1
|
Wu H, Sun Z, Gan J, Wen C, Shi Z, Liu S, Ji Y. Efficacy of cholinesterase inhibitors treatment in dementia with Lewy bodies: A 3-year follow-up 'real world' study. J Alzheimers Dis 2025:13872877251330902. [PMID: 40259559 DOI: 10.1177/13872877251330902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
BackgroundDementia with Lewy bodies (DLB) is the second most common dementia after Alzheimer's disease. Currently, no specific therapeutic agents are available for DLB. However, evidence of cholinergic deficits suggests that enhancing central cholinergic function may be a viable therapeutic approach.ObjectiveTo assess cognitive changes in DLB patients treated with cholinesterase inhibitors (ChEIs) in a real-world setting.MethodsThis retrospective study in a prospective database analyzed data from three dementia clinics between May 2012 and December 2022. Patients with DLB were divided into two groups: those treated with ChEIs and those untreated. Differences in changes in multiple cognitive-related scales between the two groups were analyzed.ResultsThe study included 204 DLB patients, with 133 (65.2%) in the ChEIs group and 71 (34.8%) in the non-ChEIs group. Initial demographic and clinical characteristics were similar between groups. Over time, patients in the ChEIs group showed significantly higher scores on the Mini-Mental State Examination and the Montreal Cognitive Assessment compared to the non-ChEIs group, indicating improved cognitive function. No significant differences were observed in activities of daily living scores.ConclusionsChEIs improved cognitive symptoms in DLB patients in the "real world" study. These findings are consistent with those from a previous small-sample randomized controlled trial. Longitudinal data indicate sustained benefits with continuous ChEIs use in three years. Overall, ChEIs show substantial potential for improving cognitive symptoms in DLB patients.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and neurodegenerative diseases, Tianjin dementia institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zhen Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Linfen Central Hospital, Linfen, Shanxi, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Wen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and neurodegenerative diseases, Tianjin dementia institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and neurodegenerative diseases, Tianjin dementia institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and neurodegenerative diseases, Tianjin dementia institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Ercika L, Taube M. Case Report: Lewy body dementia with unusual psychotic symptoms, atypically late parkinsonism, and patient sensitivity to first generation antipsychotics. Front Psychiatry 2025; 16:1551581. [PMID: 40270570 PMCID: PMC12014703 DOI: 10.3389/fpsyt.2025.1551581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Lewy body dementia is associated with abnormal eosinophilic A-synuclein neural inclusions (Lewy bodies) in the brain. It is a neurodegenerative illness-and the second most common type of dementia after Alzheimer's disease-that causes memory loss and severe problems in carrying out daily activities. In this report, we describe a case of Lewy body dementia that began with early psychotic symptoms with atypical features (transition from hallucinosis (hallucinatory insight) to true visual hallucinations) -without Parkinsonism. The patient exhibited sensitivity to first generation antipsychotic medication, which led to a worsening of her symptoms. Physicians should consider all possible diagnoses when confronted with atypical, early symptoms of visual hallucinosis or true hallucinations and dementia without Parkinsonism. Choosing antipsychotic medicines should be made with care given these patients' possible sensitivity to antipsychotics. The selection of antipsychotics should be consider among first, second and third generation options.
Collapse
Affiliation(s)
- Lolita Ercika
- Faculty of Residency, Riga Stradiņš University, Riga, Latvia
- Department of Depression and Crisis, National Center of Mental Health, Riga, Latvia
| | - Maris Taube
- Faculty of Residency, Riga Stradiņš University, Riga, Latvia
- Department of Depression and Crisis, National Center of Mental Health, Riga, Latvia
- Department of Psychosomatic Medicine and Psychotherapy, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
3
|
Pham Nguyen TP, Le V, Weintraub D, Willis AW. Impact of pimavanserin on prescribing practices in parkinson disease. Clin Park Relat Disord 2025; 12:100317. [PMID: 40207044 PMCID: PMC11979419 DOI: 10.1016/j.prdoa.2025.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Parkinson disease psychosis (PDP) is a common complication of PD. Until 2016, the only drugs available to treat PDP in the U.S. were antipsychotics with variable degrees of dopamine-receptor antagonism (DRA) that may worsen PD motor symptoms. We evaluated the impact that pimavanserin, a selective serotonin receptor inverse agonist/antagonist atypical antipsychotic (AAP) with no known DRA, had on PDP treatment practices in a commercially insured population. Methods We included adults diagnosed with PD who filled at least one AAP prescription from 2016 to 2022. AAP dispensings were categorized into (1) pimavanserin, (2) clozapine and quetiapine (i.e., PDP-"preferred" mixed receptor antagonist AAPs), and (3) the remaining AAPs (i.e., PDP-"nonpreferred" mixed receptor antagonist AAPs). Trends in quarterly dispensing rates per 1000 persons treated were compared across categories. Secondary analyses focused on the 65+ subpopulations insured by Medicare Advantage programs. Results Dispensing rates varied between 4 and 697/1000 persons treated for pimavanserin, 1434-1821 for preferred, and 394-746 for nonpreferred AAPs. Pimavanserin dispensings surpassed the nonpreferred category after quarter 3 of 2018. However, preferred AAPs, particularly quetiapine, remained the most dispensed category in the sixth year after pimavanserin's approval. We observed similar trends among Medicare Advantage enrollees. Conclusion The availability of pimavanserin was followed by a decline in the use of the most harmful AAPs in persons living with PD. Quetiapine remained the most prescribed AAP. Comparative safety and effectiveness studies are needed to define the relative risks and benefits of treatment options in PDP.
Collapse
Affiliation(s)
- Thanh Phuong Pham Nguyen
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Real-World Effectiveness and Safety of Therapeutics, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vy Le
- Haverford College, Haverford, PA, USA
| | - Daniel Weintraub
- Parkinson’s Disease Research, Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison W. Willis
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Real-World Effectiveness and Safety of Therapeutics, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Borek LL, Friedman JH. Treating psychosis in people with Parkinson's disease. Expert Opin Drug Saf 2025:1-6. [PMID: 39945745 DOI: 10.1080/14740338.2025.2467813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Psychotic symptoms in Parkinson's disease are common and are comprised of hallucinations and delusions. Psychosis is a major cause of disability in PD and is primarily due to an interaction with PD medication. The decision to treat psychosis is determined by the severity of the symptoms, impact on quality of life and tolerance for the treatment. Initial management involves a reduction in non-PD psychoactive medications and/or modification of PD medications. Pharmacotherapy is primarily limited to atypical antipsychotics and pimavanserin. AREAS COVERED This review will focus on the phenomenology of Parkinson's disease psychosis and its management. EXPERT OPINION Pimavanserin is the only Food and Drug Administration medication approved for the treatment of PDP. Among the antipsychotics, only clozapine and pimavanserin demonstrated efficacy in the treatment of PDP. Despite lack of evidence for efficacy in PDP, quetiapine is commonly used because it does not worsen motor function and lacks the blood monitoring requirement of clozapine. Pimavanserin is the first-line treatment for mild psychotic symptoms that do not require a rapid response and quetiapine and clozapine for psychosis that requires improvement in a short period of time. Antipsychotics used to treat PDP should demonstrate safety, motor tolerability and efficacy over time.
Collapse
Affiliation(s)
- Leora L Borek
- Department of Psychiatry, Hebrew Senior Life, Harvard Medical School, Dedham, MA, USA
| | - Joseph H Friedman
- Movement Disorders Program, Butler Hospital Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Sato T, Sawai S, Shimada N. Comparison of the ability of different quantitative indices in 123I-FP-CIT single-photon emission computed tomography to differentiate dopaminergic neurodegenerative disease. Jpn J Radiol 2025; 43:78-90. [PMID: 39235674 PMCID: PMC11717878 DOI: 10.1007/s11604-024-01648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE By imaging dopamine transporter (DAT) uptake in the striatum, 123I-FP-CIT SPECT can differentiate dopaminergic neurodegenerative disease (dNDD) and non-dNDD, which differ in pathophysiology and clinical management. Our aim was to compare and validate the diagnostic abilities of various 123I-FP-CIT SPECT quantitative indices for dNDD. MATERIALS AND METHODS Distribution volume ratio (DVR) and binding ratio (BR), measures of DAT uptake capacity, were measured by analyzing clinical 123I-FP-CIT SPECT images of 29 patients with dNDD, including dementia with Lewy bodies and Parkinson's disease, and 18 patients with non-dNDD, using Montreal Neurological Institute space-based anatomical standardization and an atlas template, which utilizes statistical parametric mapping. Additionally, we computed the specific binding ratio (SBR) based on Bolt's method and the maximum and mean standardized uptake values (SUVmax and SUVmean, respectively). RESULTS The caudate-to-occipital lobe, putamen-to-occipital lobe, and striatum-to-occipital lobe ratios (COR, POR, and SOR, respectively) on DVR and POR and SOR on BR were significantly lower in dNDD than in non-dNDD, with areas under the ROC curve (AUCs) of 0.941-0.960, showing high diagnostic accuracy for dNDD. However, the AUC of COR on BR was 0.839, indicating lower diagnostic performance. SBR had an AUC of 0.921, while SUVmax and SUVmean had AUCs of 0.906 and 0.900, respectively. Although striatal asymmetry on both DVR and BR exhibited AUCs of 0.728 and 0.734 and asymmetry on SBR showed an AUC of 0.757, the ratio-based DAT quantitative indices were superior. There were strong positive correlations of DVR with BR, DVR with SBR or SUVmax, BR with SBR or SUVmax, and SBR with SUVmax. CONCLUSION COR, POR, and SOR on DVR and POR and SOR on BR were the most useful DAT quantitative indices. These indices can be compared with SBR and SUV, suggesting that comprehensive evaluation improves the diagnostic accuracy of dNDD.
Collapse
Affiliation(s)
- Tomohiro Sato
- Department of Radiology, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Radiology, Chiba Aoba Municipal Hospital, 1273-2 Aoba-cho, Chuo-ku, Chiba City, Chiba, 260-0852, Japan.
| | - Setsu Sawai
- Department of Neurology, Chiba Aoba Municipal Hospital, 1273-2 Aoba-cho, Chuo-ku, Chiba City, Chiba, 260-0852, Japan
| | - Naokazu Shimada
- Department of Radiology, Chiba Aoba Municipal Hospital, 1273-2 Aoba-cho, Chuo-ku, Chiba City, Chiba, 260-0852, Japan
| |
Collapse
|
6
|
Onofrj M, De Rosa MA, Russo M, Ajdinaj P, Calisi D, Thomas A, Sensi SL. Psychiatric Disorders and Cognitive Fluctuations in Parkinson's Disease: Changing Approaches in the First Decades of the 21st Century. Brain Sci 2024; 14:1233. [PMID: 39766432 PMCID: PMC11727288 DOI: 10.3390/brainsci14121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025] Open
Abstract
Parkinson's Disease (PD) is a multifaceted neurodegenerative disorder characterized, in addition to the well-recognized motor disturbances, by a complex interplay between cognitive and psychiatric manifestations. We dissect the complex landscape of PD-related psychiatric symptoms, taking into account the impact of functional neurological disorders, somatic delusions, impulse control disorders, and conditions within the bipolar spectrum. The newer entities of somatoform and functional neurological disorders, as well as preexisting bipolar spectrum disorders, are analyzed in detail. Moreover, we emphasize the need for a holistic understanding of PD, wherein the cognitive and psychiatric dimensions are valued alongside motor symptoms. Such an approach aims to facilitate early detection and personalized interventions, and enhance the overall quality of life for individuals suffering from this neurodegenerative disorder.
Collapse
Affiliation(s)
- Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
| | - Matteo Alessandro De Rosa
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Ajdinaj
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
| | - Dario Calisi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Gu J, Qu Y, Shen Y, Zhou Q, Jiang Y, Zhu H. Comprehensive analysis of adverse events associated with pimavanserin using the FAERS database. J Affect Disord 2024; 362:742-748. [PMID: 39029673 DOI: 10.1016/j.jad.2024.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Pimavanserin, a novel 5-HT2A receptor antagonist, has been approved for the treatment of Parkinson's disease psychosis (PDP). This study aims to conduct a comprehensive analysis of the adverse events (AEs) of pimavanserin by analyzing the FDA's Adverse Event Reporting System (FAERS) database. METHODS AE reports related to pimavanserin in the FAERS database from the second quarter of 2016 to the fourth quarter of 2023 were mined. Signal detection methods, including the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM), were employed to identify and classify AEs. RESULTS The study collected 12,839,687 AE reports, with 30,997 reports primarily suspecting pimavanserin, identifying 166 Preferred Terms (PTs) across 27 System Organ Classes (SOCs). The data showed that males reported more frequently than females, with the highest reporting in patients aged 75 and above. Reports increased over time, with a significant rise in 2023 compared to 2016. Major categories of AEs included hallucination, death, product dose omission issue, and confusional state, with death being notably the second most reported issue. Strong and new potential AEs were identified, including sleep-related issues like somnolence, insomnia, and sleep talking; cognitive and behavioral issues such as alexithymia, belligerence, and aggression; dose-related issues like prescribed underdose and underdose; and other AEs like nonspecific reactions. CONCLUSION This study reveals potential AEs of pimavanserin, including sleep disorders and cognitive changes, underscoring the importance of careful monitoring and personalized treatment in managing PDP.
Collapse
Affiliation(s)
- Jun Gu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Yucai Qu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Yuan Shen
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Qin Zhou
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| | - Haohao Zhu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| |
Collapse
|
8
|
Oguma T, Jino K, Nakahara K, Asada H, Fuchino K, Nagatani K, Kouki K, Okamoto R, Takai N, Koda K, Fujita S, Sekiguchi Y, Yasuo K, Mayumi K, Abe A, Imono M, Horiguchi N, Iwata S, Kusakabe KI. Dual 5-HT 2A and 5-HT 2C Receptor Inverse Agonist That Affords In Vivo Antipsychotic Efficacy with Minimal hERG Inhibition for the Treatment of Dementia-Related Psychosis. J Med Chem 2024; 67:14478-14492. [PMID: 39137033 DOI: 10.1021/acs.jmedchem.4c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Psychosis is a distressing symptom commonly occurring in people with dementia. To treat Parkinson's disease psychosis, pimavanserin (1), a 5-HT2A receptor inverse agonist having minimal 5-HT2C receptor affinity and no dopamine D2 receptor affinity, was approved in the United States, but not for dementia-related psychosis due to limited efficacy issues. Herein, we report on the identification of a potent and dual 5-HT2A and 5-HT2C receptor inverse agonist 8 having minimal hERG inhibition, after having demonstrated the involvement of both 5-HT2A and 5-HT2C receptors to deliver antipsychotic efficacy in an MK-801-induced locomotor model and having conducted 5-HT2A and 5-HT2C occupancy studies including a surrogate method. The introduction of a spirocyclopropyl group boosting 5-HT2C affinity in 1 followed by further optimization to control lipophilicity resulted in balanced dual potency and metabolic stability, and mitigating hERG inhibition led to 8 that showed significant antipsychotic efficacy due to the involvement of both receptors.
Collapse
Affiliation(s)
- Takuya Oguma
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kohei Jino
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kenji Nakahara
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-yu, Kyoto 606-8501, Japan
| | - Kouki Fuchino
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kotaro Nagatani
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kensuke Kouki
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ryuji Okamoto
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Nozomi Takai
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ken Koda
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Sayaka Fujita
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yusuke Sekiguchi
- Laboratory for Bio-Modality Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kazuya Yasuo
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kei Mayumi
- Laboratory for Drug Discovery & Development, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ayane Abe
- Laboratory for Drug Discovery & Development, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Imono
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Naotaka Horiguchi
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-yu, Kyoto 606-8501, Japan
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
9
|
Colijn MA. Quetiapine, Clozapine, and Pimavanserin Treatment Response in Monogenic Parkinson's Disease Psychosis: A Systematic Review. J Neuropsychiatry Clin Neurosci 2024; 37:6-13. [PMID: 39034670 DOI: 10.1176/appi.neuropsych.20230231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Psychotic symptoms frequently occur in idiopathic Parkinson's disease (PD) and often require treatment with antipsychotic therapy. Most antipsychotics have the potential to worsen the motor symptoms of PD; quetiapine, clozapine, and pimavanserin are commonly used for the treatment of idiopathic PD because these medications tend to be comparatively well tolerated. Although psychotic symptoms may also occur in monogenic forms of PD, no reviews have focused on the use of antipsychotic medications in this context. The objective of the present systematic review was to characterize the effectiveness and tolerability of quetiapine, clozapine, and pimavanserin in monogenic PD-associated psychosis. A literature search was performed with PubMed, Scopus, and Embase. The search yielded 24 eligible articles describing 30 individuals, although treatment response with respect to psychotic symptoms was described in only 11 cases; of these, six individuals experienced symptomatic improvement or remission (four with clozapine and two with quetiapine), two exhibited a poor therapeutic response (one to clozapine and one to quetiapine), and the other three responded initially to antipsychotic therapy before experiencing a recurrence of symptoms. The use of quetiapine and clozapine in GBA variant-associated PD is briefly reviewed separately. Notably, no reports of pimavanserin therapy were identified. In keeping with the idiopathic PD literature, relatively low doses of medication were used in most cases. Lastly, side effects were rarely reported. Although quetiapine and particularly clozapine may be effective and well tolerated in the treatment of monogenic PD psychosis, this review highlights the paucity of available evidence to guide clinical decision making in this context.
Collapse
Affiliation(s)
- Mark Ainsley Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alta., Canada
| |
Collapse
|
10
|
Houix M, Humbert I, D'Acremont F, Sauvaget A, Huon JF, Bulteau S. What about the relevance of PIP of psychotropics in older psychiatric inpatients? L'ENCEPHALE 2024:S0013-7006(24)00114-3. [PMID: 38981810 DOI: 10.1016/j.encep.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE In 2019, a regional survey of potentially inappropriate prescriptions (PIP) of psychotropic drugs in elderly psychiatric inpatients was carried out highlighting their inappropriate use in this population. The aim of this study was to assess the clinical relevance - defined as the provision of an appropriate and necessary treatment, chosen from other alternatives as being the most likely to produce the expected results for a given patient - of these prescriptions considered inappropriate according to current established criteria. MATERIAL AND METHOD Patients aged over 75, or 64 to 75 and polypathological with at least one PIP of psychotropic drugs or drugs with a high anticholinergic burden, identified by an audit grid established on the basis of STOPP/STARTv2 criteria and the Laroche list on the prescription at 48h of hospitalization, were included. The weighing of the inappropriateness nature of the prescription (resistance to treatment, period of crisis, comorbidities…) was established by a pharmacist-psychiatrist pair on the entire computerized record of the current episode. The clinical relevance of the PIP and the overall prescription was rated as 0 (irrelevant), 1 (partially relevant) or 2 (relevant). RESULTS Thirty-four patients were included. One hundred and twenty-five PIP of psychotropic drugs were noted: 50.4% concerned benzodiazepines and non-benzodiazepines anxiolytics (BZD/Z), 25.6% neuroleptics (NL), 12% antidepressants (ATD) and 12% drugs with a high anticholinergic burden. On one hand, 49.2% of PIP of BZD/Z, 50% of PIP of NL and 20% of PIP of ATD were considered irrelevant. On the other hand, 49.2% of PIP of BZD/Z, 31.3% of PIP of NL and 13.3% of PIP of ATD were considered partially relevant. Furthermore, 1.6% of PIP of BZD/Z, 18.8% of PIP of NL and 66.7% of PIP of ATD were considered relevant. For PIPs of drugs with a high anticholinergic burden, 80% were deemed irrelevant, 13.3% partially relevant and 6.7% relevant. In all, of the 34 drug prescriptions studied, three (8.8%) were considered irrelevant, 11 (32.4%) partially relevant and 20 (58.8%) clinically relevant. CONCLUSION This study highlighted the clinical relevance of more than half the prescriptions considered inappropriate according to current PPI criteria in the elderly. It underlines the interest of a new PPI detection tool for elderly patients with psychiatric disorders.
Collapse
Affiliation(s)
- Morgane Houix
- Service pharmacie, centre hospitalier universitaire de Nantes, 44000 Nantes, France.
| | - Ilia Humbert
- Unité PPANs, centre hospitalier universitaire de Strasbourg, 67091 Strasbourg, France
| | - Fanny D'Acremont
- Service pharmacie, centre hospitalier universitaire de Nantes, 44000 Nantes, France; OMEDIT Pays de la Loire, 44000 Nantes, France
| | - Anne Sauvaget
- Département de psychiatrie et addictologie, centre hospitalier universitaire de Nantes, 44000 Nantes, France
| | - Jean-François Huon
- Service pharmacie, centre hospitalier universitaire de Nantes, 44000 Nantes, France
| | - Samuel Bulteau
- Département de psychiatrie et addictologie, centre hospitalier universitaire de Nantes, 44000 Nantes, France
| |
Collapse
|
11
|
Cummings J, Sano M, Auer S, Bergh S, Fischer CE, Gerritsen D, Grossberg G, Ismail Z, Lanctôt K, Lapid MI, Mintzer J, Palm R, Rosenberg PB, Splaine M, Zhong K, Zhu CW. Reduction and prevention of agitation in persons with neurocognitive disorders: an international psychogeriatric association consensus algorithm. Int Psychogeriatr 2024; 36:251-262. [PMID: 36876335 PMCID: PMC10480345 DOI: 10.1017/s104161022200103x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
OBJECTIVES To develop an agitation reduction and prevention algorithm is intended to guide implementation of the definition of agitation developed by the International Psychogeriatric Association (IPA). DESIGN Review of literature on treatment guidelines and recommended algorithms; algorithm development through reiterative integration of research information and expert opinion. SETTING IPA Agitation Workgroup. PARTICIPANTS IPA panel of international experts on agitation. INTERVENTION Integration of available information into a comprehensive algorithm. MEASUREMENTS None. RESULTS The IPA Agitation Work Group recommends the Investigate, Plan, and Act (IPA) approach to agitation reduction and prevention. A thorough investigation of the behavior is followed by planning and acting with an emphasis on shared decision-making; the success of the plan is evaluated and adjusted as needed. The process is repeated until agitation is reduced to an acceptable level and prevention of recurrence is optimized. Psychosocial interventions are part of every plan and are continued throughout the process. Pharmacologic interventions are organized into panels of choices for nocturnal/circadian agitation; mild-moderate agitation or agitation with prominent mood features; moderate-severe agitation; and severe agitation with threatened harm to the patient or others. Therapeutic alternatives are presented for each panel. The occurrence of agitation in a variety of venues-home, nursing home, emergency department, hospice-and adjustments to the therapeutic approach are presented. CONCLUSIONS The IPA definition of agitation is operationalized into an agitation management algorithm that emphasizes the integration of psychosocial and pharmacologic interventions, reiterative assessment of response to treatment, adjustment of therapeutic approaches to reflect the clinical situation, and shared decision-making.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Joy Chambers-Grundy Professor of Brain Science, Director, Chambers-Grundy Center for Transformative Neuroscience, Co-Director, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences. University of Nevada Las Vegas (UNLV)
| | - Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NYC NY and James J. Peters VAMC, Bronx NY
| | - Stefanie Auer
- Centre for Dementia Studies, University for Continuing Education Krems, Austria
| | - Sverre Bergh
- The research centre for age-related functional decline and disease, Innlandet hospital trust, Ottestad, Norway
| | - Corinne E. Fischer
- Faculty of Medicine, Department of Psychiatry, University of Toronto, Canada
| | - Debby Gerritsen
- Department of Primary and Community Care, Radboud university medical center, Radboud Institute for Health Sciences, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - George Grossberg
- Department of Psychiatry & Behavioral Neuroscience, Division of Geriatric Psychiatry St Louis University School of Medicine
| | - Zahinoor Ismail
- Departments Psychiatry, Neurology, Epidemiology, and Pathology, Hotchkiss Brain Institute & O’Brien Institute for Public Health University of Calgary
| | - Krista Lanctôt
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute; and Departments of Psychiatry and Pharmacology/Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Maria I Lapid
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN, USA
| | - Jacobo Mintzer
- Psychiatrist, Ralph. H. Johnson VA Medical Center, Charleston, SC and Professor, College of Health Professions, Medical University of South Carolina, Charleston, SC
| | - Rebecca Palm
- Department of Nursing Science, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Paul B. Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Michael Splaine
- Owner Splaine Consulting, Managing Partner, Recruitment Partners LLC
| | - Kate Zhong
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas
| | - Carolyn W. Zhu
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine, NYC, NY and James J. Peters VAMC, Bronx NY
| |
Collapse
|
12
|
Rodríguez Espinosa N, Gonzalez-Colaço Harmand M, Moro Miguel MA. [Use of antipsychotics in patients with dementia in Spain: Comparison with prescription of acetylcholinesterase inhibitors and memantine and analysis of associations]. Rev Esp Geriatr Gerontol 2024; 59:101446. [PMID: 38029634 DOI: 10.1016/j.regg.2023.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE We have analyzed the prevalence of antipsychotics in patients with dementia in Spain, their age distribution and the influence of treatment with IACEs and memantine on their prescription. METHOD Descriptive, retrospective and cross-sectional study of the 2017 BIFAP database in over 65 years of age with dementia. Prescriptions of antipsychotics, IACEs and memantine were collected. For antipsychotics were also collected, the duration of treatment and time from dementia diagnosis to prescription. RESULTS A total of 1,327,792 subjects were retrieved, 89,464 (6.73%) with dementia. Antipsychotics were prescribed in 31.76%; by frequency: quetiapine (58.47%), risperidone (21%) and haloperidol (19.34%). Prescriptions of IACEs and memantine were clustered in those younger than 84 years and antipsychotics in those older than 85 (P<.001). Antipsychotics were maintained for a mean of 1174.5 days. In 26.4% of cases they were prescribed alone, OR 0.61 (95% CI: 0.59-0.62), in 35.85% associated with IACEs, OR 1.26 (95% CI: 1.22-1.30) and in 42.4% with memantine, OR 1.69 (95% CI: 1.62-1.78) (P<.000). From the diagnosis of dementia, 461 days (±1576.5) elapsed when isolated drugs were prescribed; 651 days (±1574.25) associated with IACEs and 1224 (±1779) with memantine. CONCLUSIONS One third of patients with dementia were prescribed antipsychotics, mostly atypical, more frequently in those older than 85 years and for prolonged periods. IACEs and memantine were associated with the risk of antipsychotic prescription, but paradoxically, with prolonged time to onset.
Collapse
Affiliation(s)
- Norberto Rodríguez Espinosa
- Unidad de Neurología de la Conducta y Memoria, Servicio de Neurología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Tenerife, España; Departamento de Medicina, Psiquiatría y Dermatología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna/Santa Cruz de Tenerife, Tenerife, España.
| | - Magali Gonzalez-Colaço Harmand
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Tenerife, España; Universidad Europea de Canarias, La Orotava/Santa Cruz de Tenerife, Tenerife, España
| | - María Adoración Moro Miguel
- Unidad de Neurología de la Conducta y Memoria, Servicio de Neurología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Tenerife, España
| |
Collapse
|
13
|
Friedman JH. Parkinson's disease psychosis management: an evidence based, experience informed, pragmatic approach. Expert Opin Pharmacother 2024; 25:149-156. [PMID: 38344806 DOI: 10.1080/14656566.2024.2316135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Psychotic symptoms in people with Parkinson's disease (PD) have attracted increasing. Recommendations on treating psychosis often fail to take into account what psychotic symptoms require treatment, which has been complicated by the increasing number of reports documenting the frequency of 'minor' hallucinations. AREAS COVERED This article focuses both on the phenomenology of psychotic symptoms and their management. EXPERT OPINION Understanding the nature and implications of the types of psychotic symptoms in PD is the key to proper treatment. Evidence and experience-based data on the effect of anti-psychotic medications will be reviewed and how the various clinical settings should determine the treatment approach. The evidence base consists of all reported blinded trials recorded in PubMed and the experience-based studies are those chosen by the author from PubMed as illustrative. Specific recommendations for the treatment of psychosis will be listed for specific situations. Pimavanserin is the first-line choice for mild symptoms; quetiapine for symptoms that require improvement in a short period and clozapine for urgent problems or those which fail the other approaches.
Collapse
Affiliation(s)
- Joseph H Friedman
- Butler Hospital, Movement Disorders Program, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Chunga N, Amodeo K, Braun M, Valdovinos BY, Richard IH. Effect of best practice advisory on the administration of contraindicated medications to hospitalized patients with Parkinson's disease and related disorders. Front Aging Neurosci 2023; 15:1276761. [PMID: 38173555 PMCID: PMC10764030 DOI: 10.3389/fnagi.2023.1276761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Objective To determine the effect of a Best Practice Advisory (BPA) on the ordering and administration of contraindicated dopamine blocking agents (DBA) to hospitalized patients with Parkinson's disease (PD) and related disorders. Background Patients with PD are more likely to require hospitalization and are at increased risk of complications. Administration of contraindicated DBA contributes to worsened outcomes in this patient population. Electronic medical record (EMR) warnings (also referred to as BPA) have been proposed as a way to prevent the administration of contraindicated medications. Methods A BPA was launched in January 2020 within the University of Rochester EMR system, which alerts the provider when a contraindicated DBA is ordered in hospitalized patients with PD and related disorders. Patients with PD and related disorders hospitalized at two hospitals affiliated to the University of Rochester during a time period before (t1: 1/1/2019-1/1/2020) and after (t2: 1/8/2020-1/8/2021) the implementation of the BPA were included in this study. Epic SliderDicer was used to collect the data from the University of Rochester EMR. The number of patients who had contraindicated DBA orders and administrations in both time periods, and the number of patients who had the BPA triggered during t2 were obtained. We compared the results before and after the implementation of the BPA. Results 306 patients with PD and related disorders were hospitalized during t1 and 273 during t2. There was significantly less percentage of patients who had contraindicated DBA orders (41.5% in t1 vs. 17.6% in t2) and patients who had contraindicated DBA administrations (16% in t1 vs. 8.8% in t2) during t2 (p < 0.05 for both comparisons). There was no significant difference between the percentage of patients who had contraindicated DBA orders in t1 and patients with attempted orders (BPA triggered) in t2 (p = 0.27). Conclusion The results of this study increase the evidence of the potential benefit of EMR warnings for the optimization of inpatient medication management in patients with PD and related disorders. In particular, our results suggest that EMR warnings help reduce the administration of contraindicated medications, which is a known contributing factor for hospital complications in this patient population.
Collapse
Affiliation(s)
- Natalia Chunga
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Katherine Amodeo
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Neurology, Westchester Medical Center/MidHudson Regional Hospital, Poughkeepsie, NY, United States
| | - Melanie Braun
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | | | - Irene H. Richard
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Psychiatry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
15
|
Seritan AL. Advances in the Diagnosis and Management of Psychotic Symptoms in Neurodegenerative Diseases: A Narrative Review. J Geriatr Psychiatry Neurol 2023; 36:435-460. [PMID: 36941085 PMCID: PMC10578041 DOI: 10.1177/08919887231164357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Background: Approximately 15% of older adults may experience psychotic phenomena. Primary psychiatric disorders that manifest with psychosis (delusions, hallucinations, and disorganized thought or behavior) account for less than half. Up to 60% of late-life psychotic symptoms are due to systemic medical or neurological conditions, particularly neurodegenerative diseases. A thorough medical workup including laboratory tests, additional procedures if indicated, and neuroimaging studies is recommended. This narrative review summarizes current evidence regarding the epidemiology and phenomenology of psychotic symptoms encountered as part of the neurodegenerative disease continuum (including prodromal and manifest stages). Results: Prodromes are constellations of symptoms that precede the onset of overt neurodegenerative syndromes. Prodromal psychotic features, particularly delusions, have been associated with an increased likelihood of receiving a neurodegenerative disease diagnosis within several years. Prompt prodrome recognition is crucial for early intervention. The management of psychosis associated with neurodegenerative diseases includes behavioral and somatic strategies, although evidence is scarce and mostly limited to case reports, case series, or expert consensus guidelines, with few randomized controlled trials. Conclusion: The complexity of psychotic manifestations warrants management by interprofessional teams that provide coordinated, integrated care.
Collapse
Affiliation(s)
- Andreea L. Seritan
- University of California, San Francisco Department of Psychiatry and UCSF Weill Institute for Neurosciences, CA, USA
| |
Collapse
|
16
|
Campagnolo M, Emmi A, Biundo R, Fiorenzato E, Batzu L, Chaudhuri KR, Antonini A. The pharmacological management of the behavioral aspects of Parkinson's disease: an update. Expert Opin Pharmacother 2023; 24:1693-1701. [PMID: 37493445 DOI: 10.1080/14656566.2023.2240228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Behavioural symptoms are common manifestations of Parkinson's disease and include depression, anxiety, impulse control disorders, hallucinations, psychosis, and cognitive dysfunction. They remain inadequately addressed in many patients despite their relevance for quality of life and disability. This applies also to impulse control disorders where the most common approach in recent literature is to refrain from using dopamine agonists without consideration about their potential benefit on motor complications. AREAS COVERED We conducted a narrative review searching for articles on behavioral symptoms in Parkinson disease and selected those which included involved neurotransmitters such as dopamine, noradrenaline, serotonin, acetylcholine. We specifically focused our search on open-label and randomized double-blind studies and biomarkers which could best characterize these clinical manifestations. EXPERT OPINION Management of Parkinson disease behavioural manifestations lacks clear guidelines and standardized protocols beside general suggestions of dose adjustments in dopamine replacement therapy and use of antidepressants or antipsychotic drugs with little consideration of patients' age, sex, comorbidities, and motor status. We suggest a pragmatic approach which includes education of affected patients and caring people, dealing with complex cases by experienced multidisciplinary teams, use of cognitive behavioural therapy, and psychological counselling to complement drug treatment.
Collapse
Affiliation(s)
- Marta Campagnolo
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Aron Emmi
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Roberta Biundo
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
17
|
d’Angremont E, Begemann MJH, van Laar T, Sommer IEC. Cholinesterase Inhibitors for Treatment of Psychotic Symptoms in Alzheimer Disease and Parkinson Disease: A Meta-analysis. JAMA Neurol 2023; 80:813-823. [PMID: 37358841 PMCID: PMC10294019 DOI: 10.1001/jamaneurol.2023.1835] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 06/27/2023]
Abstract
Importance Psychotic symptoms greatly increase the burden of disease for people with neurodegenerative disorders and their caregivers. Cholinesterase inhibitors (ChEIs) may be effective treatment for psychotic symptoms in these disorders. Previous trials only evaluated neuropsychiatric symptoms as a secondary and an overall outcome, potentially blurring the outcomes noted with ChEI use specifically for psychotic symptoms. Objective To quantitatively assess the use of ChEIs for treatment of individual neuropsychiatric symptoms, specifically hallucinations and delusions, in patients with Alzheimer disease (AD), Parkinson disease (PD), and dementia with Lewy bodies (DLB). Data Sources A systematic search was performed in PubMed (MEDLINE), Embase, and PsychInfo, without year restrictions. Additional eligible studies were retrieved from reference lists. The final search cutoff date was April 21, 2022. Study Selection Studies were selected if they presented the results of placebo-controlled randomized clinical trials, including at least 1 donepezil, rivastigmine, or galantamine treatment arm in patients with AD, PD, or DLB; if they applied at least 1 neuropsychiatric measure including hallucinations and/or delusions; and if a full-text version of the study was available in the English language. Study selection was performed and checked by multiple reviewers. Data Extraction and Synthesis Original research data were requested on eligible studies. A 2-stage meta-analysis was then performed, using random-effects models. Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed for extracting data and assessing the data quality and validity. Data extraction was checked by a second reviewer. Main Outcomes and Measures Primary outcomes were hallucinations and delusions; secondary outcomes included all other individual neuropsychiatric subdomains as well as the total neuropsychiatric score. Results In total, 34 eligible randomized clinical trials were selected. Individual participant data on 6649 individuals (3830 [62.6%] women; mean [SD] age, 75.0 [8.2] years) were obtained from 17 trials (AD: n = 12; PD: n = 5; individual participant data were not available for DLB). An association with ChEI treatment was shown in the AD subgroup for delusions (-0.08; 95% CI, -0.14 to -0.03; P = .006) and hallucinations (-0.09; 95% CI, -0.14 to -0.04; P = .003) and in the PD subgroup for delusions (-0.14; 95% CI, -0.26 to -0.01; P = .04) and hallucinations (-0.08, 95% CI -0.13 to -0.03; P = .01). Conclusions and Relevance The results of this individual participant data meta-analysis suggest that ChEI treatment improves psychotic symptoms in patients with AD and PD with small effect sizes.
Collapse
Affiliation(s)
- Emile d’Angremont
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, the Netherlands
| | - Marieke J. H. Begemann
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, the Netherlands
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Iris E. C. Sommer
- Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Isaacson SH, Goldstein M, Pahwa R, Singer C, Klos K, Pucci M, Zhang Y, Crandall D, Koblan KS, Navia B. Ulotaront, a Trace Amine-Associated Receptor 1/Serotonin 5-HT 1A Agonist, in Patients With Parkinson Disease Psychosis: A Pilot Study. Neurol Clin Pract 2023; 13:e200175. [PMID: 37273942 PMCID: PMC10238151 DOI: 10.1212/cpj.0000000000200175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 04/04/2023] [Indexed: 06/06/2023]
Abstract
Background and Objectives Ulotaront (SEP-363856) is a trace amine-associated receptor 1 agonist with 5-HT1A receptor agonist activity currently in phase 3 clinical development for the treatment of schizophrenia. In this exploratory, flexibly dosed study, ulotaront was evaluated for the treatment of Parkinson disease psychosis (PDP). Methods Patients with PDP requiring antipsychotic therapy were randomized, double-blind to ulotaront (25, 50, or 75 mg/d) or placebo. Mixed Model for Repeated Measures was used to assess change from baseline in the Scale for the Assessment of Positive Symptoms for Parkinson Disease (SAPS-PD) at 6 weeks (primary end point). Results The efficacy analysis sample comprised 38 patients (ulotaront, n = 24; placebo, n = 14). SAPS-PD total scores were numerically reduced in ulotaront-treated vs placebo-treated patients from week 1 to week 6: Least squares mean (95% confidence interval) difference in change from baseline at week 6 was -1.1 (-6.5, 4.3, p = 0.681). PDP symptom complete remission (≥100% improvement [reduction] from baseline in SAPS-PD total score) was observed in 25% of ulotaront-treated vs 0% of placebo-treated patients. SAPS-PD and Neuropsychiatric Inventory hallucinations subscales were numerically reduced vs placebo, and SAPS-PD total scores were reduced in patients with greater cognitive impairment (baseline Mini-Mental State Examination [MMSE] scores ≤24). Ulotaront improved Scales for Outcomes in Parkinson Disease Sleep Scale - Daytime Sleepiness scores (p = 0.022). There was no worsening of Unified Parkinson Disease Rating Scale Part III motor score, MMSE, or vital signs. Adverse events (≥10%) with ulotaront vs placebo included hallucinations (24% vs 14%), confusional state (20% vs 14%), dizziness (16% vs 7%), nausea (12% vs 7%), and falls (12% vs 21%). Discussion In this exploratory pilot study, ulotaront may decrease PDP symptoms without worsening motor function, particularly in patients with cognitive impairment. Trial Registration Information ClinicalTrials.gov identifier: NCT02969369; submitted: November 17, 2016; study start date: December 31, 2016. Classification of Evidence This Class II study was an exploratory pilot study that was underpowered to detect a statistically significant difference between ulotaront and placebo in the treatment of patients with Parkinson disease psychosis without worsening motor function.
Collapse
Affiliation(s)
- Stuart H Isaacson
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - Mark Goldstein
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - Rajesh Pahwa
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - Carlos Singer
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - Kevin Klos
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - Michael Pucci
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - Yi Zhang
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - David Crandall
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - Kenneth S Koblan
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| | - Bradford Navia
- Parkinson's Disease and Movement Disorders Center of Boca Raton (SHI), FL; JEM Research Institute (MG), Lake Worth, FL; University of Kansas (RP), Kansas City; University of Miami Health System (CS), FL; The Movement Disorder Clinic of Oklahoma (KK), Tulsa; The Lockwood Group (MP), Stamford, CT; and Sunovion Pharmaceuticals Inc. (YZ, DC, KSK, BN), Marlborough, MA
| |
Collapse
|
19
|
Ferraiolo M, Hermans E. The complex molecular pharmacology of the dopamine D 2 receptor: Implications for pramipexole, ropinirole, and rotigotine. Pharmacol Ther 2023; 245:108392. [PMID: 36958527 DOI: 10.1016/j.pharmthera.2023.108392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
With L-DOPA, dopamine agonists such as pramipexole, ropinirole and rotigotine constitute key therapeutic options for the management of motor symptoms of Parkinson's disease. These compounds exert their beneficial effect on motor behaviours by activating dopamine D2-class receptors and thereby compensating for the declining dopaminergic transmission in the dorsal striatum. Despite a strong similarity in their mechanism of action, these three dopamine agonists present distinct clinical profiles, putatively underpinned by differences in their pharmacological properties. In this context, this review aims at contributing to close the gap between clinical observations and data from molecular neuropharmacology by exploring the properties of pramipexole, ropinirole and rotigotine from both the clinical and molecular perspectives. Indeed, this review first summarizes and compares the clinical features of these three dopamine agonists, and then explores their binding profiles at the different dopamine receptor subtypes. Moreover, the signalling profiles of pramipexole, ropinirole and rotigotine at the D2 receptor are recapitulated, with a focus on biased signalling and the potential therapeutic implications. Overall, this review aims at providing a unifying framework of interpretation for both clinicians and fundamental pharmacologists interested in a deep understanding of the pharmacological properties of pramipexole, ropinirole and rotigotine.
Collapse
Affiliation(s)
- Mattia Ferraiolo
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Emmanuel Hermans
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium.
| |
Collapse
|
20
|
Ayhan Y, Yoseph SA, Miller BL. Management of Psychiatric Symptoms in Dementia. Neurol Clin 2022; 41:123-139. [DOI: 10.1016/j.ncl.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Zhang S, Ma Y. Emerging role of psychosis in Parkinson's disease: From clinical relevance to molecular mechanisms. World J Psychiatry 2022; 12:1127-1140. [PMID: 36186499 PMCID: PMC9521528 DOI: 10.5498/wjp.v12.i9.1127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Psychosis is one of the common psychiatric presentations in the natural course of PD. PD psychosis is an important non-motor symptom, which is strongly correlated with a poor prognosis. Increasing attention is being given to PD psychosis. In this opinion review, we summarized and analyzed the identification, screening, epidemiology, mechanisms, risk factors, and therapeutic approaches of PD psychosis based on the current clinical evidence. PD psychosis tends to have a negative effect on patients' quality of life and increases the burden of family caregiving. Screening and identification in the early stage of disease is crucial for establishing tailored therapeutic strategies and predicting the long-term outcome. Development of PD psychosis is believed to involve a combination of exogenous and endogenous mechanisms including imbalance of neurotransmitters, structural and network changes, genetic profiles, cognitive impairment, and antiparkinsonian medications. The therapeutic strategy for PD psychosis includes reducing or ceasing the use of dopaminergic drug, antipsychotics, cholinesterase inhibitors, and non-pharmacological interventions. Ongoing clinical trials are expected to provide new insights for tailoring therapy for PD psychosis. Future research based on novel biomarkers and genetic factors may help inform individualized therapeutic strategies.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Ma
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
22
|
Pathogenesis and Personalized Interventions for Pharmacological Treatment-Resistant Neuropsychiatric Symptoms in Alzheimer’s Disease. J Pers Med 2022; 12:jpm12091365. [PMID: 36143150 PMCID: PMC9501542 DOI: 10.3390/jpm12091365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, with cognitive impairment as a core symptom. Neuropsychiatric symptoms (NPSs) also occur as non-cognitive symptoms during the disease course, worsening the prognosis. Recent treatment guidelines for NPSs have recommended non-pharmacological treatments as the first line of therapy, followed by pharmacological treatments. However, pharmacological treatment for urgent NPSs can be difficult because of a lack of efficacy or an intolerance, requiring multiple changes in psychotropic prescriptions. One biological factor that might be partly responsible for this difficulty is structural deterioration in elderly people with dementia, which may cause a functional vulnerability affecting the pharmacological response. Other causative factors might include awkward psychosocial interpersonal relations between patients and their caregiver, resulting in distressful vicious circles. Overlapping NPS sub-symptoms can also blur the prioritization of targeted symptoms. Furthermore, consistent neurocognitive reductions cause a primary apathy state and a secondary distorted ideation or perception of present objects, leading to reactions that cannot be treated pharmacologically. The present review defines treatment-resistant NPSs in AD; it may be necessary and helpful for clinicians to discuss the pathogenesis and comprehensive solutions based on three major hypothetical pathophysiological viewpoints: (1) biology, (2) psychosociology, and (3) neurocognition.
Collapse
|
23
|
Elsibai H, Kualleny M, Fandy TE. Management of Parkinson's Disease Psychosis. Sr Care Pharm 2022; 37:339-344. [PMID: 35879841 DOI: 10.4140/tcp.n.2022.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objectives To discuss therapeutic management of Parkinson's disease psychosis (PDP) and the burdens associated with it. Parkinson's disease (PD) is an incurable, progressive, and devastating neurodegenerative disease. The prolonged use of dopamine agonists to improve the motor symptoms of PD may result in nonmotor complications such as psychosis. These complications are as devastating as the motor symptoms that accompany PD. PDP is associated with financial burden for patients and health care organizations. Data Sources PubMed search using the phrases Parkinson's disease, Parkinson's disease psychosis, clozapine, quetiapine, and "pimavanserin." Conclusion Pimavanserin is the only US Food and Drug Administration approved drug for the management of hallucinations and delusions associated with PD psychosis. The off-label use of clozapine and quetiapine has demonstrated clinical utility; however, there is still a need for the development of novel therapeutic molecules to avoid side effects associated with current therapeutic options and reduce the burdens of patients, caregivers, and health care institutions.
Collapse
|
24
|
Therapeutic Effects of Quetiapine and 5-HT1A Receptor Agonism on Hyperactivity in Dopamine-Deficient Mice. Int J Mol Sci 2022; 23:ijms23137436. [PMID: 35806448 PMCID: PMC9266854 DOI: 10.3390/ijms23137436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Some diseases that are associated with dopamine deficiency are accompanied by psychiatric symptoms, including Parkinson’s disease. However, the mechanism by which this occurs has not been clarified. Previous studies found that dopamine-deficient (DD) mice exhibited hyperactivity in a novel environment. This hyperactivity is improved by clozapine and donepezil, which are used to treat psychiatric symptoms associated with dopamine deficiency (PSDD). We considered that DD mice could be used to study PSDD. In the present study, we sought to identify the pharmacological mechanism of PSDD. We conducted locomotor activity tests by administering quetiapine and drugs that have specific actions on serotonin (5-hydroxytryptamine [5-HT]) receptors and muscarinic receptors. Changes in neuronal activity that were induced by drug administration in DD mice were evaluated by examining Fos immunoreactivity. Quetiapine suppressed hyperactivity in DD mice while the 5-HT1A receptor antagonist WAY100635 inhibited this effect. The number of Fos-positive neurons in the median raphe nucleus increased in DD mice that exhibited hyperactivity and was decreased by treatment with quetiapine and 5-HT1A receptor agonists. In conclusion, hyperactivity in DD mice was ameliorated by quetiapine, likely through 5-HT1A receptor activation. These findings suggest that 5-HT1A receptors may play a role in PSDD, and 5-HT1A receptor-targeting drugs may help improve PSDD.
Collapse
|
25
|
Agüera-Ortiz L, Babulal GM, Bruneau MA, Creese B, D'Antonio F, Fischer CE, Gatchel JR, Ismail Z, Kumar S, McGeown WJ, Mortby ME, Nuñez NA, de Oliveira FF, Pereiro AX, Ravona-Springer R, Rouse HJ, Wang H, Lanctôt KL. Psychosis as a Treatment Target in Dementia: A Roadmap for Designing Interventions. J Alzheimers Dis 2022; 88:1203-1228. [PMID: 35786651 PMCID: PMC9484097 DOI: 10.3233/jad-215483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Psychotic phenomena are among the most severe and disruptive symptoms of dementias and appear in 30% to 50% of patients. They are associated with a worse evolution and great suffering to patients and caregivers. Their current treatments obtain limited results and are not free of adverse effects, which are sometimes serious. It is therefore crucial to develop new treatments that can improve this situation. We review available data that could enlighten the future design of clinical trials with psychosis in dementia as main target. Along with an explanation of its prevalence in the common diseases that cause dementia, we present proposals aimed at improving the definition of symptoms and what should be included and excluded in clinical trials. A review of the available information regarding the neurobiological basis of symptoms, in terms of pathology, neuroimaging, and genomics, is provided as a guide towards new therapeutic targets. The correct evaluation of symptoms is transcendental in any therapeutic trial and these aspects are extensively addressed. Finally, a critical overview of existing pharmacological and non-pharmacological treatments is made, revealing the unmet needs, in terms of efficacy and safety. Our work emphasizes the need for better definition and measurement of psychotic symptoms in dementias in order to highlight their differences with symptoms that appear in non-dementing diseases such as schizophrenia. Advances in neurobiology should illuminate the development of new, more effective and safer molecules for which this review can serve as a roadmap in the design of future clinical trials.
Collapse
Affiliation(s)
- Luis Agüera-Ortiz
- Department of Psychiatry, Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, & Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Ganesh M Babulal
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Psychology, Faculty of Humanities, University of Johannesburg, South Africa
| | - Marie-Andrée Bruneau
- Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Quebec, Canada.,Geriatric Institute of Montreal Research Center, Montreal, Quebec, Canada
| | - Byron Creese
- Medical School, College of Medicine and Health, University of Exeter, UK
| | | | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada
| | - Jennifer R Gatchel
- Harvard Medical School; Massachusetts General Hospital, Boston MA, USA.,McLean Hospital, Belmont MA, USA
| | - Zahinoor Ismail
- Hotchkiss Brain Institute & O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
| | - Sanjeev Kumar
- Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - William J McGeown
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Moyra E Mortby
- School of Psychology, University of New South Wales, Sydney, Australia & Neuroscience Research Australia, Sydney, Australia
| | - Nicolas A Nuñez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Fabricio F de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Arturo X Pereiro
- Facultade de Psicoloxía, Universidade de Santiago de Compostela, Spain
| | - Ramit Ravona-Springer
- Sheba Medical Center, Tel Hashomer, Israel & Sackler School of Medicine, Tel Aviv University, Israel
| | - Hillary J Rouse
- School of Aging Studies, University of South Florida, Tampa, FL, USA.,SiteRx, New York, NY, USA
| | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health; National & Clinical Research Center for Mental Disorders, Beijing, China
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute and Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Joyce E. ‘Adults with Parkinson's disease and hallucinations or delusions can have treatment with clozapine if they need to’. BJPSYCH ADVANCES 2021. [DOI: 10.1192/bja.2021.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARYClozapine is the only antipsychotic licensed for treatment of Parkinson's disease psychosis (PDP) but is infrequently used in the National Health Service because of obstacles to the integration of hospital-based neurological/geriatric services with clozapine clinics run by community mental health teams. This commentary points out the mismatch between NICE quality standards on antipsychotic treatment for PDP and current clinical practice. It suggests that forthcoming integrated care systems should be able to overcome these obstacles, enabling innovative models for providing clozapine treatment for PDP such as those described by Taylor et al, so that clozapine treatment becomes a right for patients and their families.
Collapse
|
27
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Koros C, Stefanis L, Scarmeas N. Parkinsonism and dementia. J Neurol Sci 2021; 433:120015. [PMID: 34642023 DOI: 10.1016/j.jns.2021.120015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The aim of the present review is to summarize literature data on dementia in parkinsonian disorders. Cognitive decline and the gradual development of dementia are considered to be key features in the majority of parkinsonian conditions. The burden of dementia in everyday life of parkinsonian patients and their caregivers is vast and can be even more challenging to handle than the motor component of the disease. Common pathogenetic mechanisms involve the aggregation and spreading of abnormal proteins like alpha-synuclein, tau or amyloid in cortical and subcortical regions with subsequent dysregulation of multiple neurotransmitter systems. The degree of cognitive deterioration in these disorders is variable and ranges from mild cognitive impairment to severe cognitive dysfunction. There is also variation in the number and type of affected cognitive domains which can involve either a single domain like executive or visuospatial function or multiple ones. Novel genetic, biological fluid or imaging biomarkers appear promising in facilitating the diagnosis and staging of dementia in parkinsonian conditions. A significant part of current research in Parkinson's disease and other parkinsonian syndromes is targeted towards the cognitive aspects of these disorders. Stabilization or amelioration of cognitive outcomes represents a primary endpoint in many ongoing clinical trials for novel disease modifying treatments in this field. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; The Gertrude H. Sergievsky Center, Department of Neurology, Taub Institute for Research in Alzheimer's, Disease and the Aging Brain, Columbia University, New York, USA.
| |
Collapse
|
29
|
Xu DD, Li GQ, Wu ZS, Liu XQ, Yang XX, Wang JH. Bioinformatics analysis and identification of genes and molecular pathways involved in Parkinson's disease in patients with mutations in the glucocerebrosidase gene. Neuroreport 2021; 32:918-924. [PMID: 34132705 PMCID: PMC8253507 DOI: 10.1097/wnr.0000000000001685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022]
Abstract
Glucocerebrosidase (GBA) mutations occur frequently in Parkinson's disease (PD) patients. This study aims to identify potential crucial genes and pathways associated with GBA mutations in patients with PD and to further analyze new molecular mechanisms related to the occurrence of gene mutations from the perspective of bioinformatics. Gene expression profiles of datasets GSE53424 and GSE99142 were acquired from the Gene Expression Ominibus database. Differentially expressed genes (DEGs) were detected, using the 'limma' package in R, comparing IDI-PD 1 (idiopathic PD patients) and GBA-PD 1 [PD patients with heterozygous GBA mutations (GBA N370S)] group samples. The functions of top modules were assessed using the DAVID, whereas gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. Protein-protein interaction networks were assembled with Cytoscape software and separated into subnetworks using the Molecular Complex Detection Algorithm. Data from GSE53424 and GSE99142 were also extracted to verify our findings. There were 283 DEGs identified in PD patients heterozygous for GBA mutations. Module analysis revealed that GBA mutations in PD patients were associated with significant pathways, including Calcium signaling pathway, Rap1 signaling pathway and Cytokine-cytokine receptor interaction. Hub genes of the two modules were corticotropin-releasing hormone (CRH) and Melatonin receptor 1B (MTNR1B). The expression of CRH was downregulated, whereas that of MTNR1B was upregulated in PD patients with GBA mutations. The expression of CRH and MTNR1B has diagnostic value for PD patients with heterozygous GBA mutations. Novel DEGs and pathways identified herein might provide new insights into the underlying molecular mechanisms of heterozygous GBA mutations in PD patients.
Collapse
Affiliation(s)
- Dan-Dan Xu
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Guo-Qian Li
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Zhi-Sheng Wu
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiao-Qiang Liu
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiao-Xia Yang
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Jie-Hua Wang
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| |
Collapse
|
30
|
Gammon D, Cheng C, Volkovinskaia A, Baker GB, Dursun SM. Clozapine: Why Is It So Uniquely Effective in the Treatment of a Range of Neuropsychiatric Disorders? Biomolecules 2021; 11:1030. [PMID: 34356654 PMCID: PMC8301879 DOI: 10.3390/biom11071030] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Clozapine is superior to other antipsychotics as a therapy for treatment-resistant schizophrenia and schizoaffective disorder with increased risk of suicidal behavior. This drug has also been used in the off-label treatment of bipolar disorder, major depressive disorder (MDD), and Parkinson's disease (PD). Although usually reserved for severe and treatment-refractory cases, it is interesting that electroconvulsive therapy (ECT) has also been used in the treatment of these psychiatric disorders, suggesting some common or related mechanisms. A literature review on the applications of clozapine and electroconvulsive therapy (ECT) to the disorders mentioned above was undertaken, and this narrative review was prepared. Although both treatments have multiple actions, evidence to date suggests that the ability to elicit epileptiform activity and alter EEG activity, to increase neuroplasticity and elevate brain levels of neurotrophic factors, to affect imbalances in the relationship between glutamate and γ-aminobutyric acid (GABA), and to reduce inflammation through effects on neuron-glia interactions are common underlying mechanisms of these two treatments. This evidence may explain why clozapine is effective in a range of neuropsychiatric disorders. Future increased investigations into epigenetic and connectomic changes produced by clozapine and ECT should provide valuable information about these two treatments and the disorders they are used to treat.
Collapse
Affiliation(s)
- Dara Gammon
- Saba University School of Medicine, Saba, The Netherlands; (D.G.); (A.V.)
| | - Catherine Cheng
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Anna Volkovinskaia
- Saba University School of Medicine, Saba, The Netherlands; (D.G.); (A.V.)
| | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
31
|
Terravecchia C, Mostile G, Rascunà C, Arabia G, Barone P, Marconi R, Morgante L, Quattrone A, Nicoletti A, Zappia M. Does an association between cigarette smoking and Parkinson's Disease-related psychosis exist? Insights from a large non-demented cohort. J Neurol Sci 2021; 427:117509. [PMID: 34082149 DOI: 10.1016/j.jns.2021.117509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Parkinson's Disease-related Psychosis (PDP) encompasses a spectrum of symptoms ranging from "minor" hallucinations to formed hallucinations and delusions. Notably, cognitive impairment has been recognized as the strongest risk factor for PDP. Several evidences suggest a possible role of cigarette smoking in both cognition and psychotic syndromes. OBJECTIVES To evaluate the possible independent association between cigarette smoking and PDP in a large cohort of non-demented PD patients. METHODS A cohort of non-demented PD patients was selected from the FRAGAMP study population. All participants underwent a standardised structured questionnaire to assess demographic, clinical and environmental exposure data. Clinical features were assessed using UPDRS, HY stage, AIMS, MMSE and Hamilton Rating Scale for Depression. Presence of psychotic symptoms was assessed using UPDRS-I.2 score. Diagnosis of PDP was made according to NINDS/NIMH criteria. RESULTS Four hundred eighty-five non-demented PD patients were enrolled [292 men (60.2%); mean age ± SD 65.6 ± 9.8]. Among them, 28 (5.8%) had PDP. Multivariate analysis, adjusting by HY stage, MMSE and LED, shown an independent association between PDP and "nightmares-abnormal movements during sleep" and current smoking [adjOR 7.39 (95%CI 1.45-37.69; P-value 0.016)]. CONCLUSIONS Our findings provide interesting insights about the possible role of current smoking in facilitating the occurrence of psychotic symptoms in PD.
Collapse
Affiliation(s)
- Claudio Terravecchia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giovanni Mostile
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Cristina Rascunà
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gennarina Arabia
- Institute of Neurology, University "Magna Graecia", Catanzaro, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | | | | | - Andrea Quattrone
- Institute of Neurology, University "Magna Graecia", Catanzaro, Italy
| | - Alessandra Nicoletti
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| |
Collapse
|
32
|
Mood and emotional disorders associated with parkinsonism, Huntington disease, and other movement disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:175-196. [PMID: 34389117 DOI: 10.1016/b978-0-12-822290-4.00015-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter provides a review of mood, emotional disorders, and emotion processing deficits associated with diseases that cause movement disorders, including Parkinson's disease, Lewy body dementia, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, frontotemporal dementia with parkinsonism, Huntington's disease, essential tremor, dystonia, and tardive dyskinesia. For each disorder, a clinical description of the common signs and symptoms, disease progression, and epidemiology is provided. Then the mood and emotional disorders associated with each of these diseases are described and discussed in terms of clinical presentation, incidence, prevalence, and alterations in quality of life. Alterations of emotion communication, such as affective speech prosody and facial emotional expression, associated with these disorders are also discussed. In addition, if applicable, deficits in gestural and lexical/verbal emotion are reviewed. Throughout the chapter, the relationships among mood and emotional disorders, alterations of emotional experiences, social communication, and quality of life, as well as treatment, are emphasized.
Collapse
|
33
|
Treatment of psychosis in Parkinson's disease: Missed opportunities to discuss about sudden death. Parkinsonism Relat Disord 2020; 79:128-129. [PMID: 32928645 DOI: 10.1016/j.parkreldis.2020.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
|