1
|
Domínguez Carral J, Reinhard C, Ebrahimi-Fakhari D, Dorison N, Galosi S, Garone G, Malenica M, Ravelli C, Serdaroglu E, van de Pol LA, Koy A, Leuzzi V, Roubertie A, Lin JP, Doummar D, Cif L, Ortigoza-Escobar JD. Dyskinetic crisis in GNAO1-related disorders: clinical perspectives and management strategies. Front Neurol 2024; 15:1403815. [PMID: 38903163 PMCID: PMC11188927 DOI: 10.3389/fneur.2024.1403815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Background GNAO1-related disorders (GNAO1-RD) encompass a diverse spectrum of neurodevelopmental and movement disorders arising from variants in the GNAO1 gene. Dyskinetic crises, marked by sudden and intense exacerbations of abnormal involuntary movements, present a significant challenge in GNAO1-RD. Objectives This study aimed to establish a standardized framework for understanding dyskinetic crises, addressing crucial aspects such as definition, triggers, diagnostic criteria, complications, and management strategies. Methods A Delphi consensus process was conducted involving international experts in GNAO1-RD. The panel of thirteen experts participated in three voting rounds, discussing 90 statements generated through a literature review and clinical expertise. Results Consensus was achieved on 31 statements, defining dyskinetic crises as abrupt, paroxysmal episodes involving distinct abnormal movements in multiple body regions, triggered by emotional stress or infections. Dyskinetic crises may lead to functional impairment and complications, emphasizing the need for prompt recognition. While individualized pharmacological recommendations were not provided, benzodiazepines and clonidine were suggested for acute crisis management. Chronic treatment options included tetrabenazine, benzodiazepines, gabapentin, and clonidine. Deep brain stimulation should be considered early in the treatment of refractory or prolonged dyskinetic crisis. Conclusion This consensus provides a foundation for understanding and managing dyskinetic crises in GNAO1-RD for clinicians, caregivers, and researchers. The study emphasizes the importance of targeted parental and caregiver education, which enables early recognition and intervention, thereby potentially minimizing both short- and long-term complications. Future research should concentrate on differentiating dyskinetic crises from other neurological events and investigating potential risk factors that influence their occurrence and nature. The proposed standardized framework improves clinical management, stakeholder communication, and future GNAO1-RD research.
Collapse
Affiliation(s)
- Jana Domínguez Carral
- Member of the ERN EpiCARE, Epilepsy Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carola Reinhard
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nathalie Dorison
- Dyspa Unit, Pediatric Neurosurgery, Hôpital Fondation Rothschild, Paris, France
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giacomo Garone
- Neurology, Epilepsy and Movement Disorders Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Masa Malenica
- Member of the ERN EpiCARE, Department of Pediatrics, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Claudia Ravelli
- Sorbonne Université, Service de Neuropédiatrie-Pathologie du développement, Centre de référence neurogénétique, Hôpital Trousseau AP-HP.SU, Paris, France
| | - Esra Serdaroglu
- Department of Pediatric Neurology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Laura A. van de Pol
- Emma Children’s Hospital, Amsterdam Universitary Medical Centers, Amsterdam, Netherlands
- Department of Child Neurology, Amsterdam Universitary Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Agathe Roubertie
- CHU Montpellier, Département de Neuropédiatrie, INM, Université de Montpellier, Inserm U, Montpellier, France
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Women and Children's Institute, Faculty of Life Sciences and Medicine (FolSM), King's College London, London, United Kingdom
| | - Diane Doummar
- Sorbonne Université, Service de Neuropédiatrie-Pathologie du développement, Centre de référence neurogénétique, Hôpital Trousseau AP-HP.SU, Paris, France
| | - Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
- Service de Neurologie, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Laboratoire de Recherche en Neurosciences Cliniques, Montferrier-sur-Lez, France
| | - Juan Darío Ortigoza-Escobar
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
- Movement Disorders Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- U-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
2
|
McTague A, Scheffer IE, Kullmann DM, Sisodiya S. Epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:157-184. [PMID: 39174247 DOI: 10.1016/b978-0-323-90820-7.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Recent advances in genetic diagnosis have revealed the underlying etiology of many epilepsies and have identified pathogenic, causative variants in numerous ion and ligand-gated channel genes. This chapter describes the clinical presentations of epilepsy associated with different channelopathies including classic electroclinical syndromes and emerging gene-specific phenotypes. Also discussed are the archetypal epilepsy channelopathy, SCN1A-Dravet syndrome, considering the expanding phenotype. Clinical presentations where a channelopathy is suspected, such as sleep-related hypermotor epilepsy and epilepsy in association with movement disorders, are reviewed. Channelopathies pose an intriguing problem for the development of gene therapies. Design of targeted therapies requires physiologic insights into the often multifaceted impact of a pathogenic variant, coupled with an understanding of the phenotypic spectrum of a gene. As gene-specific novel therapies come online for the channelopathies, it is essential that clinicians are able to recognize epilepsy phenotypes likely to be due to channelopathy and institute early genetic testing in both children and adults. These findings are likely to have immediate management implications and to inform prognostic and reproductive counseling.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom.
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, University of Melbourne, Melbourne, VIC, Australia
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| |
Collapse
|
3
|
Ren Y, Chen X, Zheng X, Wang F, Sun R, Wei L, Zhang Y, Liu H, Lin Y, Hong L, Huang X, Chao Z. Diverse WGBS profiles of longissimus dorsi muscle in Hainan black goats and hybrid goats. BMC Genom Data 2023; 24:77. [PMID: 38097986 PMCID: PMC10720224 DOI: 10.1186/s12863-023-01182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Goat products have played a crucial role in meeting the dietary demands of people since the Neolithic era, giving rise to a multitude of goat breeds globally with varying characteristics and meat qualities. The primary objective of this study is to pinpoint the pivotal genes and their functions responsible for regulating muscle fiber growth in the longissimus dorsi muscle (LDM) through DNA methylation modifications in Hainan black goats and hybrid goats. METHODS Whole-genome bisulfite sequencing (WGBS) was employed to scrutinize the impact of methylation on LDM growth. This was accomplished by comparing methylation differences, gene expression, and their associations with growth-related traits. RESULTS In this study, we identified a total of 3,269 genes from differentially methylated regions (DMR), and detected 189 differentially expressed genes (DEGs) through RNA-seq analysis. Hypo DMR genes were primarily enriched in KEGG terms associated with muscle development, such as MAPK and PI3K-Akt signaling pathways. We selected 11 hub genes from the network that intersected the gene sets within DMR and DEGs, and nine genes exhibited significant correlation with one or more of the three LDM growth traits, namely area, height, and weight of loin eye muscle. Particularly, PRKG1 demonstrated a negative correlation with all three traits. The top five most crucial genes played vital roles in muscle fiber growth: FOXO3 safeguarded the myofiber's immune environment, FOXO6 was involved in myotube development and differentiation, and PRKG1 facilitated vasodilatation to release more glucose. This, in turn, accelerated the transfer of glucose from blood vessels to myofibers, regulated by ADCY5 and AKT2, ultimately ensuring glycogen storage and energy provision in muscle fibers. CONCLUSION This study delved into the diverse methylation modifications affecting critical genes, which collectively contribute to the maintenance of glycogen storage around myofibers, ultimately supporting muscle fiber growth.
Collapse
Affiliation(s)
- Yuwei Ren
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, 430000, China
| | - Xinli Zheng
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Feng Wang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Ruiping Sun
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Limin Wei
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yan Zhang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Hailong Liu
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yanning Lin
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Lingling Hong
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Xiaoxian Huang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhe Chao
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
| |
Collapse
|
4
|
van der Veen S, Tse GTW, Ferretti A, Garone G, Post B, Specchio N, Fung VSC, Trivisano M, Scheffer IE. Movement Disorders in Patients With Genetic Developmental and Epileptic Encephalopathies. Neurology 2023; 101:e1884-e1892. [PMID: 37748886 PMCID: PMC10663013 DOI: 10.1212/wnl.0000000000207808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Movement disorders (MDs) are underrecognized in the developmental and epileptic encephalopathies (DEEs). There are now more than 800 genes implicated in causing the DEEs; relatively few of these rare genetic diseases are known to be associated with MDs. We identified patients with genetic DEEs who had MDs, classified the nature of their MDs, and asked whether specific patterns correlated with the underlying mechanism. METHODS We classified the type of MDs associated with specific genetic DEEs in a large international cohort of patients and analyzed whether specific patterns of MDs reflected the underlying biological dysfunction. RESULTS Our cohort comprised 77 patients with a genetic DEE with a median age of 9 (range 1-38) years. Stereotypies (37/77, 48%) and dystonia (34/77, 44%) were the most frequent MDs, followed by chorea (18/77, 23%), myoclonus (14/77, 18%), ataxia (9/77, 12%), tremor (7/77, 9%), and hypokinesia (6/77, 8%). In 47% of patients, a combination of MDs was seen. The MDs were first observed at a median age of 18 months (range day 2-35 years). Dystonia was more likely to be observed in nonambulatory patients, while ataxia was less likely. In 46% of patients, therapy was initiated with medication (34/77, 44%), deep brain stimulation (1/77, 1%), or intrathecal baclofen (1/77, 1%). We found that patients with channelopathies or synaptic vesicle trafficking defects were more likely to experience dystonia; whereas, stereotypies were most frequent in individuals with transcriptional defects. DISCUSSION MDs are often underrecognized in patients with genetic DEEs, but recognition is critical for the management of these complex neurologic diseases. Distinguishing MDs from epileptic seizures is important in tailoring patient treatment. Understanding which MDs occur with different biological mechanisms will inform early diagnosis and management.
Collapse
Affiliation(s)
- Sterre van der Veen
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Gabrielle T W Tse
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Alessandro Ferretti
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Giacomo Garone
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Bart Post
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Nicola Specchio
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Victor S C Fung
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Marina Trivisano
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Ingrid E Scheffer
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia.
| |
Collapse
|
5
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
6
|
JoJo Yang QZ, Porter BE, Axeen ET. GNAO1-related neurodevelopmental disorder: Literature review and caregiver survey. Epilepsy Behav Rep 2022; 21:100582. [PMID: 36654732 PMCID: PMC9841045 DOI: 10.1016/j.ebr.2022.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Background GNAO1-related neurodevelopmental disorder is a heterogeneous condition characterized by hypotonia, developmental delay, epilepsy, and movement disorder. This study aims to better understand the spectrum of epilepsy associated with GNAO1 variants and experience with anti-seizure medications, and to review published epilepsy phenotypes in GNAO1. Methods An online survey was distributed to caregivers of individuals diagnosed with GNAO1 pathogenic variants, and a literature review was conducted. Results Fifteen respondents completed the survey with the median age of 39 months, including a novel variant p.Q52P. Nine had epilepsy - six had onset in the first week of life, three in the first year of life - but two reported no ongoing seizures. Seizure types varied. Individuals were taking a median of 3 seizure medications without a single best treatment. Our cohort was compared to a literature review of epilepsy in GNAO1. In 86 cases, 38 discrete variants were described; epilepsy is reported in 53 % cases, and a developmental and epileptic encephalopathy in 36 %. Conclusions While GNAO1-related epilepsy is most often early-onset and severe, seizures may not always be drug resistant or lifelong. Experience with anti-seizure medications is varied. Certain variant "hotspots" may correlate with epilepsy phenotype though genotype-phenotype correlation is poorly understood.
Collapse
Affiliation(s)
- Qian-Zhou JoJo Yang
- Division of Child Neurology, Department of Neurology, University of North Carolina, Chapel Hill, NC, United States,Corresponding author at: 170 Manning Dr, Campus Box 7025, Chapel Hill, NC 27599, United States
| | - Brenda E Porter
- Division of Child Neurology, Department of Neurology, Stanford University, Palo Alto, CA, United States
| | - Erika T Axeen
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, United States
| |
Collapse
|
7
|
Svorenova T, Romito LM, Colangelo I, Han V, Jech R, Prokisch H, Winkelmann J, Skorvanek M, Garavaglia B, Zech M. Dystonia as a prominent feature of TCF20-associated neurodevelopmental disorder: Expanding the phenotype. Parkinsonism Relat Disord 2022; 102:89-91. [DOI: 10.1016/j.parkreldis.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022]
|
8
|
Dzinovic I, Boesch S, Škorvánek M, Necpál J, Švantnerová J, Pavelekova P, Havránková P, Tsoma E, Indelicato E, Runkel E, Held V, Weise D, Janzarik W, Eckenweiler M, Berweck S, Mall V, Haslinger B, Jech R, Winkelmann J, Zech M. Genetic overlap between dystonia and other neurologic disorders: A study of 1,100 exomes. Parkinsonism Relat Disord 2022; 102:1-6. [PMID: 35872528 DOI: 10.1016/j.parkreldis.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Although shared genetic factors have been previously reported between dystonia and other neurologic conditions, no sequencing study exploring such links is available. In a large dystonic cohort, we aimed at analyzing the proportions of causative variants in genes associated with disease categories other than dystonia. METHODS Gene findings related to whole-exome sequencing-derived diagnoses in 1100 dystonia index cases were compared with expert-curated molecular testing panels for ataxia, parkinsonism, spastic paraplegia, neuropathy, epilepsy, and intellectual disability. RESULTS Among 220 diagnosed patients, 21% had variants in ataxia-linked genes; 15% in parkinsonism-linked genes; 15% in spastic-paraplegia-linked genes; 12% in neuropathy-linked genes; 32% in epilepsy-linked genes; and 65% in intellectual-disability-linked genes. Most diagnosed presentations (80%) were related to genes listed in ≥1 studied panel; 71% of the involved loci were found in the non-dystonia panels but not in an expert-curated gene list for dystonia. CONCLUSIONS Our study indicates a convergence in the genetics of dystonia and other neurologic phenotypes, informing diagnostic evaluation strategies and pathophysiological considerations.
Collapse
Affiliation(s)
- Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matej Škorvánek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic; Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Ján Necpál
- Department of Neurology, Zvolen Hospital, Slovakia
| | - Jana Švantnerová
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Petra Pavelekova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic; Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Petra Havránková
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Eugenia Tsoma
- Regional Clinical Center of Neurosurgery and Neurology, Department of Family Medicine and Outpatient Care, Uzhhorod National University, Uzhhorod, Ukraine
| | | | - Eva Runkel
- Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Valentin Held
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Weise
- Klinik für Neurologie, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany; Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Wibke Janzarik
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Steffen Berweck
- Ludwig Maximilian University of Munich, Munich, Germany; Hospital for Neuropediatrics and Neurological Rehabilitation, Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Volker Mall
- Lehrstuhl für Sozialpädiatrie, Technische Universität München, Munich, Germany; kbo-Kinderzentrum München, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
9
|
Waller SE, Morales‐Briceño H, Williams L, Mohammad SS, Fellner A, Kumar KR, Tchan M, Fung VS. Possible
EIF2AK2
‐Associated Stress‐Related Neurological Decompensation with Combined Dystonia and Striatal Lesions. Mov Disord Clin Pract 2021; 9:240-244. [DOI: 10.1002/mdc3.13384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sophie E. Waller
- Movement Disorders Unit, Neurology Department Westmead Hospital Westmead New South Wales Australia
| | - Hugo Morales‐Briceño
- Movement Disorders Unit, Neurology Department Westmead Hospital Westmead New South Wales Australia
- Sydney Medical School University of Sydney Sydney NSW Australia
| | - Laura Williams
- Movement Disorders Unit, Neurology Department Westmead Hospital Westmead New South Wales Australia
| | - Shekeeb S. Mohammad
- The Children's Hospital at Westmead Clinical School University of Sydney Westmead New South Wales Australia
| | - Avi Fellner
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital Petah Tikva Israel
- The Neurology Department Rabin Medical Center, Belinson Hospital Petah Tikva Israel
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research Darlinghurst New South Wales Australia
| | - Kishore R. Kumar
- Sydney Medical School University of Sydney Sydney NSW Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Molecular Medicine Laboratory and Neurology Department Concord Repatriation General Hospital Concord New South Wales Australia
| | - Michel Tchan
- Sydney Medical School University of Sydney Sydney NSW Australia
- Department of Clinical Genetics Westmead Hospital Westmead New South Wales Australia
| | - Victor S.C. Fung
- Movement Disorders Unit, Neurology Department Westmead Hospital Westmead New South Wales Australia
- Sydney Medical School University of Sydney Sydney NSW Australia
| |
Collapse
|
10
|
Solis GP, Kozhanova TV, Koval A, Zhilina SS, Mescheryakova TI, Abramov AA, Ishmuratov EV, Bolshakova ES, Osipova KV, Ayvazyan SO, Lebon S, Kanivets IV, Pyankov DV, Troccaz S, Silachev DN, Zavadenko NN, Prityko AG, Katanaev VL. Pediatric Encephalopathy: Clinical, Biochemical and Cellular Insights into the Role of Gln52 of GNAO1 and GNAI1 for the Dominant Disease. Cells 2021; 10:2749. [PMID: 34685729 PMCID: PMC8535069 DOI: 10.3390/cells10102749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins are immediate transducers of G protein-coupled receptors-the biggest receptor family in metazoans-and play innumerate functions in health and disease. A set of de novo point mutations in GNAO1 and GNAI1, the genes encoding the α-subunits (Gαo and Gαi1, respectively) of the heterotrimeric G proteins, have been described to cause pediatric encephalopathies represented by epileptic seizures, movement disorders, developmental delay, intellectual disability, and signs of neurodegeneration. Among such mutations, the Gln52Pro substitutions have been previously identified in GNAO1 and GNAI1. Here, we describe the case of an infant with another mutation in the same site, Gln52Arg. The patient manifested epileptic and movement disorders and a developmental delay, at the onset of 1.5 weeks after birth. We have analyzed biochemical and cellular properties of the three types of dominant pathogenic mutants in the Gln52 position described so far: Gαo[Gln52Pro], Gαi1[Gln52Pro], and the novel Gαo[Gln52Arg]. At the biochemical level, the three mutant proteins are deficient in binding and hydrolyzing GTP, which is the fundamental function of the healthy G proteins. At the cellular level, the mutants are defective in the interaction with partner proteins recognizing either the GDP-loaded or the GTP-loaded forms of Gαo. Further, of the two intracellular sites of Gαo localization, plasma membrane and Golgi, the former is strongly reduced for the mutant proteins. We conclude that the point mutations at Gln52 inactivate the Gαo and Gαi1 proteins leading to aberrant intracellular localization and partner protein interactions. These features likely lie at the core of the molecular etiology of pediatric encephalopathies associated with the codon 52 mutations in GNAO1/GNAI1.
Collapse
Affiliation(s)
- Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
| | - Tatyana V. Kozhanova
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
| | - Svetlana S. Zhilina
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Tatyana I. Mescheryakova
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Aleksandr A. Abramov
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Evgeny V. Ishmuratov
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Ekaterina S. Bolshakova
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Karina V. Osipova
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Sergey O. Ayvazyan
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Sébastien Lebon
- Unit of Pediatric Neurology and Neurorehabilitation, Division of Pediatrics, Woman-Mother-Child Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Ilya V. Kanivets
- Center of Medical Genetics, Genomed Ltd., 115093 Moscow, Russia; (I.V.K.); (D.V.P.)
| | - Denis V. Pyankov
- Center of Medical Genetics, Genomed Ltd., 115093 Moscow, Russia; (I.V.K.); (D.V.P.)
| | - Sabina Troccaz
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
| | - Denis N. Silachev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Nikolay N. Zavadenko
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Andrey G. Prityko
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|