1
|
Lan Y, Yuan H, Ma X, Yin C, Liu X, Zeng X, Lyu J, Xiong Y, Zhang X, Lu H, Zhong Y, Li X, Cui Z, Lou X. Resting-state functional connectivity of the occipital cortex in different subtypes of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14915. [PMID: 39187974 PMCID: PMC11347390 DOI: 10.1111/cns.14915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
AIMS To examine whether functional connectivity (FC) of the occipital gyrus differs between patients with Parkinson's disease (PD) motor subtypes and healthy controls (HCs). METHODS We enrolled 30 PD patients exhibiting tremor dominance (TD), 43 PD patients with postural instability and gait disturbance (PIGD), and 42 HCs. The occipital gyrus was partitioned into six areas of interest, as seed points, via the Anatomical Automatic Labeling template to compare the FC of the three groups and analyze the relationship of FC with clinical scales. RESULTS Compared with the PIGD group, the TD group showed increased FC between the left superior occipital gyrus (SOG.L) and right median cingulate and paracingulate gyri (DCG.R)/right paracentral lobule/bilateral inferior parietal, but supramarginal and angular gyri; the left middle occipital gyrus (MOG.L) and left posterior cingulate gyrus (PCG.L); the MOG.R and SOG.L/right calcarine fissure and surrounding cortex/DCG.R/PCG.L/right cuneus; the left inferior occipital gyrus (IOG.L) and right caudate nucleus; and the IOG.R and PCG.L. CONCLUSION Differentiated FC between the occipital gyrus and other brain areas within the PD motor subtypes, which may serve as neural markers to distinguish between patients with TD and PIGD PD.
Collapse
Affiliation(s)
- Yina Lan
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Hongjun Yuan
- Department of RadiologyThe Fifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaoxaio Ma
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - ChunYu Yin
- Department of Cadres' OutpatientThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xinyun Liu
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - XiYu Zeng
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jinhao Lyu
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yongqin Xiong
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaobo Zhang
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Haoxuan Lu
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yujue Zhong
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xuemei Li
- Department of Cadres' OutpatientThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhiqiang Cui
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xin Lou
- Department of RadiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
2
|
Zaman B, Mostafa I, Hassan T, Ahmed S, Esha NJI, Chowdhury FA, Bosu T, Chowdhury HN, Mallick A, Islam MS, Sharmin A, Uddin KM, Hossain MM, Rahman M. Tolperisone hydrochloride improves motor functions in Parkinson's disease via MMP-9 inhibition and by downregulating p38 MAPK and ERK1/2 signaling cascade. Biomed Pharmacother 2024; 174:116438. [PMID: 38513594 DOI: 10.1016/j.biopha.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway, particularly the p38 MAPK and ERK1/2, has been implicated in the pathogenesis of Parkinson's disease (PD). Recent studies have shown that MAPK signaling pathway can influence the expression of matrix metalloproteinase 9 (MMP-9), known for its involvement in various physiological and pathological processes, including neurodegenerative diseases. This study explores the modulation of MMP-9 expression via the MAPK/ERK signaling cascade and its potential therapeutic implications in the context of PD-associated motor dysfunction. Here, tolperisone hydrochloride (TL), a muscle relaxant that blocks voltage-gated sodium and calcium channels, was used as a treatment to observe its effect on MAPK signaling and MMP-9 expression. Rotenone (RT) exposure in mice resulted in a significant reduction in substantia nigra and primary motor cortex neurons, which were further evidenced by impairments in motor function. When TL was administered, neuron count was restored (89.0 ± 4.78 vs 117.0 ± 4.46/mm2), and most of the motor dysfunction was alleviated. Mechanistically, TL reduced the protein expression of phospho-p38MAPK (1.06 fold vs 1.00 fold) and phospho-ERK1/2 (1.16 fold vs 1.02 fold), leading to the inhibition of MAPK signaling, as well as reduced MMP-9 concentrations (2.76 ± 0.10 vs 1.94 ± 0.10 ng/mL) in the process of rescuing RT-induced neuronal cell death and motor dysfunction. Computational analysis further revealed TL's potential inhibitory properties against MMP-9 along with N and L-type calcium channels. These findings shed light on TL's neuroprotective effects via MMP-9 inhibition and MAPK signaling downregulation, offering potential therapeutic avenues for PD-associated motor dysfunction.
Collapse
Affiliation(s)
- Bushra Zaman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh; Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Irona Mostafa
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Tazree Hassan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Shamim Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Nusrat Jahan Ikbal Esha
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Fowzia Afsana Chowdhury
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Tory Bosu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Humayra Noor Chowdhury
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Anup Mallick
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Mm Shanjid Islam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Ayesha Sharmin
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Kabir M Uddin
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Mainul Hossain
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh.
| |
Collapse
|
3
|
Deng JH, Zhang HW, Liu XL, Deng HZ, Lin F. Morphological changes in Parkinson's disease based on magnetic resonance imaging: A mini-review of subcortical structures segmentation and shape analysis. World J Psychiatry 2022; 12:1356-1366. [PMID: 36579355 PMCID: PMC9791612 DOI: 10.5498/wjp.v12.i12.1356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra, resulting in clinical symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. The pathophysiological changes in PD are inextricably linked to the subcortical structures. Shape analysis is a method for quantifying the volume or surface morphology of structures using magnetic resonance imaging. In this review, we discuss the recent advances in morphological analysis techniques for studying the subcortical structures in PD in vivo. This approach includes available pipelines for volume and shape analysis, focusing on the morphological features of volume and surface area.
Collapse
Affiliation(s)
- Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Hua-Zhen Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| |
Collapse
|
4
|
Li J, Zhang Y, Huang Z, Jiang Y, Ren Z, Liu D, Zhang J, La Piana R, Chen Y. Cortical and subcortical morphological alterations in motor subtypes of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:167. [PMID: 36470900 PMCID: PMC9723125 DOI: 10.1038/s41531-022-00435-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) can be classified into an akinetic-rigid (AR) and a tremor-dominant (TD) subtype based on predominant motor symptoms. Patients with different motor subtypes often show divergent clinical manifestations; however, the underlying neural mechanisms remain unclear. This study aimed to characterize the cortical and subcortical morphological alterations in motor subtypes of PD. T1-weighted MRI images were obtained for 90 patients with PD (64 with the AR subtype and 26 with the TD subtype) and 56 healthy controls (HCs). Cortical surface area, sulcal depth (measured by Freesurfer's Sulc index), and subcortical volume were computed to identify the cortical and subcortical morphological alterations in the two motor subtypes. Compared with HCs, we found widespread surface area reductions in the AR subtype yet sparse surface area reductions in the TD subtype. We found no significant Sulc change in the AR subtype yet increased Sulc in the right supramarginal gyrus in the TD subtype. The hippocampal volumes in both subtypes were lower than those of HCs. In PD patients, the surface area of left posterior cingulate cortex was positively correlated with Mini-Mental State Examination (MMSE) score, while the Sulc value of right middle frontal gyrus was positively correlated with severity of motor impairments. Additionally, the hippocampal volumes were positively correlated with MMSE and Montreal Cognitive Assessment scores and negatively correlated with severity of motor impairments and Hoehn & Yahr scores. Taken together, these findings may contribute to a better understanding of the neural substrates underlying the distinct symptom profiles in the two PD subtypes.
Collapse
Affiliation(s)
- Jianyu Li
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| | - Yuanchao Zhang
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| | - Zitong Huang
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| | - Yihan Jiang
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| | - Zhanbing Ren
- grid.263488.30000 0001 0472 9649Department of Physical Education, Shenzhen University, Shenzhen, 518060 China
| | - Daihong Liu
- grid.452285.cDepartment of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030 P. R. China
| | - Jiuquan Zhang
- grid.452285.cDepartment of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030 P. R. China
| | - Roberta La Piana
- grid.14709.3b0000 0004 1936 8649Department of Neurology & Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 0G4 Canada
| | - Yifan Chen
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| |
Collapse
|
5
|
Wang F, Lai Y, Pan Y, Li H, Liu Q, Sun B. A systematic review of brain morphometry related to deep brain stimulation outcome in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:130. [PMID: 36224189 PMCID: PMC9556527 DOI: 10.1038/s41531-022-00403-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
While the efficacy of deep brain stimulation (DBS) is well-established in Parkinson’s Disease (PD), the benefit of DBS varies across patients. Using imaging features for outcome prediction offers potential in improving effectiveness, whereas the value of presurgical brain morphometry, derived from the routinely used imaging modality in surgical planning, remains under-explored. This review provides a comprehensive investigation of links between DBS outcomes and brain morphometry features in PD. We systematically searched PubMed and Embase databases and retrieved 793 articles, of which 25 met inclusion criteria and were reviewed in detail. A majority of studies (24/25), including 1253 of 1316 patients, focused on the outcome of DBS targeting the subthalamic nucleus (STN), while five studies included 57 patients receiving globus pallidus internus (GPi) DBS. Accumulated evidence showed that the atrophy of motor cortex and thalamus were associated with poor motor improvement, other structures such as the lateral-occipital cortex and anterior cingulate were also reported to correlated with motor outcome. Regarding non-motor outcomes, decreased volume of the hippocampus was reported to correlate with poor cognitive outcomes. Structures such as the thalamus, nucleus accumbens, and nucleus of basalis of Meynert were also reported to correlate with cognitive functions. Caudal middle frontal cortex was reported to have an impact on postsurgical psychiatric changes. Collectively, the findings of this review emphasize the utility of brain morphometry in outcome prediction of DBS for PD. Future efforts are needed to validate the findings and demonstrate the feasibility of brain morphometry in larger cohorts.
Collapse
Affiliation(s)
- Fengting Wang
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Lai
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyang Li
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Liu
- grid.152326.10000 0001 2264 7217Department of Psychology and Human Development, Vanderbilt University, Nashville, USA
| | - Bomin Sun
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|