1
|
Drath I, Richter F, Feja M. Nose-to-brain drug delivery: from bench to bedside. Transl Neurodegener 2025; 14:23. [PMID: 40390100 PMCID: PMC12090632 DOI: 10.1186/s40035-025-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/18/2025] [Indexed: 05/21/2025] Open
Abstract
There is increasing interest in nose-to-brain delivery as an innovative drug delivery strategy for neurodegenerative disorders such as Parkinson's or Alzheimer's disease. The unique anatomy of the nose-brain interface facilitates direct drug transport via the olfactory and trigeminal pathways to the brain, bypassing the blood-brain barrier. Different administration techniques as well as advanced drug formulations like targeted nanoparticles and thermoresponsive systems have been explored to improve the delivery efficiency and the therapeutic efficacy. This review provides an up-to-date perspective on this fast-developing field, and discusses different studies on safety and pharmacokinetic properties. A thorough evaluation of preclinical and clinical studies reveals both promises and challenges of this delivery method, highlighting approved drugs for the treatment of epilepsy and migraine that successfully utilize intranasal routes. The current landscape of research on nose-to-brain delivery is critically discussed, and a rationale is provided for ongoing research to optimize therapeutic strategies.
Collapse
Affiliation(s)
- Isabell Drath
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
2
|
Huang YT, Yang TJ, Liu KC, Chen MC, Chan PYS, Chen JC. Intranasal α-Synuclein induces progressive behavioral impairments in mice. Behav Brain Res 2025; 485:115517. [PMID: 40024483 DOI: 10.1016/j.bbr.2025.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
α-Synuclein (α-Syn) is implicated in the progression of Parkinson's disease, yet the disease's etiology remains unclear. This study aims to explore how α-Syn affects olfactory, motor, mood and cognitive functions if it initiates from the olfactory bulb. Mice were administered intranasal human AAV-α-Syn and subsequently evaluated for olfactory, motor, mood, and cognitive functions. Immunofluorescence was performed to assess dopaminergic neuronal damage. Results shown that olfactory dysfunction was evident as AAV-α-Syn-treated mice took longer to find buried pellets compared to controls at 3, 9, and 12 months post-instillation. Motor activity remained normal at 6 months but significantly declined at 9 months. Reduced tyrosine hydroxylase expression but increased amount of human α-Syn were observed in the substantia nigra at end of behavioral measurements. AAV-α-Syn mice showed reduced sucrose intake and decreased time in the center zone of the open field at 9 months. Cognitive deficits were observed in recognition function and social memory at 6 and 9 months, with impaired working memory at 12 months. Thus, intranasal AAV-α-Syn instillation in mice leads to progressive olfactory, motor, anxiety, depression-like, and cognitive dysfunctions, reflecting α-Syn pathology propagation.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Jung Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kou-Chen Liu
- Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chi Chen
- Department of Public Health and Biostatistics Consulting Center, Chang Gung University, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ying S Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Fielding L, Menard MA, Roth J, Iuliano M, Dehay B, Aguilar-Calvo P, Volpicelli-Daley LA. Current safety recommendations for handling mouse and human αsynuclein pre-formed fibrils. Neurobiol Dis 2025; 206:106820. [PMID: 39889858 DOI: 10.1016/j.nbd.2025.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
α-Synuclein (α-syn) can form amyloid fibrils. Lewy bodies and Lewy neurites containing aggregated α-syn are pathological markers of Parkinson's Disease and Dementia with Lewy Bodies. To better understand the role of pathological α-syn in disease, many labs use α-syn preformed fibrils (PFFs). Neurons take up the PFFs, which act as seeds to corrupt endogenously expressed α-syn, inducing it to form aggregates very similar to those found in diseased brains. The PFFs are typically generated using recombinant mouse or human α-syn. α-Syn fibrils can also be extracted or amplified from brain tissue extracts, cerebrospinal fluid, or skin biopsies from patients with known synucleinopathy. The PFFs are then added to cell culture, or injected into rodents or primates to induce pathology. Because PFFs can corrupt endogenous α-syn, researchers should adhere to strict safety protocols when handling PFFs to minimize potential exposures. Our group consulted with biosafety professionals at the University of Alabama at Birmingham (UAB) to identify potential risks related to working with α-syn PFFs and offer containment controls to mitigate those risks. Potential exposures include pipetting, opening tubes, and sonication of the PFFs to generate fragments, all of which could potentially generate aerosols. Here, we outline best practices for the safe conduct of research with α-syn fibrils, including personal protective equipment and decontamination procedures. We highlight steps in which extra precautions should be taken and how to minimize exposure and potential risk associated with use of PFFs in scientific research.
Collapse
Affiliation(s)
- Lauren Fielding
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, 1719 6th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, 1719 6th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Justin Roth
- Environmental Health and Safety, 933 19(th) Street South, University of Alabama at Birmingham, Birmingham, AL 35205, USA.
| | - Maria Iuliano
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 and Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; Aligning Science Across Parkinson's (ASA) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | | | - Patricia Aguilar-Calvo
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, 1719 6th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, 1719 6th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Aligning Science Across Parkinson's (ASA) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
4
|
Yamakado H, Takahashi R. Experimental Animal Models of Prodromal Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S369-S379. [PMID: 38427504 PMCID: PMC11492006 DOI: 10.3233/jpd-230393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
There is an estimated 35-45% loss of striatal dopamine at the time of diagnosis of Parkinson's disease (PD), and cases clinically diagnosed in the early stages may already be pathologically in advanced stages. Recent large-scale clinical trials of disease-modifying therapies (DMT) also suggest the necessity of targeting patients at earlier stages of the disease. From this perspective, the prodromal phase of PD is currently the focus of attention, emphasizing the need for a prodromal mouse model that accurately reflects the pathophysiology, along with early biomarkers. To establish prodromal animal model of PD with high face validity that reflects the disease state, the model must possess high construct validity that accurately incorporates clinical and pathological features in the prodromal phase. Furthermore, as a preclinical model of DMT, the model must possess high predictive validity to accurately evaluate the response to intervention. This review provides an overview of animal models which reflect the characteristics of prodromal PD, including alpha-synuclein (aS) accumulation and associated early non-motor symptoms, with a focus on the aS propagation model and genetic model. In addition, we discuss the challenges associated with these models. The genetic model often fails to induce motor symptoms, while aS propagation models skip the crucial step of initial aS aggregate formation, thereby not fully replicating the entire natural course of the disease. Identifying factors that induce the transition from prodromal to symptomatic phase is important as a preclinical model for DMT to prevent or delay the onset of the disease.
Collapse
Affiliation(s)
- Hodaka Yamakado
- Department of Therapeutics for Multiple System Atrophy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|