1
|
Wu Z, Song Y, Wang Y, Zhou H, Chen L, Zhan Y, Li T, Xie G, Wu H. Biological role of mitochondrial TLR4-mediated NF-κB signaling pathway in central nervous system injury. Cell Biochem Funct 2024; 42:e4056. [PMID: 38812104 DOI: 10.1002/cbf.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Previous studies suggested that central nervous system injury is often accompanied by the activation of Toll-like receptor 4/NF-κB pathway, which leads to the upregulation of proapoptotic gene expression, causes mitochondrial oxidative stress, and further aggravates the inflammatory response to induce cell apoptosis. Subsequent studies have shown that NF-κB and IκBα can directly act on mitochondria. Therefore, elucidation of the specific mechanisms of NF-κB and IκBα in mitochondria may help to discover new therapeutic targets for central nervous system injury. Recent studies have suggested that NF-κB (especially RelA) in mitochondria can inhibit mitochondrial respiration or DNA expression, leading to mitochondrial dysfunction. IκBα silencing will cause reactive oxygen species storm and initiate the mitochondrial apoptosis pathway. Other research results suggest that RelA can regulate mitochondrial respiration and energy metabolism balance by interacting with p53 and STAT3, thus initiating the mitochondrial protection mechanism. IκBα can also inhibit apoptosis in mitochondria by interacting with VDAC1 and other molecules. Regulating the biological role of NF-κB signaling pathway in mitochondria by targeting key proteins such as p53, STAT3, and VDAC1 may help maintain the balance of mitochondrial respiration and energy metabolism, thereby protecting nerve cells and reducing inflammatory storms and death caused by ischemia and hypoxia.
Collapse
Affiliation(s)
- Zhuochao Wu
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Ying Wang
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hua Zhou
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lingling Chen
- Department of Ultrasonic, Cixi Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Yunyun Zhan
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Li
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
El Atiallah I, Ponterio G, Meringolo M, Martella G, Sciamanna G, Tassone A, Montanari M, Mancini M, Castagno AN, Yu-Taeger L, Nguyen HHP, Bonsi P, Pisani A. Loss-of-function of GNAL dystonia gene impairs striatal dopamine receptors-mediated adenylyl cyclase/ cyclic AMP signaling pathway. Neurobiol Dis 2024; 191:106403. [PMID: 38182074 DOI: 10.1016/j.nbd.2024.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gβ5 and β-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio N Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy
| | - Libo Yu-Taeger
- Department of Human Genetics, Ruhr University Bochum, Germany
| | | | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy.
| |
Collapse
|
3
|
Bovenzi R, Conti M, Degoli GR, Cerroni R, Simonetta C, Liguori C, Salimei C, Pisani A, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Shaping the course of early-onset Parkinson's disease: insights from a longitudinal cohort. Neurol Sci 2023; 44:3151-3159. [PMID: 37140831 PMCID: PMC10415517 DOI: 10.1007/s10072-023-06826-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Early -onset Parkinson's disease (EOPD) labels those cases with onset earlier than fifty. Although peculiarities emerged either in clinical or pathological features, EOPD is managed alike typical, late-onset PD. A customized approach would be, instead, better appropriate. Accordingly, a deeper characterization of the clinical course, with an estimation of the disease progression rate, the therapy flow, and the main motor and non-motor complications occurrence, is needed. METHODS A longitudinal cohort of 193 EOPD patients (selected on a single-centre population of 2000 PD cases) was retrospectively analysed, providing descriptive statics on a series of clinical parameters (genetics, phenotype, comorbidities, therapies, motor and non-motor complications, marital and gender issues) and modelling the trajectories from diagnosis to 10 years later of both Hoehn and Yahr (H&Y) stage and levodopa equivalent daily dose (LEDD). RESULTS EOPD had a prevalence of 9.7%, including few monogenic cases. It mostly appeared as a motor syndrome, with asymmetric, rigid-akinetic presentation. H&Y linearly progressed with an increment of 0.92 points/10 years; LEDD flow had a non-linear trend, increasing of 526.90 mg/day in 0-5 years, and 166.83 mg/day in 5-10 years. Motor fluctuations started 6.5 ± 3.2 years from onset, affecting up to 80% of the cohort. Neuropsychiatric troubles interested the 50%, sexual complaints the 12%. Gender-specific motor disturbances emerged. CONCLUSION We shaped EOPD course, modelling a "brain-first" PD subtype, slowly progressive, with non-linear dopaminergic requirement. Major burden mostly resulted from motor fluctuations, neuropsychiatric complications, sexual and marital complaints, with a considerable gender-effect.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Matteo Conti
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Giulia Rebecca Degoli
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Rocco Cerroni
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Claudio Liguori
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Chiara Salimei
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Mariangela Pierantozzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, European Centre for Brain Research, Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy.
| |
Collapse
|
4
|
Zhang L, Zhuang C, Wang Y, Wang H, Cui G, Guo J. Clinical Observation of Macular Superficial Capillary Plexus and Ganglion Cell Complex in Patients with Parkinson's Disease. Ophthalmic Res 2023; 66:1181-1190. [PMID: 37562366 PMCID: PMC10614441 DOI: 10.1159/000533158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/04/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION We investigated macular superficial capillary plexus (SCP) density and the thicknesses of the ganglion cell complex (GCC) in patients with Parkinson's disease (PD) and correlated them. We also observed the correlations between SCP density and clinical parameters of PD patients. The retina might be a novel biomarker of PD and will be useful in the future for the early diagnosis of PD and detecting disease progression. METHODS Seventy-four participants (38 patients with PD and 36 healthy controls) were recruited at the Affiliated Hospital of Xuzhou Medical University between January 2022 and June 2022 in this study. The macular SCP densities was measured by optical coherence tomography angiography (OCTA), and the GCC thickness was measured by optical coherence tomography (OCT). The parameters were compared between PD patients and healthy controls. The correlation between SCP and clinical parameters was tested. RESULTS Compared with the control group, PD patients showed reduced SCP densities in all areas of the macular region (parafovea-temporal: t = 3.053, p = 0.003; parafovea-superior: t = 3.680, p = 0.001; parafovea-nasal: t = 4.643, p < 0.001; parafovea-inferior: t = 2.254, p = 0.027; perifovea-temporal: t = 3.798, p < 0.001; perifovea-superior: t = 3.014, p = 0.004; perifovea-nasal: t = 2.948, p = 0.004; perifovea-inferior: t = 3.337, p = 0.021). The average GCC thickness in the PD patients was significantly reduced (t = 2.365, p = 0.021). There were positive correlations between the average GCC thickness and the SCP densities in most of the areas of the macular regions in PD patients (parafovea-temporal: r = 0.325, p = 0.005; parafovea-superior: r = 0.295, p = 0.011; parafovea-nasal: r = 0.335, p = 0.003; perifovea-superior: r = 0.362, p = 0.002; perifovea-nasal: r = 0.290, p = 0.012; perifovea-inferior: r = 0.333, p = 0.004). We found significant correlations between SCP densities and Hoehn and Yahr (H and Y) scales, UPDRS III scores, and MMSE scores. No significant correlation was observed between SCP density and PD disease duration (all p > 0.05). CONCLUSIONS We demonstrated that the macular SCP density was decreased, and the average GCC thickness was reduced in PD patients. The correlation between SCP density damage and GCC thinning also suggested that the retinal microvascular damage may be associated with retinal structural degeneration in PD patients. OCTA and OCT may be considered objective biomarkers for detecting microvascular impairment and neuronal damage in the early stages of PD in the future.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - Chuchu Zhuang
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - Yining Wang
- Department of Ophthalmology, Xuzhou Medical University, Xuzhou, China
| | - He Wang
- Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jianxin Guo
- Department of Ophthalmology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
6
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
7
|
Maftei D, Schirinzi T, Mercuri NB, Lattanzi R, Severini C. Potential Clinical Role of Prokineticin 2 (PK2) in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2019-2023. [PMID: 35410604 PMCID: PMC9886845 DOI: 10.2174/1570159x20666220411084612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
Abstract
The role of the immune system in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) has become clear in recent decades, as evidenced by the presence of activated microglia and astrocytes and numerous soluble mediators in the brain and peripheral tissues of affected patients. Among inflammatory mediators, chemokines play a central role in neuroinflammation due to their dual function as chemoattractants for immune cells and molecular messengers in crosstalk among CNS-resident cells. The chemokine Bv8/Prokineticin 2 (PK2) has recently emerged as an important player in many age-related and chronic diseases that are either neurodegenerative or systemic. In this perspective paper, we briefly discuss the role that PK2 and its cognate receptors play in AD and PD animal models and in patients. Given the apparent changes in PK2 blood levels in both AD and PD patients, the potential clinical value of PK2 either as a disease biomarker or as a therapeutic target for these disorders is discussed.
Collapse
Affiliation(s)
- Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy; ,These authors contributed equally to the work.
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; ,These authors contributed equally to the work.
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; ,IRCCS Fondazione Santa Lucia, Rome, Italy;
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy; ,These authors contributed equally to the work.
| | - Cinzia Severini
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology, National Research Council of Italy, Viale del Policlinico, 155, 00161 Rome, Italy; Tel: +39-6-49976742; E-mail:
| |
Collapse
|
8
|
Pattern of Mitochondrial Respiration in Peripheral Blood Cells of Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms231810863. [PMID: 36142777 PMCID: PMC9506016 DOI: 10.3390/ijms231810863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are central in the pathogenesis of Parkinson’s disease (PD), as they are involved in oxidative stress, synaptopathy, and other immunometabolic pathways. Accordingly, they are emerging as a potential neuroprotection target, although further human-based evidence is needed for therapeutic advancements. This study aims to shape the pattern of mitochondrial respiration in the blood leukocytes of PD patients in relation to both clinical features and the profile of cerebrospinal fluid (CSF) biomarkers of neurodegeneration. Mitochondrial respirometry on the peripheral blood mononucleate cells (PBMCs) of 16 PD patients and 14 controls was conducted using Seahorse Bioscience technology. Bioenergetic parameters were correlated either with standard clinical scores for motor and non-motor disturbances or with CSF levels of α-synuclein, amyloid-β peptides, and tau proteins. In PD, PBMC mitochondrial basal respiration was normal; maximal and spare respiratory capacities were both increased; and ATP production was higher, although not significantly. Maximal and spare respiratory capacity was directly correlated with disease duration, MDS-UPDRS part III and Hoehn and Yahr motor scores; spare respiratory capacity was correlated with the CSF amyloid-β-42 to amyloid-β-42/40 ratio. We provided preliminary evidence showing that mitochondrial respiratory activity increases in the PBMCs of PD patients, probably following the compensatory adaptations to disease progression, in contrast to the bases of the neuropathological substrate.
Collapse
|
9
|
Li YC, Wang Y, Zou W. Exploration on the Mechanism of Ubiquitin Proteasome System in Cerebral Stroke. Front Aging Neurosci 2022; 14:814463. [PMID: 35462700 PMCID: PMC9022456 DOI: 10.3389/fnagi.2022.814463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke’s secondary damage, such as inflammation, oxidative stress, and mitochondrial dysfunction, are thought to be crucial factors in the disease’s progression. Despite the fact that there are numerous treatments for secondary damage following stroke, such as antiplatelet therapy, anticoagulant therapy, surgery, and so on, the results are disappointing and the side effects are numerous. It is critical to develop novel and effective strategies for improving patient prognosis. The ubiquitin proteasome system (UPS) is the hub for the processing and metabolism of a wide range of functional regulatory proteins in cells. It is critical for the maintenance of cell homeostasis. With the advancement of UPS research in recent years, it has been discovered that UPS is engaged in a variety of physiological and pathological processes in the human body. UPS is expected to play a role in the onset and progression of stroke via multiple targets and pathways. This paper explores the method by which UPS participates in the linked pathogenic process following stroke, in order to give a theoretical foundation for further research into UPS and stroke treatment.
Collapse
Affiliation(s)
- Yu-Chao Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Wei Zou
- Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Wei Zou,
| |
Collapse
|
10
|
Effects of head trauma and sport participation in young-onset Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1185-1193. [PMID: 34263354 PMCID: PMC8322011 DOI: 10.1007/s00702-021-02370-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Head trauma (HT) is emerging as an event anticipating onset of neurodegenerative disorders. However, the potential contribution of HT in young-onset cases (YOPD, age at onset < 50) of Parkinson’s disease (PD) has not been examined yet. Here, we systematically assessed HT history in PD patients to estimate the risk associated, especially in terms of age of onset, and define the correlations with the clinical-biochemical profile. The Brain Injury Screening Questionnaire (BISQ) was administered to 94 PD patients (31 with YOPD, known monogenic forms excluded) and 70 controls. HT history was correlated with motor and non-motor scores in all patients, and to CSF biomarkers of neurodegeneration (α-synuclein, amyloid-β42, total and phosporiled-181 tau, lactate, CSF/serum albumin) into a subgroup. HT increased the risk for both PD and YOPD. In PD patients, but not in those with YOPD, the number of HTs directly correlated with CSF total-tau levels. No other correlations resulted between HT and clinical parameters. Sport-related HT was a specific risk factor for YOPD; conversely, the prolonged sporting life represented a protective factor. HTs can favor PD onset, even as YOPD. Sport-related HT resulted a risk factor for YOPD, although the longer sporting practice delayed PD onset, protecting from YOPD. Tauopathy may underlie the overall association between HT and PD. Additional mechanisms could be instead implicated in HT contribution to YOPD onset.
Collapse
|
11
|
Sancesario GM, Di Lazzaro G, Alwardat M, Biticchi B, Basile V, Salimei C, Colona VL, Sinibaldi Salimei P, Bernardini S, Mercuri NB, Pisani A, Schirinzi T. Amyloid-β42/Neurogranin Ratio as a Potential Index for Cognitive Impairment in Parkinson's Disease. J Alzheimers Dis 2021; 76:1171-1178. [PMID: 32597810 DOI: 10.3233/jad-200344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Synaptopathy is critical in pathophysiology of Parkinson's disease (PD). Cerebrospinal fluid (CSF) levels of neurogranin (NG) and amyloid-β42 (Aβ42) are considered markers of synaptic dysfunction in neurodegenerative diseases. OBJECTIVE To evaluate the CSF synaptopathy-related biomarkers, especially the novel Aβ42/NG ratio, in PD, establishing possible associations with cognitive level and other clinical parameters. METHODS Levels of NG, Aβ42, amyloid-β40, total and phosphorylated tau, and Aβ42/NG ratio were measured in 30 PD patients and 30 controls and correlated with cognitive and motor parameters. The accuracy in distinguishing the cognitive status was determined. RESULTS NG and Aβ42 were significantly reduced in PD, with higher NG levels in patients with worse cognition. The Aβ42/NG ratio showed a direct correlation with Mini-Mental State Examination, independently from age and sex, and differentiated cognitively impaired patients with 92% sensitivity and 71.4% specificity, accuracy higher than NG alone. No correlations resulted with motor disturbances or therapy. CONCLUSIONS The novel Aβ42/NG ratio couples either presynaptic or postsynaptic markers of synaptic dysfunction, representing a potential global index of synaptopathy, useful to track cognitive functions in PD.
Collapse
Affiliation(s)
- Giulia Maria Sancesario
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, Rome, Italy
| | - Giulia Di Lazzaro
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Mohammad Alwardat
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Benedetta Biticchi
- Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, Rome, Italy
| | - Valerio Basile
- Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, Rome, Italy
| | - Chiara Salimei
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Vito Luigi Colona
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | | | - Sergio Bernardini
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Antonio Pisani
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Rasheed M, Liang J, Wang C, Deng Y, Chen Z. Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4956. [PMID: 34066949 PMCID: PMC8125491 DOI: 10.3390/ijms22094956] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is one of the most significant factors involved in the initiation and progression of Parkinson's disease. PD is a neurodegenerative disorder with a motor disability linked with various complex and diversified risk factors. These factors trigger myriads of cellular and molecular processes, such as misfolding defective proteins, oxidative stress, mitochondrial dysfunction, and neurotoxic substances that induce selective neurodegeneration of dopamine neurons. This neuronal damage activates the neuronal immune system, including glial cells and inflammatory cytokines, to trigger neuroinflammation. The transition of acute to chronic neuroinflammation enhances the susceptibility of inflammation-induced dopaminergic neuron damage, forming a vicious cycle and prompting an individual to PD development. Epigenetic mechanisms recently have been at the forefront of the regulation of neuroinflammatory factors in PD, proposing a new dawn for breaking this vicious cycle. This review examined the core epigenetic mechanisms involved in the activation and phenotypic transformation of glial cells mediated neuroinflammation in PD. We found that epigenetic mechanisms do not work independently, despite being coordinated with each other to activate neuroinflammatory pathways. In this regard, we attempted to find the synergic correlation and contribution of these epigenetic modifications with various neuroinflammatory pathways to broaden the canvas of underlying pathological mechanisms involved in PD development. Moreover, this study highlighted the dual characteristics (neuroprotective/neurotoxic) of these epigenetic marks, which may counteract PD pathogenesis and make them potential candidates for devising future PD diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (J.L.); (C.W.); (Y.D.)
| |
Collapse
|
13
|
Butt A, Kamtchum-Tatuene J, Khan K, Shuaib A, Jickling GC, Miyasaki JM, Smith EE, Camicioli R. White matter hyperintensities in patients with Parkinson's disease: A systematic review and meta-analysis. J Neurol Sci 2021; 426:117481. [PMID: 33975191 DOI: 10.1016/j.jns.2021.117481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Mechanisms driving neurodegeneration in Parkinson's disease (PD) are unclear and neurovascular dysfunction may be a contributing factor. White matter hyperintensities (WMH) are commonly found on brain MRI in patients with PD. It is controversial if they are more prevalent or more severe in PD compared with controls. This systematic review aims to answer this question. METHODS A systematic search of electronic databases was conducted for studies of WMH in patients with PD. A qualitative synthesis was done for studies reporting WMH prevalence or WMH scores on a visual rating scale (VRS). In studies reporting total WMH volume, the difference between patients with PD and controls was pooled using random effects meta-analysis. RESULTS Among 3860 subjects from 24 studies, 2360 were cases and 1500 controls. Fifteen studies reported WMH scores and four studies reported the prevalence of WMH. On VRS, five studies reported no difference in WMH scores, three found higher WMH scores in PD compared to controls, three reported increased WMH scores either in periventricular or deep white matter, and four reported higher scores only in PD with dementia. In studies reporting WMH volume, there was no difference between patients with PD and controls (pooled standardized mean difference = 0.1, 95%CI: -0.1-0.4, I2 = 81%). CONCLUSION WMH are not more prevalent or severe in patients with PD than in age-matched controls. PD dementia may have more severe WMH compared to controls and PD with normal cognition. Prospective studies using standardized methods of WMH assessment are needed.
Collapse
Affiliation(s)
- Asif Butt
- Department of Medicine, Division of Neurology, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada.
| | - Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khurshid Khan
- Department of Medicine, Division of Neurology, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Ashfaq Shuaib
- Department of Medicine, Division of Neurology, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Glen C Jickling
- Department of Medicine, Division of Neurology, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Janis M Miyasaki
- Department of Medicine, Division of Neurology, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Richard Camicioli
- Department of Medicine, Division of Neurology, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
14
|
Schirinzi T, Landi D, Liguori C. COVID-19: dealing with a potential risk factor for chronic neurological disorders. J Neurol 2021; 268:1171-1178. [PMID: 32852580 PMCID: PMC7450256 DOI: 10.1007/s00415-020-10131-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
SARS-CoV2 infection is responsible for a complex clinical syndrome, named Coronavirus Disease 2019 (COVID-19), whose main consequences are severe pneumonia and acute respiratory distress syndrome. Occurrence of acute and subacute neurological manifestations (encephalitis, stroke, headache, seizures, Guillain-Barrè syndrome) is increasingly reported in patients with COVID-19. Moreover, SARS-CoV2 immunopathology and tissue colonization in the gut and the central nervous system, and the systemic inflammatory response during COVID-19 may potentially trigger chronic autoimmune and neurodegenerative disorders. Specifically, Parkinson's disease, multiple sclerosis and narcolepsy present several pathogenic mechanisms that can be hypothetically initiated by SARS-CoV2 infection in susceptible individuals. In this short narrative review, we summarize the clinical evidence supporting the rationale for investigating SARS-CoV2 infection as risk factor for these neurological disorders, and suggest the opportunity to perform in the future SARS-CoV2 serology when diagnosing these disorders.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Neurology Unit, University Hospital of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, University Hospital of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
| | - Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
- Neurology Unit, University Hospital of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| |
Collapse
|
15
|
Zenuni H, Grillo P, Sancesario GM, Bernardini S, Mercuri NB, Schirinzi T. How Comorbidity Reflects on Cerebrospinal Fluid Biomarkers of Neurodegeneration in Aging. J Alzheimers Dis Rep 2021; 5:87-92. [PMID: 33681720 PMCID: PMC7902985 DOI: 10.3233/adr-200280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/23/2022] Open
Abstract
Systemic comorbidity precipitates the risk for dementia. To comprehend the underlying mechanisms into a therapeutic perspective, we analyzed how comorbidity affects neurodegeneration-related cerebrospinal fluid (CSF) biomarkers of 55 cognitively intact subjects. The Charson Comorbidity Index (CCI) was correlated with CSF amyloid-β42 (Aβ42), amyloid-β40, total-tau, 181-phosphorylated-tau (p-tau), the Aβ42/p-tau ratio, neurogranin, and lactate. The age-related brain lesions at imaging were also considered. CCI had a raw association with Aβ42/p-tau and p-tau, and a stronger, age-independent correlation with lactate. These preliminary findings suggested that, in normal subjects, systemic comorbidity might increase CNS oxidative stress and, together with aging, contribute to develop an Alzheimer's disease-like biochemical profile.
Collapse
Affiliation(s)
- Henri Zenuni
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Piergiorgio Grillo
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | | | - Sergio Bernardini
- Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy
- Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| |
Collapse
|
16
|
Schirinzi T, Maftei D, Pieri M, Bernardini S, Mercuri NB, Lattanzi R, Severini C. Increase of Prokineticin-2 in Serum of Patients with Parkinson's Disease. Mov Disord 2021; 36:1031-1033. [PMID: 33404134 DOI: 10.1002/mds.28458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy.,Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy.,Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Cinzia Severini
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
17
|
Rascunà C, Russo A, Terravecchia C, Castellino N, Avitabile T, Bonfiglio V, Fallico M, Chisari CG, Cicero CE, Grillo M, Longo A, Luca A, Mostile G, Zappia M, Reibaldi M, Nicoletti A. Retinal Thickness and Microvascular Pattern in Early Parkinson's Disease. Front Neurol 2020; 11:533375. [PMID: 33117254 PMCID: PMC7575742 DOI: 10.3389/fneur.2020.533375] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
A thinning of intraretinal layers has been previously described in Parkinson's disease (PD) patients compared to healthy controls (HCs). Few studies evaluated the possible correlation between retinal thickness and retinal microvascularization. Thus, here we assessed the thickness of retinal layers and microvascular pattern in early PD patients and HCs, using, respectively, spectral-domain optical coherence tomography (SD-OCT) and SD-OCT-angiography (SD-OCT-A), and more interestingly, we evaluated a possible correlation between retinal thickness and microvascular pattern. Patients fulfilling criteria for clinically established/clinically probable PD and HCs were enrolled. Exclusion criteria were any ocular, retinal, and systemic disease impairing the visual system. Retinal vascularization was analyzed using SD-OCT-A, and retinal layer thickness was assessed using SD-OCT. Forty-one eyes from 21 PD patients and 33 eyes from 17 HCs were evaluated. Peripapillary retinal nerve fiber layer (RNFL) and macular RNFL, ganglionic cell layer (GCL), inner plexiform layer (IPL), and inner nuclear layer (INL), resulted to be thinner in PD compared to HCs. Among PD patients, a positive correlation between RNFL, GCL, and IPL thickness and microvascular density was found in the foveal region, also adjusting by age, sex, and, especially, hypertension. Such findings were already present in the early stage of disease and were irrespective of dopaminergic treatment. Thus, the retina might be considered a biomarker of PD and could be a useful instrument for onset and disease progression.
Collapse
Affiliation(s)
- Cristina Rascunà
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Claudio Terravecchia
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | | | | | | | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Clara Grazia Chisari
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Calogero Edoardo Cicero
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Marco Grillo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Antonina Luca
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Giovanni Mostile
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Alessandra Nicoletti
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| |
Collapse
|