inter-phase gap of 100 μs was able to increase the activation efficiency of a biphasic pulse to exceed a cathodic pulse even with a relatively small pulse intensity. Furthermore, the latency of APS evoked by a cathodic pulse was always longer than that of APS evoked by a biphasic pulse, indicating different initial sites of the neuronal firing evoked by the different types of pulses. The computational results of axon modeling showed that the subsequent anodic phase was able to relieve the hyperpolarization block in the flanking regions generated by the preceding cathodic phase, thereby increasing rather than decreasing the activation efficiency of a biphasic pulse with a relatively great intensity. These results of both rat experiments and computational modeling firstly reveal a facilitation rather than an attenuation effect of the anodic phase on biphasic-pulse stimulations, which provides important information for designing electrical stimulations for neural therapies.
Collapse
|
5
|
Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 2022; 13:825178. [PMID: 35356461 PMCID: PMC8959612 DOI: 10.3389/fneur.2022.825178] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kara A. Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Justin D. Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher R. Butson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Marceglia S, Guidetti M, Harmsen IE, Loh A, Meoni S, Foffani G, Lozano AM, Volkmann J, Moro E, Priori A. Deep brain stimulation: is it time to change gears by closing the loop? J Neural Eng 2021; 18. [PMID: 34678794 DOI: 10.1088/1741-2552/ac3267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) is a form of invasive stimulation that was conceived to overcome the technical limitations of traditional DBS, which delivers continuous stimulation of the target structure without considering patients' symptoms or status in real-time. Instead, aDBS delivers on-demand, contingency-based stimulation. So far, aDBS has been tested in several neurological conditions, and will be soon extensively studied to translate it into clinical practice. However, an exhaustive description of technical aspects is still missing.Approach.in this topical review, we summarize the knowledge about the current (and future) aDBS approach and control algorithms to deliver the stimulation, as reference for a deeper undestending of aDBS model.Main results.We discuss the conceptual and functional model of aDBS, which is based on the sensing module (that assesses the feedback variable), the control module (which interpretes the variable and elaborates the new stimulation parameters), and the stimulation module (that controls the delivery of stimulation), considering both the historical perspective and the state-of-the-art of available biomarkers.Significance.aDBS modulates neuronal circuits based on clinically relevant biofeedback signals in real-time. First developed in the mid-2000s, many groups have worked on improving closed-loop DBS technology. The field is now at a point in conducting large-scale randomized clinical trials to translate aDBS into clinical practice. As we move towards implanting brain-computer interfaces in patients, it will be important to understand the technical aspects of aDBS.
Collapse
Affiliation(s)
- Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sara Meoni
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jens Volkmann
- Department of Neurology, University of Wurzburg, Wurzburg, Germany
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,ASST Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
7
|
Wearable sensor-driven responsive deep brain stimulation for essential tremor. Brain Stimul 2021; 14:1434-1443. [PMID: 34547503 DOI: 10.1016/j.brs.2021.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective surgical therapy for individuals with essential tremor (ET). However, DBS operates continuously, resulting in adverse effects such as postural instability or dysarthria. Continuous DBS (cDBS) also presents important practical issues including limited battery life of the implantable neurostimulator (INS). Collectively, these shortcomings impact optimal therapeutic benefit in ET. OBJECTIVE The goal of the study was to establish a physiology-driven responsive DBS (rDBS) system to provide targeted and personalized therapy based on electromyography (EMG) signals. METHODS Ten participants with ET underwent rDBS using Nexus-D, a Medtronic telemetry wand that acts as a direct conduit to the INS by modulating stimulation voltage. Two different rDBS paradigms were tested: one driven by one EMG (single-sensor) and another driven by two or more EMGs (multi-sensor). The feature(s) used in the rDBS algorithms was the pow2er in the participant's tremor frequency band derived from the sensors controlling stimulation. Both algorithms were trained on kinetic and postural data collected during DBS off and cDBS states. RESULTS Using established clinical scales and objective measurements of tremor severity, we confirm that both rDBS paradigms deliver equivalent clinical benefit as cDBS. Moreover, both EMG-driven rDBS paradigms delivered less total electrical energy translating to an increase in the battery life of the INS. CONCLUSIONS The results of this study verify that EMG-driven rDBS provides clinically equivalent tremor suppression compared to cDBS, while delivering less total electrical energy. Controlling stimulation using a dynamic rDBS paradigm can mitigate limitations of traditional cDBS systems.
Collapse
|
8
|
Guidetti M, Marceglia S, Loh A, Harmsen IE, Meoni S, Foffani G, Lozano AM, Moro E, Volkmann J, Priori A. Clinical perspectives of adaptive deep brain stimulation. Brain Stimul 2021; 14:1238-1247. [PMID: 34371211 DOI: 10.1016/j.brs.2021.07.063] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The application of stimulators implanted directly over deep brain structures (i.e., deep brain stimulation, DBS) was developed in the late 1980s and has since become a mainstream option to treat several neurological conditions. Conventional DBS involves the continuous stimulation of the target structure, which is an approach that cannot adapt to patients' changing symptoms or functional status in real-time. At the beginning of 2000, a more sophisticated form of stimulation was conceived to overcome these limitations. Adaptive deep brain stimulation (aDBS) employs on-demand, contingency-based stimulation to stimulate only when needed. So far, aDBS has been tested in several pathological conditions in animal and human models. OBJECTIVE To review the current findings obtained from application of aDBS to animal and human models that highlights effects on motor, cognitive and psychiatric behaviors. FINDINGS while aDBS has shown promising results in the treatment of Parkinson's disease and essential tremor, the possibility of its use in less common DBS indications, such as cognitive and psychiatric disorders (Alzheimer's disease, obsessive-compulsive disorder, post-traumatic stress disorder) is still challenging. CONCLUSIONS While aDBS seems to be effective to treat movement disorders (Parkinson's disease and essential tremor), its role in cognitive and psychiatric disorders is to be determined, although neurophysiological assumptions are promising.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy.
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy.
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Sara Meoni
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France; Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France.
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France; Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France.
| | - Jens Volkmann
- Department of Neurology, University of Wurzburg, Germany.
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; ASST Santi Paolo e Carlo, Milan, Italy.
| |
Collapse
|
9
|
Wong JK, Hu W, Barmore R, Lopes J, Moore K, Legacy J, Tahafchi P, Jackson Z, Judy JW, Raike RS, Wang A, Tsuboi T, Okun MS, Almeida L. Safety and Tolerability of Burst-Cycling Deep Brain Stimulation for Freezing of Gait in Parkinson's Disease. Front Hum Neurosci 2021; 15:651168. [PMID: 33981207 PMCID: PMC8109241 DOI: 10.3389/fnhum.2021.651168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Freezing of gait (FOG) is a common symptom in Parkinson’s disease (PD) and can be difficult to treat with dopaminergic medications or with deep brain stimulation (DBS). Novel stimulation paradigms have been proposed to address suboptimal responses to conventional DBS programming methods. Burst-cycling deep brain stimulation (BCDBS) delivers current in various frequencies of bursts (e.g., 4, 10, or 15 Hz), while maintaining an intra-burst frequency identical to conventional DBS. Objective: To evaluate the safety and tolerability of BCDBS in PD patients with FOG. Methods: Ten PD subjects with STN or GPi DBS and complaints of FOG were recruited for this single center, single blinded within-subject crossover study. For each subject, we compared 4, 10, and 15 Hz BCDBS to conventional DBS during the PD medication-OFF state. Results: There were no serious adverse events with BCDBS. It was feasible and straightforward to program BCDBS in the clinic setting. The benefit was comparable to conventional DBS in measures of FOG, functional mobility and in PD motor symptoms. BCDBS had lower battery consumption when compared to conventional DBS. Conclusions: BCDBS was feasible, safe and well tolerated and it has potential to be a viable future DBS programming strategy.
Collapse
Affiliation(s)
- Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Ryan Barmore
- Banner Health Physicians Colorado, Loveland, CO, United States
| | - Janine Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kathryn Moore
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joseph Legacy
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Parisa Tahafchi
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL, United States
| | - Zachary Jackson
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Jack W Judy
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL, United States
| | - Robert S Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Anson Wang
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 2020; 17:75-87. [PMID: 33244188 DOI: 10.1038/s41582-020-00426-z] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 01/20/2023]
Abstract
Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation. DBS is a standard of care in Parkinson disease, essential tremor and dystonia, and is also under active investigation for other conditions linked to pathological circuitry, including major depressive disorder and Alzheimer disease. Modern DBS systems, borrowed from the cardiac field, consist of an intracranial electrode, an extension wire and a pulse generator, and have evolved slowly over the past two decades. Advances in engineering and imaging along with an improved understanding of brain disorders are poised to reshape how DBS is viewed and delivered to patients. Breakthroughs in electrode and battery designs, stimulation paradigms, closed-loop and on-demand stimulation, and sensing technologies are expected to enhance the efficacy and tolerability of DBS. In this Review, we provide a comprehensive overview of the technical development of DBS, from its origins to its future. Understanding the evolution of DBS technology helps put the currently available systems in perspective and allows us to predict the next major technological advances and hurdles in the field.
Collapse
Affiliation(s)
- Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Nir Lipsman
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Benjamin Davidson
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Marwan I Hariz
- Department of Clinical Neuroscience, University of Umea, Umea, Sweden
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Michael Schulder
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Antonios Mammis
- Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jens Volkmann
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.,Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Burns MR, Chiu SY, Patel B, Mitropanopoulos SG, Wong JK, Ramirez-Zamora A. Advances and Future Directions of Neuromodulation in Neurologic Disorders. Neurol Clin 2020; 39:71-85. [PMID: 33223090 DOI: 10.1016/j.ncl.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
"Deep brain stimulation is a safe and effective therapy for the management of a variety of neurologic conditions with Food and Drug Administration or humanitarian exception approval for Parkinson disease, dystonia, tremor, and obsessive-compulsive disorder. Advances in neurophysiology, neuroimaging, and technology have driven increasing interest in the potential benefits of neurostimulation in other neuropsychiatric conditions including dementia, depression, pain, Tourette syndrome, and epilepsy, among others. New anatomic or combined targets are being investigated in these conditions to improve symptoms refractory to medications or standard stimulation."
Collapse
Affiliation(s)
- Matthew R Burns
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Shannon Y Chiu
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Bhavana Patel
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Sotiris G Mitropanopoulos
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Joshua K Wong
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Adolfo Ramirez-Zamora
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA.
| |
Collapse
|
12
|
Zhu GY, Zhang RL, Chen YC, Liu YY, Liu DF, Wang SY, Jiang Y, Zhang JG. Characteristics of globus pallidus internus local field potentials in generalized dystonia patients with TWNK mutation. Clin Neurophysiol 2020; 131:1453-1461. [PMID: 32387964 DOI: 10.1016/j.clinph.2020.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/11/2019] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We focused on a rare gene mutation causing dystonia in two siblings who received globus pallidus internus deep brain stimulation (GPi-DBS). The aim was to characterize the relationship between neuronal activity patterns and clinical syndromes. METHODS Whole exome sequencing was applied to identify the TWNK (previous symbol C10orf2) mutation; Two siblings with TWNK mutation presented as generalized dystonia with rigidity and bradykinesia; four other sporadic generalized dystonia patients underwent GPi-DBS and local field potentials (LFPs) were recorded. Oscillatory activities were illustrated with power spectra and temporal dynamics measured by the Lempel-Ziv complexity (LZC). RESULTS Normalized power spectra of GPi LFPs differed between patients with TWNK mutation and dystonia over the low beta bands. Patients with TWNK mutation had higher low beta power (15-27 Hz, unpaired t-test, corrected P < 0.0022) and lower LZC (15-27 Hz, unpaired t-test, P < 0.01) than other patients with generalized dystonia. On the other hand, the TWNK mutation patients showed decreased low frequency and beta oscillation in the GPi after DBS, as well as improved movement performance. CONCLUSION The LFPs were different in TWNK mutation dystonia siblings than other patients with generalized dystonia, which indicate the abnormal LFPs were related to symptoms rather than specific disease. In addition, the inhibited effect on oscillations also provided a potential evidence for DBS treatment on rare movement disorders. SIGNIFICANCE This study could potentially aid in the future development of adaptive DBS via rare disease LFPs comparison.
Collapse
Affiliation(s)
- Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Li Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Wong JK, Hess CW, Almeida L, Middlebrooks EH, Christou EA, Patrick EE, Shukla AW, Foote KD, Okun MS. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert Rev Neurother 2020; 20:319-331. [PMID: 32116065 DOI: 10.1080/14737175.2020.1737017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Essential tremor (ET) is a common movement disorder with an estimated prevalence of 0.9% worldwide. Deep brain stimulation (DBS) is an established therapy for medication refractory and debilitating tremor. With the arrival of next generation technology, the implementation and delivery of DBS has been rapidly evolving. This review will highlight the current applications and constraints for DBS in ET.Areas covered: The mechanism of action, targets for neuromodulation, next generation guidance techniques, symptom-specific applications, and long-term efficacy will be reviewed.Expert opinion: The posterior subthalamic area and zona incerta are alternative targets to thalamic DBS in ET. However, they may be associated with additional stimulation-induced side effects. Novel stimulation paradigms and segmented electrodes provide innovative approaches to DBS programming and stimulation-induced side effects.
Collapse
Affiliation(s)
- Joshua K Wong
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Christopher W Hess
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Erin E Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Wu A, Halpern C. Essential Tremor: Deep Brain Stimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Essential tremor: New advances. Clin Park Relat Disord 2019; 3:100031. [PMID: 34316617 PMCID: PMC8298793 DOI: 10.1016/j.prdoa.2019.100031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023] Open
Abstract
Background Essential Tremor (ET) is one of the most common movement disorders but many controversies still exist in regards to its definition and pathophysiology. In view of the recent published criteria by the Tremor Task Force of the International Parkinson's and Movement Disorders Society (IPMDS), we intended to analyze if this has changed our view of ET and if new developments have arisen since. Methods A Medline search for English-written articles was done on June 15, 2019 using the keyword "Essential Tremor". Publications from November 2017 (publication date of the new tremor classification) were taken into account. Reviews, letters and original studies relevant to the subject were selected and reviewed according to the following themes: clinical characteristics, epidemiology, genetics, pathology, biomarkers and treatment. Results Out of 132 publications the most relevant articles were selected and reviewed (total of 65 articles). The great majority of these studies focused on surgical treatments (new targets, new technologies) while relatively few articles addressed epidemiology, pathology and pathophysiology. Conclusions The use of the new classification is not commonly used still, excepting more recent studies on therapeutics. This is in keeping with diverse opinions and criticisms reported by the IPMDS task force members themselves. One important change has been validating ET as a heterogeneous condition and defining the ET-plus category. We propose a further sub-group classification derived from the new definition of ET-plus.
Collapse
|
16
|
Wilkes BJ, Wagle Shukla A, Casamento-Moran A, Hess CW, Christou EA, Okun MS, Vaillancourt DE. Effects of ventral intermediate nucleus deep brain stimulation across multiple effectors in essential tremor. Clin Neurophysiol 2019; 131:167-176. [PMID: 31794958 DOI: 10.1016/j.clinph.2019.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Essential tremor (ET) prominently affects the upper-limbs during voluntary movements, but can also affect the lower-limbs, head, and chin. Although deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) of thalamus improves both clinical ratings and quantitative measures of tremor, no study has quantified effects of DBS on tremor across multiple body parts. Our objective was to quantify therapeutic effects of DBS across multiple body parts in ET. METHODS We performed quantitative assessment of tremor in ET patients who had DBS for at least one year. We assessed tremor on and off VIM-stimulation using triaxial accelerometers on the upper-limbs, lower-limbs, head and chin during seated and standing tasks. RESULTS VIM-DBS significantly reduced tremor, but there was no statistical difference in degree of tremor reduction across the measured effectors. Compared to healthy controls, ET patients treated with DBS showed significantly greater tremor power (4-8 Hz) across all effectors during seated and standing tasks. CONCLUSIONS VIM-DBS reduced tremor in ET patients. There was no significant difference in the degree of tremor reduction across the measured effectors. SIGNIFICANCE This study provides new quantitative evidence that VIM-DBS is effective at reducing tremor across multiple parts of the body.
Collapse
Affiliation(s)
- B J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - A Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, Movement Disorders and Neurorestoration Program, University of Florida, Gainesville, FL, USA
| | - A Casamento-Moran
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C W Hess
- Department of Neurology, Fixel Institute for Neurological Diseases, Movement Disorders and Neurorestoration Program, University of Florida, Gainesville, FL, USA
| | - E A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - M S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, Movement Disorders and Neurorestoration Program, University of Florida, Gainesville, FL, USA
| | - D E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Institute for Neurological Diseases, Movement Disorders and Neurorestoration Program, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Parkinsonism Relat Disord 2019; 59:9-20. [PMID: 30658883 DOI: 10.1016/j.parkreldis.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease. METHODS We will focus on deep brain stimulation (DBS) - the most common form of basal ganglia neuromodulation - however, similar principles can apply to other neuromodulation modalities. We start with a brief review of DBS for Parkinson's disease, essential tremor, dystonia, and Tourette syndrome. We then review hallmark studies on basal ganglia circuits and electrophysiology resulting from decades of experience in neuromodulation. The organization and content of this paper follow Dr. Okun's Lecture from the 2018 Parkinsonism and Related Disorders World Congress. RESULTS Information gained from neuromodulation has led to an expansion of the basal ganglia rate model, an enhanced understanding of nuclei dynamics, an emerging focus on pathological oscillations, a revision of the tripartite division of the basal ganglia, and a redirected focus toward individualized symptom-specific stimulation. Though there have been many limitations of the basal ganglia "box model," the construct provided the necessary foundation to advance the field. We now understand that information in the basal ganglia is encoded through complex neural responses that can be reliably measured and used to infer disease states for clinical translation. CONCLUSIONS Our deepened understanding of basal ganglia physiology will drive new neuromodulation strategies such as adaptive DBS or cell-specific neuromodulation through the use of optogenetics.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stephanie Cernera
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Aryn Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Zhu G, Geng X, Tan Z, Chen Y, Zhang R, Wang X, Aziz T, Wang S, Zhang J. Characteristics of Globus Pallidus Internus Local Field Potentials in Hyperkinetic Disease. Front Neurol 2018; 9:934. [PMID: 30455666 PMCID: PMC6230660 DOI: 10.3389/fneur.2018.00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/15/2018] [Indexed: 01/26/2023] Open
Abstract
Background: Dystonia and Huntington's disease (HD) are both hyperkinetic movement disorders but exhibit distinct clinical characteristics. Aberrant output from the globus pallidus internus (GPi) is involved in the pathophysiology of both HD and dystonia, and deep brain stimulation (DBS) of the GPi shows good clinical efficacy in both disorders. The electrode externalized period provides an opportunity to record local field potentials (LFPs) from the GPi to examine if activity patterns differ between hyperkinetic disorders and are associated with specific clinical characteristics. Methods: LFPs were recorded from 7 chorea-dominant HD and nine cervical dystonia patients. Differences in oscillatory activities were compared by power spectrum and Lempel-Ziv complexity (LZC). The discrepancy band power ratio was used to control for the influence of absolute power differences between groups. We further identified discrepant frequency bands and frequency band ratios for each subject and examined the correlations with clinical scores. Results: Dystonia patients exhibited greater low frequency power (6–14 Hz) while HD patients demonstrated greater high-beta and low-gamma power (26–43 Hz) (p < 0.0298, corrected). United Huntington Disease Rating Scale chorea sub-score was positively correlated with 26–43 Hz frequency band power and negatively correlated with the 6–14 Hz/26–43 Hz band power ratio. Conclusion: Dystonia and HD are characterized by distinct oscillatory activity patterns, which may relate to distinct clinical characteristics. Specifically, chorea may be related to elevated high-beta and low-gamma band power, while dystonia may be related to elevated low frequency band power. These LFPs may be useful biomarkers for adaptive DBS to treat hyperkinetic diseases.
Collapse
Affiliation(s)
- Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zheng Tan
- Department of Psychology, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tipu Aziz
- Medical Sciences Division, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Anderson DN, Duffley G, Vorwerk J, Dorval AD, Butson CR. Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J Neural Eng 2018; 16:016026. [PMID: 30275348 DOI: 10.1088/1741-2552/aae590] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE During deep brain stimulation (DBS), it is well understood that extracellular cathodic stimulation can cause activation of passing axons. Activation can be predicted from the second derivative of the electric potential along an axon, which depends on axonal orientation with respect to the stimulation source. We hypothesize that fiber orientation influences activation thresholds and that fiber orientations can be selectively targeted with DBS waveforms. APPROACH We used bioelectric field and multicompartment NEURON models to explore preferential activation based on fiber orientation during monopolar or bipolar stimulation. Preferential fiber orientation was extracted from the principal eigenvectors and eigenvalues of the Hessian matrix of the electric potential. We tested cathodic, anodic, and charge-balanced pulses to target neurons based on fiber orientation in general and clinical scenarios. MAIN RESULTS Axons passing the DBS lead have positive second derivatives around a cathode, whereas orthogonal axons have positive second derivatives around an anode, as indicated by the Hessian. Multicompartment NEURON models confirm that passing fibers are activated by cathodic stimulation, and orthogonal fibers are activated by anodic stimulation. Additionally, orthogonal axons have lower thresholds compared to passing axons. In a clinical scenario, fiber pathways associated with therapeutic benefit can be targeted with anodic stimulation at 50% lower stimulation amplitudes. SIGNIFICANCE Fiber orientations can be selectively targeted with simple changes to the stimulus waveform. Anodic stimulation preferentially activates orthogonal fibers, approaching or leaving the electrode, at lower thresholds for similar therapeutic benefit in DBS with decreased power consumption.
Collapse
Affiliation(s)
- Daria Nesterovich Anderson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America. Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States of America
| | | | | | | | | |
Collapse
|