1
|
Arroyo-Ataz G, Jones D. Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease. Microcirculation 2024; 31:e12887. [PMID: 39329178 PMCID: PMC11560633 DOI: 10.1111/micc.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for proper functioning of the lymphatic system, as they provide the driving force for lymph transport. Recent studies have advanced our understanding of the molecular mechanisms that regulate LMCs, which control rhythmic contraction and vessel tone of lymphatic vessels-traits also found in cardiac and vascular smooth muscle. In this review, we discuss the molecular pathways that orchestrate LMC-mediated contractility and summarize current knowledge about their developmental origin, which may shed light on the distinct contractile characteristics of LMCs. Further, we highlight the growing evidence implicating LMC dysregulation in the pathogenesis of lymphedema and other diseases related to lymphatic vessel dysfunction. Given the limited number and efficacy of existing therapies to treat lymphedema, LMCs present a promising focus for identifying novel therapeutic targets aimed at improving lymphatic vessel contractility. Here, we discuss LMCs in health and disease, as well as therapeutic strategies aimed at targeting them to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| |
Collapse
|
2
|
Pan S, Yu X, Liu M, Liu J, Wang C, Zhang Y, Ge F, Fan A, Zhang D, Chen M. Banxia Xiexin decoction promotes gastric lymphatic pumping by regulating lymphatic smooth muscle cell contraction and energy metabolism in a stress-induced gastric ulceration rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118015. [PMID: 38499261 DOI: 10.1016/j.jep.2024.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) formula Banxia Xiexin decoction (BXD) has definite therapeutic effect in treating stress-induced gastric ulceration (SIGU) and many other gastrointestinal diseases, but its effect on gastric lymphatic pumping (GLP) remains unclear. AIM OF THE STUDY Elucidating the role of GLP in SIGU and BXD treatment, and exploring the molecular mechanisms of GLP regulation. MATERIALS AND METHODS In vivo GLP imaging were performed on SIGU rat model, and the lymphatic dynamic parameters were evaluated. Gastric antrum tissues and serum were collected for macroscopic, histopathological and ulcerative parameters analysis. Gastric lymphatic vessel (GLV) tissues were collected for RNA-Seq assays. Differentially expressed genes (DEGs) were screened from RNA-Seq result and submitted for transcriptomic analysis. Key DEGs and their derivative proteins were measured by qRT-PCR and WB. RESULTS GLP was significantly suppressed in SIGU rats. BXD could recover GLP, ameliorate stomach lymphostasis, and alleviate the ulcerative damage. Transcriptome analysis of GLV showed the top up-DEGs were concentrated in smooth muscle contraction signaling pathway, while the top the down-DEGs were concentrated in energy metabolism pathways especially fatty acid degradation pathway, which indicated BXD can promote lymphatic smooth muscle contraction, regulate energy metabolism, and reduce fatty acid degradation. The most possible target of these mechanisms was the lymphatic smooth muscle cells (LSMCs) which drove the GLP. This speculation was further validated by the qRT-PCR and WB assessments for the level of key genes and proteins. CONCLUSIONS By activating the smooth muscle contraction signaling pathway, restoring energy supply, modulating energy metabolism program and reducing fatty acid degradation, BXD effectively recovered GLP, mitigated the accumulation of inflammatory cytokines and metabolic wastes in the stomach, which importantly contributes to its efficacy in treating SIGU.
Collapse
Affiliation(s)
- Shutao Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Mingyu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiaqi Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yao Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fei Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Angran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing, 101121, China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Kim HJ, Li M, Erlich EC, Randolph GJ, Davis MJ. ERG K + channels mediate a major component of action potential repolarization in lymphatic muscle. Sci Rep 2023; 13:14890. [PMID: 37689781 PMCID: PMC10492848 DOI: 10.1038/s41598-023-41995-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
Smooth muscle cells in the walls of collecting lymphatic vessels fire spontaneous action potentials (APs), which conduct rapidly over the muscle layer to initiate contractions that propel lymph. Several ion channels have been implicated in the currents underlying the AP spike and the preceding diastolic depolarization, but the molecular identities of K+ channels involved in AP repolarization are unknown. Based on previous studies of other rhythmically active smooth muscles, we hypothesized that ether-a-go-go related gene (ERG) K+ channels (Kv11) play an important role in repolarization of the AP in lymphatic muscle. Message for one or more ERG channel isoforms was detected by RT-PCR analysis of lymphatic vessels from mice, rats and humans. Membrane potential recordings in smooth muscle cells of rat and human lymphatics revealed that nanomolar concentrations of ERG-1 inhibitors (E-4031 and BeKm-1) prolonged the duration of the AP plateau (normally ~ 1 s in duration) and induced multiple spikes, whereas ERG-1 activators (ICA-105574 and RPR-260243) shortened the plateau and could completely inhibit spontaneous APs. At relatively high inhibitor concentrations, the AP plateau duration lasted as long as 24 s. ERG activators reversed the effects of ERG inhibitors and vice-versa. In pressure myograph studies, ERG channel inhibition prolonged the diastolic repolarization phase of the contraction cycle and reduced the frequency of spontaneous contractions. This is the first evidence for a specific K+ channel contributing to the AP in lymphatic muscle. Our results imply that lymphatic contractile dysfunction may occur in long QT type II patients with mutations that result in ERG channel loss-of-function or impaired trafficking of the channel to the cell membrane.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA
| | - Min Li
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA
| | - Emma C Erlich
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - Michael J Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Ren Y, Okazaki T, Ngamnsae P, Hashimoto H, Ikeda R, Honkura Y, Suzuki J, Izumi SI. Anatomy and function of the lymphatic vessels in the parietal pleura and their plasticity under inflammation in mice. Microvasc Res 2023; 148:104546. [PMID: 37230165 DOI: 10.1016/j.mvr.2023.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Inflammatory pleuritis often causes pleural effusions, which are drained through lymphatic vessels (lymphatics) in the parietal pleura. The distribution of button- and zipper-like endothelial junctions can identify the subtypes of lymphatics, the initial, pre-collecting, and collecting lymphatics. Vascular endothelial growth factor receptor (VEGFR)-3 and its ligands VEGF-C/D are crucial lymphangiogenic factors. Currently, in the pleura covering the chest walls, the anatomy of the lymphatics and connecting networks of blood vessels are incompletely understood. Moreover, their pathological and functional plasticity under inflammation and the effects of VEGFR inhibition are unclear. This study aimed to learn the above-unanswered questions and immunostained mouse chest walls as whole-mount specimens. Confocal microscopic images and their 3-dimensional reconstruction analyzed the vasculatures. Repeated intra-pleural cavity lipopolysaccharide challenge induced pleuritis, which was also treated with VEGFR inhibition. Levels of vascular-related factors were evaluated by quantitative real-time polymerase chain reaction. We observed the initial lymphatics in the intercostals, collecting lymphatics under the ribs, and pre-collecting lymphatics connecting both. Arteries branched into capillaries and gathered into veins from the cranial to the caudal side. Lymphatics and blood vessels were in different layers with an adjacent distribution of the lymphatic layer to the pleural cavity. Inflammatory pleuritis elevated expression levels of VEGF-C/D and angiopoietin-2, induced lymphangiogenesis and blood vessel remodeling, and disorganized the lymphatic structures and subtypes. The disorganized lymphatics showed large sheet-like structures with many branches and holes inside. Such lymphatics were abundant in zipper-like endothelial junctions with some button-like junctions. The blood vessels were tortuous and had various diameters and complex networks. Stratified layers of lymphatics and blood vessels were disorganized, with impaired drainage function. VEGFR inhibition partially maintained their structures and drainage function. These findings demonstrate anatomy and pathological changes of the vasculatures in the parietal pleura and their potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yuzhuo Ren
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tatsuma Okazaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Peerada Ngamnsae
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hikaru Hashimoto
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Ryoukichi Ikeda
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Yohei Honkura
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Jun Suzuki
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Singh R, Heaps CL, Muthuchamy M, Deveau MA, Stewart RH, Laine GA, Dongaonkar RM. Dichotomous effects of in vivo and in vitro ionizing radiation exposure on lymphatic function. Am J Physiol Heart Circ Physiol 2023; 324:H155-H171. [PMID: 36459446 DOI: 10.1152/ajpheart.00387.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues. Primarily because of the lack of understanding of the acute effects of IR exposure on lymphatic function, acute edema and inflammation, common sequelae of IR exposure, have been ascribed solely to blood vessel damage. Therefore, in the present study, the lymphatic acute responses to IR exposure were quantified to evaluate the hypothesis that IR exposure impairs lymphatic pumping. Rat mesenteric lymphatic vessels were irradiated in vivo or in vitro, and changes in pumping were quantified in isolated vessels in vitro. Compared with sham-treated vessels, pumping was lowered in lymphatic vessels irradiated in vivo but increased in vessels irradiated in vitro. Furthermore, unlike in blood vessels, the acute effects of IR exposure in lymphatic vessels were not mediated by nitric oxide-dependent pathways in either in vivo or in vitro irradiated vessels. After cyclooxygenase blockade, pumping was partially restored in lymphatic vessels irradiated in vitro but not in vessels irradiated in vivo. Taken together, these findings demonstrated that lymphatic vessels are radiosensitive and LEC apoptosis alone may not account for all the effects of IR exposure on the lymphatic system.NEW & NOTEWORTHY Earlier studies leading to the common belief that lymphatic vessels are radioresistant either did not characterize lymphatic pumping, deemed necessary for the resolution of edema and inflammation, or did it in vivo. By characterizing pumping in vitro, the present study, for the first time, demonstrated that lymphatic pumping was impaired in vessels irradiated in vivo and enhanced in vessels irradiated in vitro. Furthermore, the pathways implicated in ionizing radiation-induced blood vessel damage did not mediate lymphatic responses.
Collapse
Affiliation(s)
- Reetu Singh
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Cristine L Heaps
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | | | - Michael A Deveau
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Randolph H Stewart
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Glen A Laine
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ranjeet M Dongaonkar
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
6
|
Davis MJ, Kim HJ, Nichols CG. K ATP channels in lymphatic function. Am J Physiol Cell Physiol 2022; 323:C1018-C1035. [PMID: 35785984 PMCID: PMC9550566 DOI: 10.1152/ajpcell.00137.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
KATP channels function as negative regulators of active lymphatic pumping and lymph transport. This review summarizes and critiques the evidence for the expression of specific KATP channel subunits in lymphatic smooth muscle and endothelium, the roles that they play in normal lymphatic function, and their possible involvement in multiple diseases, including metabolic syndrome, lymphedema, and Cantú syndrome. For each of these topics, suggestions are made for directions for future research.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
Lee Y, Zawieja SD, Muthuchamy M. Lymphatic Collecting Vessel: New Perspectives on Mechanisms of Contractile Regulation and Potential Lymphatic Contractile Pathways to Target in Obesity and Metabolic Diseases. Front Pharmacol 2022; 13:848088. [PMID: 35355722 PMCID: PMC8959455 DOI: 10.3389/fphar.2022.848088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Obesity and metabolic syndrome pose a significant risk for developing cardiovascular disease and remain a critical healthcare challenge. Given the lymphatic system's role as a nexus for lipid absorption, immune cell trafficking, interstitial fluid and macromolecule homeostasis maintenance, the impact of obesity and metabolic disease on lymphatic function is a burgeoning field in lymphatic research. Work over the past decade has progressed from the association of an obese phenotype with Prox1 haploinsufficiency and the identification of obesity as a risk factor for lymphedema to consistent findings of lymphatic collecting vessel dysfunction across multiple metabolic disease models and organisms and characterization of obesity-induced lymphedema in the morbidly obese. Critically, recent findings have suggested that restoration of lymphatic function can also ameliorate obesity and insulin resistance, positing lymphatic targeted therapies as relevant pharmacological interventions. There remain, however, significant gaps in our understanding of lymphatic collecting vessel function, particularly the mechanisms that regulate the spontaneous contractile activity required for active lymph propulsion and lymph return in humans. In this article, we will review the current findings on lymphatic architecture and collecting vessel function, including recent advances in the ionic basis of lymphatic muscle contractile activity. We will then discuss lymphatic dysfunction observed with metabolic disruption and potential pathways to target with pharmacological approaches to improve lymphatic collecting vessel function.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Scott D Zawieja
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
8
|
Solari E, Marcozzi C, Ottaviani C, Negrini D, Moriondo A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. BIOLOGY 2022; 11:419. [PMID: 35336793 PMCID: PMC8945018 DOI: 10.3390/biology11030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Lymphatic vessels exploit the mechanical stresses of their surroundings together with intrinsic rhythmic contractions to drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure in order to guarantee a proper mechanical coupling between the chest wall and lungs. To better understand the potential for liquid drainage, the key parameter to be considered is the difference in hydraulic pressure between the pleural space and the lymphatic lumen. In this review we collected old and new findings from in vivo direct measurements of hydraulic pressures in anaesthetized animals with the aim to better frame the complex physiology of diaphragmatic and intercostal lymphatics which drain liquid from the pleural cavity.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, 21100 Varese, Italy; (E.S.); (C.M.); (C.O.); (D.N.)
| |
Collapse
|
9
|
Lobov GI. Role of Endogenous Hydrogen Sulfide in Relaxation of the Lymph Node Capsule in LPS-induced Inflammation. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Monjotin N, Tenca G. Lymphotonic activity of Ruscus extract, hesperidin methyl chalcone and vitamin C in human lymphatic smooth muscle cells. Microvasc Res 2021; 139:104274. [PMID: 34717967 DOI: 10.1016/j.mvr.2021.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Besides actions including their venotonic, anti-inflammatory, and anti-oxidant effects, venoactive drugs are expected to act on edema via their action on lymphatics. The objective of this study was to evaluate the effect of the combination of Ruscus, hesperidin methyl chalcone and Vitamin C (Ruscus/HMC/Vit C) on intracellular calcium mobilization and contraction of human lymphatic smooth muscle cells (LSMCs) to better characterize the mechanism of its lymphotonic activity. METHODS Calcium mobilization was evidenced by videomicroscopy analysis of the fluorescence emitted by a specific Ca2+ sensitive dye and measured after injection of Ruscus/HMC/Vit C at 0.1, 0.3, 1.0, and 3.0 mg/mL into LSMCs. RESULTS Ruscus/HMC/Vit C induced a strong and reproducible concentration-dependent calcium mobilization in LSMCs. On the contrary, another venoactive drug used as comparator, micronized purified flavonoid fraction (MPFF), did not induce calcium mobilization whatever the tested concentration. CONCLUSION Although alternative mechanisms of action may result in potential lymphotonic effects, the efficacy of lymphotonic products is nonetheless related to their stimulating effect on the contractile activity of the smooth muscle cells surrounding lymphatic vessels. In the light of the results obtained in this study, the direct effect of Ruscus/HMC/Vit C on LSMC contraction may partially explain its clinical efficacy on lymphotonic activity, as has been observed in terms of objective signs of edema as reported in the recent guidelines on chronic venous disease.
Collapse
Affiliation(s)
- Nicolas Monjotin
- Institut de recherche Pierre Fabre, 17 Avenue Jean Moulin, 81106 Castres cedex, France.
| | - Guillaume Tenca
- Bioalternatives, 1 bis rue des plantes, 86160 Gençay, France
| |
Collapse
|
11
|
Tuckey B, Srbely J, Rigney G, Vythilingam M, Shah J. Impaired Lymphatic Drainage and Interstitial Inflammatory Stasis in Chronic Musculoskeletal and Idiopathic Pain Syndromes: Exploring a Novel Mechanism. FRONTIERS IN PAIN RESEARCH 2021; 2:691740. [PMID: 35295453 PMCID: PMC8915610 DOI: 10.3389/fpain.2021.691740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
A normal functioning lymphatic pump mechanism and unimpaired venous drainage are required for the body to remove inflammatory mediators from the extracellular compartment. Impaired vascular perfusion and/or lymphatic drainage may result in the accumulation of inflammatory substances in the interstitium, creating continuous nociceptor activation and related pathophysiological states including central sensitization and neuroinflammation. We hypothesize that following trauma and/or immune responses, inflammatory mediators may become entrapped in the recently discovered interstitial, pre-lymphatic pathways and/or initial lymphatic vessels. The ensuing interstitial inflammatory stasis is a pathophysiological state, created by specific pro-inflammatory cytokine secretion including tumor necrosis factor alpha, interleukin 6, and interleukin 1b. These cytokines can disable the local lymphatic pump mechanism, impair vascular perfusion via sympathetic activation and, following transforming growth factor beta 1 expression, may lead to additional stasis through direct fascial compression of pre-lymphatic pathways. These mechanisms, when combined with other known pathophysiological processes, enable us to describe a persistent feed-forward loop capable of creating and maintaining chronic pain syndromes. The potential for concomitant visceral and/or vascular dysfunction, initiated and maintained by the same feed-forward inflammatory mechanism, is also described.
Collapse
Affiliation(s)
- Brian Tuckey
- Department of Physical Therapy, Tuckey and Associates Physical Therapy, Frederick, MD, United States
| | - John Srbely
- Department of Human Health and Nutritional Sciences, University of Guelph, ON, Canada
| | - Grant Rigney
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Meena Vythilingam
- Department of Health and Human Services, Center for Health Innovation, Office of the Assistant Secretary for Health, Washington, DC, United States
| | - Jay Shah
- Department of Rehabilitation Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Russell PS, Hong J, Trevaskis NL, Windsor JA, Martin ND, Phillips ARJ. Lymphatic Contractile Function: A Comprehensive Review of Drug Effects and Potential Clinical Application. Cardiovasc Res 2021; 118:2437-2457. [PMID: 34415332 DOI: 10.1093/cvr/cvab279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The lymphatic system and the cardiovascular system work together to maintain body fluid homeostasis. Despite that, the lymphatic system has been relatively neglected as a potential drug target and a source of adverse effects from cardiovascular drugs. Like the heart, the lymphatic vessels undergo phasic contractions to promote lymph flow against a pressure gradient. Dysfunction or failure of the lymphatic pump results in fluid imbalance and tissue oedema. While this can due to drug effects, it is also a feature of breast cancer-associated lymphoedema, chronic venous insufficiency, congestive heart failure and acute systemic inflammation. There are currently no specific drug treatments for lymphatic pump dysfunction in clinical use despite the wealth of data from pre-clinical studies. AIM To identify (1) drugs with direct effects on lymphatic tonic and phasic contractions with potential for clinical application, and (2) drugs in current clinical use that have a positive or negative side effect on lymphatic function. METHODS We comprehensively reviewed all studies that tested the direct effect of a drug on the contractile function of lymphatic vessels. RESULTS Of the 208 drugs identified from 193 studies, about a quarter had only stimulatory effects on lymphatic tone, contraction frequency and/or contraction amplitude. Of FDA-approved drugs, there were 14 that increased lymphatic phasic contractile function. The most frequently used class of drug with inhibitory effects on lymphatic pump function were the calcium channels blockers. CONCLUSION This review highlights the opportunity for specific drug treatments of lymphatic dysfunction in various disease states and for avoiding adverse drug effects on lymphatic contractile function.
Collapse
Affiliation(s)
- Peter S Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie L Trevaskis
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John A Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Niels D Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Kwon S, Moreno-Gonzalez I, Taylor-Presse K, Edwards Iii G, Gamez N, Calderon O, Zhu B, Velasquez FC, Soto C, Sevick-Muraca EM. Impaired Peripheral Lymphatic Function and Cerebrospinal Fluid Outflow in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 69:585-593. [PMID: 31104026 DOI: 10.3233/jad-190013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cerebrospinal fluid (CSF) outflow from the brain occurs through absorption into the arachnoid villi and, more predominantly, through meningeal and olfactory lymphatics that ultimately drain into the peripheral lymphatics. Impaired CSF outflow has been postulated as a contributing mechanism in Alzheimer's disease (AD). Herein we conducted near-infrared fluorescence imaging of CSF outflow into the peripheral lymph nodes (LNs) and of peripheral lymphatic function in a transgenic mouse model of AD (5XFAD) and wild-type (WT) littermates. CSF outflow was assessed from change in fluorescence intensity in the submandibular LNs as a function of time following bolus, an intrathecal injection of indocyanine green (ICG). Peripheral lymphatic function was measured by assessing lymphangion contractile function in lymphatics draining into the popliteal LN following intradermal ICG injection in the dorsal aspect of the hind paw. The results show 1) significantly impaired CSF outflow into the submandibular LNs of 5XFAD mice and 2) reduced contractile frequency in the peripheral lymphatics as compared to WT mice. Impaired CSF clearance was also evidenced by reduction of fluorescence on ventral surfaces of extracted brains of 5XFAD mice at euthanasia. These results support the hypothesis that lymphatic congestion caused by reduced peripheral lymphatic function could limit CSF outflow and may contribute to the cause and/or progression of AD.
Collapse
Affiliation(s)
- Sunkuk Kwon
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Kathleen Taylor-Presse
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - George Edwards Iii
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Nazaret Gamez
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Olivia Calderon
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Banghe Zhu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Fred Christian Velasquez
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Eva M Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging Roles of Mast Cells in the Regulation of Lymphatic Immuno-Physiology. Front Immunol 2020; 11:1234. [PMID: 32625213 PMCID: PMC7311670 DOI: 10.3389/fimmu.2020.01234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Anatoliy A Gashev
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
15
|
Meijer EF, Bouta EM, Mendonca C, Skolny MN, Salama LW, Taghian AG, Padera TP. A retrospective analysis of commonly prescribed medications and the risk of developing breast cancer related lymphedema. ACTA ACUST UNITED AC 2020; 6. [PMID: 32864167 PMCID: PMC7455025 DOI: 10.15761/crt.1000293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives: Breast cancer related lymphedema (BCRL) is a common complication of current breast cancer treatment modalities, significantly lowering quality of life for these patients and often leading to recurrent infections. Here, based on pre-clinical literature, we aim to retrospectively evaluate the risks of prescribed medications on BCRL development. Methods: All post-operative breast cancer patients who received radiotherapy from 2005–2013 at Massachusetts General Hospital and developed lymphedema(n=115) were included in the analysis. Comparable patients without lymphedema(n=230) were randomly selected as control. The following classes of medications were analyzed: NSAIDs, corticosteroids, angiotensin system inhibitors, calcium channel blockers and hormonal therapy. Known risk factors for lymphedema development were included as variables, including BMI, age at diagnosis, type of surgery, number of lymph nodes removed and radiation therapy. Outcomes were BCRL development and lymphedema severity. Results: Similarly, to previous studies, we found that an increase in BMI increases the risk of BCRL(p=0.006) and axillary lymph node dissection has a higher risk of developing BCRL compared to sentinel lymph node biopsy(p=0.045). None of the drugs studied increased the risk of BCRL development or lymphedema severity. However, lymphedema severity was positively correlated with the number of lymph nodes removed(p=0.034). Conclusion: We found that anti-inflammatory drugs, anti-hypertensive drugs and hormonal therapy taken during the year postoperatively do not increase the risk of BCRL development or lymphedema severity in breast cancer patients. While others have demonstrated that the number of lymph nodes removed during surgery increases the risk of BCRL, we found it also correlates to lymphedema severity.
Collapse
Affiliation(s)
- Eelco Fj Meijer
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Echoe M Bouta
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clive Mendonca
- Trinity Life Sciences, Waltham, Massachusetts 02451, USA
| | - Melissa N Skolny
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Laura W Salama
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alphonse G Taghian
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
Makita-Suzuki K, Kakinuma C, Inomata A, Shimada Y, Hara T, Yao T. Dog-specific hemorrhagic changes induced by liposomal formulations, in the liver and the gallbladder. J Toxicol Pathol 2019; 33:1-9. [PMID: 32051659 PMCID: PMC7008207 DOI: 10.1293/tox.2019-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/16/2019] [Indexed: 11/19/2022] Open
Abstract
Although several liposomal drugs, including liposomal doxorubicin, have been approved, the etiology of the pathological responses caused by their physicochemical properties remains unknown. Herein, we investigated the pathological changes in the liver and the gallbladder of dogs following a single injection of liposomal doxorubicin (1 or 2.5 mg/kg) or an empty liposomal formulation (i.e., liposomal formulation without doxorubicin, ca. 21 mg/kg as lipid content). Injection of liposomal doxorubicin or the empty liposomal formulation induced hemorrhagic changes in the liver and the gallbladder. These changes were accompanied by minimal cellular infiltration with no obvious changes in the blood vessels. As there were no differences in the incidence and severity of hemorrhage between the groups administered comparable amounts of total lipid, the physicochemical properties of the liposomal formulation rather than an active pharmacological ingredient, doxorubicin, were associated with the hemorrhagic changes. Furthermore, decreased cytoplasmic granules with low electron density in mast cells beneath the endothelium of the hepatic vein were observed in the liver of dogs treated with liposomal doxorubicin or empty liposomal formulation. Injection of compound 48/80, a histamine releaser induced comparable hemorrhage in dogs, implying that hemorrhage caused by injection of liposomal doxorubicin or the empty liposomal formulation could be attributed to the histamine released from mast cells. The absence of similar hemorrhagic lesions in other species commonly used in toxicology studies (i.e., rats and monkeys), as well as humans, is due to the lack of mast cells beneath the endothelium of the hepatic vein in these species.
Collapse
Affiliation(s)
- Keiko Makita-Suzuki
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.,Department of Human Pathology, Juntendo University Faculty of Medicine, 1-1-19 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Chihaya Kakinuma
- Department of Human Pathology, Juntendo University Faculty of Medicine, 1-1-19 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Inomata
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yasuhiro Shimada
- Department of Human Pathology, Juntendo University Faculty of Medicine, 1-1-19 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takefumi Hara
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Faculty of Medicine, 1-1-19 Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
17
|
|
18
|
Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat Rev Rheumatol 2018; 14:94-106. [PMID: 29323343 DOI: 10.1038/nrrheum.2017.205] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although clinical outcomes for patients with rheumatoid arthritis (RA) have greatly improved with the use of biologic and conventional DMARDs, approximately 40% of patients do not achieve primary clinical outcomes in randomized trials, and only a small proportion achieve lasting remission. Over the past decade, studies in murine models point to the critical role of the lymphatic system in the pathogenesis and therapy of inflammatory-erosive arthritis, presumably by the removal of catabolic factors, cytokines and inflammatory cells from the inflamed synovium. Murine studies demonstrate that lymphatic drainage increases at the onset of inflammatory-erosive arthritis but, as inflammation progresses to a more chronic phase, lymphatic clearance declines and both structural and cellular changes are observed in the draining lymph node. Specifically, chronic damage to the lymphatic vessel from persistent inflammation results in loss of lymphatic vessel contraction followed by lymph node collapse, reduced lymphatic drainage, and ultimately severe synovitis and joint erosion. Notably, clinical pilot studies in patients with RA report lymph node changes following treatment, and thus draining lymphatic vessels and nodes could represent a potential biomarker of arthritis activity and response to therapy. Most importantly, targeting lymphatics represents an innovative strategy for therapeutic intervention for RA.
Collapse
|
19
|
Bernier-Latmani J, Petrova TV. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat Rev Gastroenterol Hepatol 2017; 14:510-526. [PMID: 28655884 DOI: 10.1038/nrgastro.2017.79] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian intestine is richly supplied with lymphatic vasculature, which has functions ranging from maintenance of interstitial fluid balance to transport of antigens, antigen-presenting cells, dietary lipids and fat-soluble vitamins. In this Review, we provide in-depth information concerning the organization and structure of intestinal lymphatics, the current view of their developmental origins, as well as molecular mechanisms of intestinal lymphatic patterning and maintenance. We will also discuss physiological aspects of intestinal lymph flow regulation and the known and emerging roles of intestinal lymphatic vessels in human diseases, such as IBD, infection and cancer.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Route Cantonale 1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Al-Kofahi M, Yun JW, Minagar A, Alexander JS. Anatomy and roles of lymphatics in inflammatory diseases. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mahmoud Al-Kofahi
- Department of Experimental and Clinical Pharmacology; College of Pharmacy; University of Minnesota; Minneapolis MN USA
| | - J. Winny Yun
- Department of Molecular and Cellular Physiology; Louisiana State University Health Sciences Center Shreveport; Shreveport LA USA
| | - Alireza Minagar
- Department of Neurology; Louisiana State University Health Sciences Center Shreveport; Shreveport LA USA
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology; Louisiana State University Health Sciences Center Shreveport; Shreveport LA USA
- Department of Neurology; Louisiana State University Health Sciences Center Shreveport; Shreveport LA USA
| |
Collapse
|
21
|
Lee Y, Fluckey JD, Chakraborty S, Muthuchamy M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. FASEB J 2017; 31:2744-2759. [PMID: 28298335 DOI: 10.1096/fj.201600887r] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022]
Abstract
Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - James D Fluckey
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA;
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA;
| |
Collapse
|
22
|
Telinius N, Majgaard J, Mohanakumar S, Pahle E, Nielsen J, Hjortdal V, Aalkjær C, Boedtkjer DB. Spontaneous and Evoked Contractility of Human Intestinal Lymphatic Vessels. Lymphat Res Biol 2017; 15:17-22. [DOI: 10.1089/lrb.2016.0039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Niklas Telinius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Majgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sheyanth Mohanakumar
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Einar Pahle
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Jørn Nielsen
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Donna Briggs Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
TNFΔARE Mice Display Abnormal Lymphatics and Develop Tertiary Lymphoid Organs in the Mesentery. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:798-807. [PMID: 28183530 DOI: 10.1016/j.ajpath.2016.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 01/25/2023]
Abstract
Chronic inflammatory diseases are associated with a persistent and enhanced response to environmental antigens. As an adaptive response to this exaggerated immune state, affected tissue typically develops tertiary lymphoid organs. Studies of Crohn disease (CD), a chronic inflammatory disease of the intestinal tract, report tertiary lymphoid organs present within the mucosal wall, along with other lymphatic diseases, such as lymphangiogenesis and obstructed lymphatic vessels. These observations suggest that downstream mesenteric lymphatic vessels and lymph drainage into mesenteric lymph nodes may be compromised. However, information is lacking on the morphologic features and functional status of mesenteric lymphatics in CD. Using confocal imaging, PCR, flow cytometry, and functional strategies, we addressed these questions in the established TNFΔARE mouse model of CD and found that this mouse model had many lymphatic abnormalities reminiscent of human CD. These abnormalities include intestinal lymphangiectasia, mesenteric lymph node lymphadenopathy, and lymphangiogenesis in both the mesentery and mucosa. Critically, TNFΔARE mice also present mesenteric tertiary lymphoid organs and have altered lymphatic transport of dendritic cells to mesenteric lymph nodes, two features likely to actively modulate immunity. Our findings provide key insights into lymphatic remodeling in the TNFΔARE mouse model. They shed light on the involvement of these lymphatic changes in immune dysfunctions observed in CD and suggest the lymphatic system as new target for therapeutic options.
Collapse
|
24
|
Abstract
OBJECTIVES Focusing on critically ill children with cardiac disease, we will review common causes of fluid perturbations, clinical recognition, and strategies to minimize and treat fluid-related complications. DATA SOURCE MEDLINE and PubMed. CONCLUSIONS Meticulous fluid management is vital in critically ill children with cardiac disease. Fluid therapy is important to maintain adequate blood volume and perfusion pressure in order to support cardiac output, tissue perfusion, and oxygen delivery. However, fluid overload and acute kidney injury are common and are associated with increased morbidity and mortality. Understanding the etiologies for disturbances in volume status and the pathophysiology surrounding those conditions is crucial for providing optimal care.
Collapse
|
25
|
Chakraborty S, Zawieja SD, Wang W, Lee Y, Wang YJ, von der Weid PY, Zawieja DC, Muthuchamy M. Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery. Am J Physiol Heart Circ Physiol 2015; 309:H2042-57. [PMID: 26453331 DOI: 10.1152/ajpheart.00467.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
Impairment of the lymphatic system is apparent in multiple inflammatory pathologies connected to elevated endotoxins such as LPS. However, the direct mechanisms by which LPS influences the lymphatic contractility are not well understood. We hypothesized that a dynamic modulation of innate immune cell populations in mesentery under inflammatory conditions perturbs tissue cytokine/chemokine homeostasis and subsequently influences lymphatic function. We used rats that were intraperitoneally injected with LPS (10 mg/kg) to determine the changes in the profiles of innate immune cells in the mesentery and in the stretch-mediated contractile responses of isolated lymphatic preparations. Results demonstrated a reduction in the phasic contractile activity of mesenteric lymphatic vessels from LPS-injected rats and a severe impairment of lymphatic pump function and flow. There was a significant reduction in the number of neutrophils and an increase in monocytes/macrophages present on the lymphatic vessels and in the clear mesentery of the LPS group. This population of monocytes and macrophages established a robust M2 phenotype, with the majority showing high expression of CD163 and CD206. Several cytokines and chemoattractants for neutrophils and macrophages were significantly changed in the mesentery of LPS-injected rats. Treatment of lymphatic muscle cells (LMCs) with LPS showed significant changes in the expression of adhesion molecules, VCAM1, ICAM1, CXCR2, and galectin-9. LPS-TLR4-mediated regulation of pAKT, pERK pI-κB, and pMLC20 in LMCs promoted both contractile and inflammatory pathways. Thus, our data provide the first evidence connecting the dynamic changes in innate immune cells on or near the lymphatics and complex cytokine milieu during inflammation with lymphatic dysfunction.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Scott D Zawieja
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Wei Wang
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Yang Lee
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Yuan J Wang
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre-Yves von der Weid
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David C Zawieja
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| |
Collapse
|
26
|
Chakraborty S, Zawieja DC, Davis MJ, Muthuchamy M. MicroRNA signature of inflamed lymphatic endothelium and role of miR-9 in lymphangiogenesis and inflammation. Am J Physiol Cell Physiol 2015; 309:C680-92. [PMID: 26354749 DOI: 10.1152/ajpcell.00122.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/28/2015] [Indexed: 01/03/2023]
Abstract
The lymphatics have emerged as critical players in the progression and resolution of inflammation. The goal of this study was to identify specific microRNAs (miRNAs) that regulate lymphatic inflammatory processes. Rat mesenteric lymphatic endothelial cells (LECs) were exposed to the proinflammatory cytokine tumor necrosis factor-α for 2, 24, and 96 h, and miRNA profiling was carried out by real-time PCR arrays. Our data demonstrate a specific set of miRNAs that are differentially expressed (>1.8-fold and/or P < 0.05) in LECs in response to tumor necrosis factor-α and are involved in inflammation, angiogenesis, endothelial-mesenchymal transition, and cell proliferation and senescence. We further characterized the expression of miRNA 9 (miR-9) that was induced in LECs and in inflamed rat mesenteric lymphatics. Our results showed that miR-9 overexpression significantly repressed NF-κB expression and, thereby, suppressed inflammation but promoted LEC tube formation, as well as expression of the prolymphangiogenic molecules endothelial nitric oxide synthase and VEGF receptor type 3. LEC viability and proliferation and endothelial-mesenchymal transition were also significantly induced by miR-9. This study provides the first evidence of a distinct profile of miRNAs associated with LECs during inflammation. It also identifies the critical dual role of miR-9 in fine-tuning the balance between lymphatic inflammatory and lymphangiogenic pathways.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Medical Physiology, Texas A & M Health Science Center, College of Medicine, Temple, Texas; and
| | - David C Zawieja
- Department of Medical Physiology, Texas A & M Health Science Center, College of Medicine, Temple, Texas; and
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Texas A & M Health Science Center, College of Medicine, Temple, Texas; and
| |
Collapse
|
27
|
Al-Kofahi M, Becker F, Gavins FNE, Woolard MD, Tsunoda I, Wang Y, Ostanin D, Zawieja DC, Muthuchamy M, von der Weid PY, Alexander JS. IL-1β reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase-2 and prostaglandin E2. Br J Pharmacol 2015; 172:4038-4051. [PMID: 25989136 PMCID: PMC4543611 DOI: 10.1111/bph.13194] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The lymphatic system maintains tissue homeostasis by unidirectional lymph flow, maintained by tonic and phasic contractions within subunits, 'lymphangions'. Here we have studied the effects of the inflammatory cytokine IL-1β on tonic contraction of rat mesenteric lymphatic muscle cells (RMLMC). EXPERIMENTAL APPROACH We measured IL-1β in colon-conditioned media (CM) from acute (AC-CM, dextran sodium sulfate) and chronic (CC-CM, T-cell transfer) colitis-induced mice and corresponding controls (Con-AC/CC-CM). We examined tonic contractility of RMLMC in response to CM, the cytokines h-IL-1β or h-TNF-α (5, 10, 20 ng·mL(-1) ), with or without COX inhibitors [TFAP (10(-5) M), diclofenac (0.2 × 10(-5) M)], PGE2 (10(-5) M)], IL-1-receptor antagonist, Anakinra (5 μg·mL(-1) ), or a selective prostanoid EP4 receptor antagonist, GW627368X (10(-6) and 10(-7) M). KEY RESULTS Tonic contractility of RMLMC was reduced by AC- and CC-CM compared with corresponding control culture media, Con-AC/CC-CM. IL-1β or TNF-α was not found in Con-AC/CC-CM, but detected in AC- and CC-CM. h-IL-1β concentration-dependently decreased RMLMC contractility, whereas h-TNF-α showed no effect. Anakinra blocked h-IL-1β-induced RMLMC relaxation, and with AC-CM, restored contractility to RMLMC. IL-1β increased COX-2 protein and PGE2 production in RMLMC.. PGE2 induced relaxations in RMLMC, comparable to h-IL-1β. Conversely, COX-2 and EP4 receptor inhibition reversed relaxation induced by IL-1β. CONCLUSIONS AND IMPLICATIONS The IL-1β-induced decrease in RMLMC tonic contraction was COX-2 dependent, and mediated by PGE2 . In experimental colitis, IL-1β and tonic lymphatic contractility were causally related, as this cytokine was critical for the relaxation induced by AC-CM and pharmacological blockade of IL-1β restored tonic contraction.
Collapse
Affiliation(s)
- M Al-Kofahi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center – ShreveportShreveport, LA, USA
| | - F Becker
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center – ShreveportShreveport, LA, USA
- Department for General and Visceral Surgery, University Hospital MuensterMuenster, Germany
| | - F N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center – ShreveportShreveport, LA, USA
| | - M D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center – ShreveportShreveport, LA, USA
| | - I Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center – ShreveportShreveport, LA, USA
| | - Y Wang
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center – ShreveportShreveport, LA, USA
| | - D Ostanin
- Department of Medicine, Division of Rheumatology, Louisiana State University Health Sciences Center – ShreveportShreveport, LA, USA
| | - D C Zawieja
- Department of Medicine, Cardiovascular Research Institute, Texas A&M Health Science CenterCollege Station, TX, USA
| | - M Muthuchamy
- Department of Medicine, Cardiovascular Research Institute, Texas A&M Health Science CenterCollege Station, TX, USA
| | - P Y von der Weid
- Department of Physiology and Pharmacology, University of CalgaryCalgary, Alberta, Canada
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center – ShreveportShreveport, LA, USA
| |
Collapse
|
28
|
Colonic Insult Impairs Lymph Flow, Increases Cellular Content of the Lymph, Alters Local Lymphatic Microenvironment, and Leads to Sustained Inflammation in the Rat Ileum. Inflamm Bowel Dis 2015; 21:1553-63. [PMID: 25939039 PMCID: PMC4466086 DOI: 10.1097/mib.0000000000000402] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lymphatic dysfunction has been linked to inflammation since the 1930s. Lymphatic function in the gut and mesentery is grossly underexplored in models of inflammatory bowel disease despite the use of lymphatic occlusion in early models of inflammatory bowel disease. Activation of the innate and adaptive immune system is a hallmark of TNBS-induced inflammation and is linked to disruption of the intrinsic lymph pump. Recent identification of crosstalk between lymphatic vessel resident immune cells and regulation of lymphatic vessel contractility underscore the importance of the timing of lymphatic dysfunction during tissue inflammation in response to TNBS. METHODS To evaluate lymphatic function in TNBS induced inflammation, lymph was collected and flow measured from mesenteric lymphatics. Cellularity and cytokine profile of the lymph was also measured. Histopathology was performed to determine severity of injury and immunofluorescent staining of the mesentery was done to evaluate changes in the population of immune cells that reside near and on gastro-intestinal collecting lymphatics. RESULTS Lymph transport fell 24 hours after TNBS administration and began recovering at 72 hours. Significant reduction of lymph flow preceded significant increase in histopathological score and occurred simultaneously with increased myeloperoxidase activity. These changes were preceded by increased MHCII cells surrounding mesenteric lymphatics leading to an altered lymphatic environment that would favor dysfunction. CONCLUSIONS Alterations in environmental factors that effect lymphatic function occur before the development of gross GI inflammation. Reduced lymphatic function in TNBS-mediated inflammation is likely an early factor in the development of injury and that recovery of function is associated with resolution of inflammation.
Collapse
|
29
|
Sands WA, McNeal JR, Murray SR, Stone MH. Dynamic Compression Enhances Pressure-to-Pain Threshold in Elite Athlete Recovery. J Strength Cond Res 2015; 29:1263-72. [DOI: 10.1519/jsc.0000000000000412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Chakraborty S, Davis MJ, Muthuchamy M. Emerging trends in the pathophysiology of lymphatic contractile function. Semin Cell Dev Biol 2015; 38:55-66. [PMID: 25617600 DOI: 10.1016/j.semcdb.2015.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 01/19/2023]
Abstract
Lymphatic contractile dysfunction is central to a number of pathologies that affect millions of people worldwide. Due to its critical role in the process of inflammation, a dysfunctional lymphatic system also compromises the immune response, further exacerbating a number of inflammation related diseases. Despite the critical physiological functions accomplished by the transport of lymph, a complete understanding of the contractile machinery of the lymphatic system lags far behind that of the blood vasculature. However, there has been a surge of recent research focusing on different mechanisms that underlie both physiological and pathophysiological aspects of lymphatic contractile function. This review summarizes those emerging paradigms that shed some novel insights into the contractile physiology of the lymphatics in normal as well as different disease states. In addition, this review emphasizes the recent progress made in our understanding of various contractile parameters and regulatory elements that contribute to the normal functioning of the lymphatics.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Medical Physiology, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, United States
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, United States.
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, United States.
| |
Collapse
|
31
|
Tonelli P, Martellucci J, Lucchese M, Comin CE, Bergamini C, Pedica F, Bargellini T, Valeri A. Preliminary results of the influence of the in vivo use of a lymphatic dye (patent blue v) in the surgical treatment of Crohn's disease. Surg Innov 2014; 21:381-388. [PMID: 24253255 DOI: 10.1177/1553350613508017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Recently, the lymphatic vessels has been considered to play a key role in the pathophysiology and, consequently, in the treatment of Crohn's disease (CD). The aim of this study is to show that the evaluation of lymphatic anomaly might be a useful tool in the recognition of the pathological involvement of the intestinal wall in CD. MATERIAL AND METHODS Fourteen patients with CD who underwent surgical treatment for distal ileum critical stenosis were prospectively evaluated. During surgery, 0.05 to 0.1 mL of Patent Blue V was injected into the subserosal layer of the antimesenteric edge of ileum and colon. The intestinal section was performed just beneath the outflow of the vital dye where it seemed to be normal (≤2 minutes), as a index of healthy intestinal wall. A comparison between the lymphatic alterations and the macroscopic aspects was performed. RESULTS Out of 14 patients, 13 were electively operated on, whereas 1 was treated in emergency. In 8 patients (57%), laparoscopic approach was chosen in the first instance. One patient needed laparotomic conversion. When comparing the Patent Blue V outflow time with the macroscopic and microscopic evidence of CD, we found an absolute integrity of the intestinal wall with an outflow ≤2 minutes. Mean follow-up was 110 months with a recurrence rate of 14%. CONCLUSION We can conclude that this method may be of utility to distinguish between normal and diseased intestine in CD. The possible consequences in postsurgical recurrences of this evidence are critical.
Collapse
Affiliation(s)
- Pietro Tonelli
- Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | | | | | | | | | | | - Andrea Valeri
- Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
32
|
Berggreen E, Wiig H. Lymphatic function and responses in periodontal disease. Exp Cell Res 2014; 325:130-7. [DOI: 10.1016/j.yexcr.2013.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 12/17/2022]
|
33
|
Chakraborty S, Gurusamy M, Zawieja DC, Muthuchamy M. Lymphatic filariasis: perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation 2014; 20:349-64. [PMID: 23237232 DOI: 10.1111/micc.12031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/07/2012] [Indexed: 01/02/2023]
Abstract
Lymphatic filariasis, one of the most debilitating diseases associated with the lymphatic system, affects over a hundred million people worldwide and manifests itself in a variety of severe clinical pathologies. The filarial parasites specifically target the lymphatics and impair lymph flow, which is critical for the normal functions of the lymphatic system in maintenance of body fluid balance and physiological interstitial fluid transport. The resultant contractile dysfunction of the lymphatics causes fluid accumulation and lymphedema, one of the major pathologies associated with filarial infection. In this review, we take a closer look at the contractile mechanisms of the lymphatics, its altered functions, and remodeling during an inflammatory state and how it relates to the severe pathogenesis underlying a filarial infection. We further elaborate on the complex host-parasite interactions, and molecular mechanisms contributing to the disease pathogenesis. The overall emphasis is on elucidating some of the emerging concepts and new directions that aim to harness the process of lymphangiogenesis or enhance contractility in a dysfunctional lymphatics, thereby restoring the fluid imbalance and mitigating the pathological conditions of lymphatic filariasis.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX 77843, USA
| | | | | | | |
Collapse
|
34
|
Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis 2014; 17:325-34. [PMID: 24449090 DOI: 10.1007/s10456-014-9416-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/09/2014] [Indexed: 12/27/2022]
Abstract
The lymphatic system is intimately linked to tissue fluid homeostasis and immune cell trafficking. These functions are paramount in the establishment and development of an inflammatory response. In the past decade, an increasing number of reports has revealed that marked changes, such as lymphangiogenesis and lymphatic contractile dysfunction occur in both vascular and nodal parts of the lymphatic system during inflammation, as well as other disease processes. This review provides a critical update on the role of the lymphatic system in disease process such as chronic inflammation and cancer and examines the changes in lymphatic functions the diseases cause and the influence these changes have on the progression of the diseases.
Collapse
|
35
|
Planas-Paz L, Lammert E. Mechanosensing in developing lymphatic vessels. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:23-40. [PMID: 24276884 DOI: 10.1007/978-3-7091-1646-3_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.
Collapse
Affiliation(s)
- Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | | |
Collapse
|
36
|
The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis 2013; 17:395-406. [PMID: 24141404 DOI: 10.1007/s10456-013-9393-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022]
Abstract
Proper lymphatic function is necessary for the transport of fluids, macromolecules, antigens and immune cells out of the interstitium. The lymphatic endothelium plays important roles in the modulation of lymphatic contractile activity and lymph transport, but it's role as a barrier between the lymph and interstitial compartments is less well understood. Alterations in lymphatic function have long been associated with edema and inflammation although the integrity of the lymphatic endothelial barrier during inflammation is not well-defined. In this paper we evaluated the integrity of the lymphatic barrier in response to inflammatory stimuli commonly associated with increased blood endothelial permeability. We utilized in vitro assays of lymphatic endothelial cell (LEC) monolayer barrier function after treatment with different inflammatory cytokines and signaling molecules including TNF-α, IL-6, IL-1β, IFN-γ and LPS. Moderate increases in an index of monolayer barrier dysfunction were noted with all treatments (20-60 % increase) except IFN-γ which caused a greater than 2.5-fold increase. Cytokine-induced barrier dysfunction was blocked or reduced by the addition of LNAME, except for IL-1β and LPS treatments, suggesting a regulatory role for nitric oxide. The decreased LEC barrier was associated with modulation of both intercellular adhesion and intracellular cytoskeletal activation. Cytokine treatments reduced the expression of VE-cadherin and increased scavenging of β-catenin in the LECs and this was partially reversed by LNAME. Likewise the phosphorylation of myosin light chain 20 at the regulatory serine 19 site, which accompanied the elevated monolayer barrier dysfunction in response to cytokine treatment, was also blunted by LNAME application. This suggests that the lymphatic barrier is regulated during inflammation and that certain inflammatory signals may induce large increases in permeability.
Collapse
|
37
|
Berggreen E, Wiig H. Lymphangiogenesis and Lymphatic Function in Periodontal Disease. J Dent Res 2013; 92:1074-80. [DOI: 10.1177/0022034513504589] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lymphatic vessels return extravasated fluid, proteins, and cells back into the circulation and are important in immune cell trafficking. In the gingiva, lymphatic vessels are located in the lamina propria and travel over the external surface of the alveolar bone. The gingival lymphatics are important for fluid drainage, since lack of lymphatics has been shown to increase interstitial fluid pressure and fluid volume. Maintenance of gingival lymphatic vessels requires continuous signaling by the growth factors VEGF-C and -D via their receptor VEGFR-3. The growth factors are expressed in the gingival epithelium and also in immune cells in the lamina propria. VEGF-C seems to be crucial for lymphangiogenesis induced during periodontal disease development. The lymphatic vessels protect against periodontitis in mice, probably by clearing bacteria and bacterial products and by promoting humoral immune responses. Down-regulation of CCL21, a ligand important for dendritic cell migration, has been demonstrated in lymphatics from patients with periodontitis. High enzymatic activity in the gingiva of these patients may also contribute to impaired lymphatic function, due to the loss of structural components in the interstitium influencing lymphatic function. So far, knowledge is limited in this field because of the dearth of studies on the role of lymphatic vessels in periodontal disease.
Collapse
Affiliation(s)
- E. Berggreen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Oral Health Centre, Hordaland, Western Norway
| | - H. Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
38
|
Zhang R, Taucer AI, Gashev AA, Muthuchamy M, Zawieja DC, Davis MJ. Maximum shortening velocity of lymphatic muscle approaches that of striated muscle. Am J Physiol Heart Circ Physiol 2013; 305:H1494-507. [PMID: 23997104 DOI: 10.1152/ajpheart.00898.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lymphatic muscle (LM) is widely considered to be a type of vascular smooth muscle, even though LM cells uniquely express contractile proteins from both smooth muscle and cardiac muscle. We tested the hypothesis that LM exhibits an unloaded maximum shortening velocity (Vmax) intermediate between that of smooth muscle and cardiac muscle. Single lymphatic vessels were dissected from the rat mesentery, mounted in a servo-controlled wire myograph, and subjected to isotonic quick release protocols during spontaneous or agonist-evoked contractions. After maximal activation, isotonic quick releases were performed at both the peak and plateau phases of contraction. Vmax was 0.48 ± 0.04 lengths (L)/s at the peak: 2.3 times higher than that of mesenteric arteries and 11.4 times higher than mesenteric veins. In cannulated, pressurized lymphatic vessels, shortening velocity was determined from the maximal rate of constriction [rate of change in internal diameter (-dD/dt)] during spontaneous contractions at optimal preload and minimal afterload; peak -dD/dt exceeded that obtained during any of the isotonic quick release protocols (2.14 ± 0.30 L/s). Peak -dD/dt declined with pressure elevation or activation using substance P. Thus, isotonic methods yielded Vmax values for LM in the mid to high end (0.48 L/s) of those the recorded for phasic smooth muscle (0.05-0.5 L/s), whereas isobaric measurements yielded values (>2.0 L/s) that overlapped the midrange of values for cardiac muscle (0.6-3.3 L/s). Our results challenge the dogma that LM is classical vascular smooth muscle, and its unusually high Vmax is consistent with the expression of cardiac muscle contractile proteins in the lymphatic vessel wall.
Collapse
Affiliation(s)
- Rongzhen Zhang
- Department of Pathology, University of Texas Medical School, Houston, Texas
| | | | | | | | | | | |
Collapse
|
39
|
Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine 2013; 64:362-9. [PMID: 23764549 DOI: 10.1016/j.cyto.2013.05.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/05/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Abstract
The response of the lymphatic system to inflammatory insult and infection is not completely understood. Using a near-infrared fluorescence (NIRF) imaging system to noninvasively document propulsive function, we noted the short-term cessation of murine lymphatic propulsion as early as 4h following LPS injection. Notably, the effects were systemic, displaying bilateral lymphatic pumping cessation after a unilateral insult. Furthermore, IL-1β, TNF-α, and IL-6, cytokines that were found to be elevated in serum during lymphatic pumping cessation, were shown separately to acutely and systemically decrease lymphatic pulsing frequency and velocity following intradermal administration. Surprisingly, marked lymphatic vessel dilation and leakiness were noted in limbs contralateral to IL-1β intradermal administration, but not in ipsilateral limbs. The effects of IL-1β on lymphatic pumping were abated by pre-treatment with an inhibitor of inducible nitric oxide synthase, L-NIL (N-iminoethyl-L-lysine). The results suggest that lymphatic propulsion is systemically impaired within 4h of acute inflammatory insult, and that some cytokines are major effectors of lymphatic pumping cessation through nitric oxide-mediated mechanisms. These findings may help in understanding the actions of cytokines as mediators of lymphatic function in inflammatory and infectious states.
Collapse
Affiliation(s)
- Melissa B Aldrich
- The Center for Molecular Imaging, Brown Foundation Institute for Molecular Medicine, The University of Texas Health Science Center-Houston, 1825 Pressler, 330-07, Houston, TX 77030, United States.
| | | |
Collapse
|
40
|
Keim AP, Slis JR, Mendez U, Stroup EM, Burmeister Y, Tsolaki N, Gailing O, Goldman J. The multicomponent medication lymphomyosot improves the outcome of experimental lymphedema. Lymphat Res Biol 2013; 11:81-92. [PMID: 23725444 DOI: 10.1089/lrb.2012.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Secondary lymphedema is a life-long disease of painful tissue swelling that often follows axillary lymph node dissection to treat breast cancer. It is hypothesized that poor lymphatic regeneration across the obstructive scar tissue during the wound healing process may predispose the tissue to swell at a later date. Treatment for lymphedema remains suboptimal and is in most cases palliative. The purpose of this study was to evaluate the ability of Lymphomyosot to treat tissue swelling and promote lymphangiogenesis in experimental models of murine lymphedema. METHODS Experimental models of mouse lymphedema were injected with varied amounts of Lymphomyosot and saline as control. Measurements of tail swelling and wound closure were taken and compared amongst the groups. Three separate groups of mice were analyzed for lymphatic capillary migration, lymphatic vessel regeneration, and macrophage recruitment. RESULTS Lymphomyosot significantly reduced swelling and increased the rate of surgical wound closure. Lymphomyosot did not increase the migration of lymph capillaries in a mouse tail skin regeneration model or regeneration of lymph vessels following murine axillary lymph node dissection. CONCLUSIONS Lymphomyosot may act through inflammatory and wound repair pathways to reduce experimental lymphedema. Its ability to regulate inflammation as well as assist in tissue repair and extracellular formation may allow for the production of a scar-free matrix bridge through which migrating cells and accumulated interstitial fluid can freely spread.
Collapse
Affiliation(s)
- Alex P Keim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mathias R, von der Weid PY. Involvement of the NO-cGMP-K(ATP) channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS-induced ileitis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G623-34. [PMID: 23275612 DOI: 10.1152/ajpgi.00392.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric lymphatic vessels actively transport lymph, immune cells, fat, and other macromolecules from the intestine via a rhythmical contraction-relaxation process called lymphatic pumping. We have previously demonstrated that mesenteric lymphatic pumping was compromised in the guinea pig model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced ileitis, corroborating clinical and experimental observations of a dilated and/or obstructed phenotype of these vessels in inflammatory bowel disease. Many mediators released during the inflammatory process have been shown to alter lymphatic contractile activity. Among them, nitric oxide (NO), an inflammatory mediator abundantly released during intestinal inflammation, decreases the frequency of lymphatic contractions through activation of ATP-sensitive potassium (K(ATP)) channels. The objective of this study was to investigate the role of NO and K(ATP) channels in the lymphatic dysfunction observed in the guinea pig model of TNBS-induced ileitis. Using quantitative real-time PCR, we demonstrated that expression of Kir6.1, SUR2B, and inducible NO synthase (iNOS) mRNAs was significantly upregulated in TNBS-treated animals. Pharmacological studies performed on isolated, luminally perfused mesenteric lymphatic vessels showed that the K(ATP) channels blocker glibenclamide, the selective iNOS inhibitor 1400W, and the guanylyl cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) significantly improved lymphatic pumping in quiescent lymphatic vessels from TNBS-treated animals. Membrane potential measurement with intracellular microelectrodes revealed that vessels from TNBS-treated animals were hyperpolarized compared with their sham counterpart and that the hyperpolarization was significantly attenuated in the presence of glibenclamide and ODQ. Our findings suggest that NO and K(ATP) play a major role in the lymphatic contractile dysfunction that occurred as a consequence of the intestinal inflammation caused by TNBS.
Collapse
Affiliation(s)
- Ryan Mathias
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
42
|
Wiig H, Swartz MA. Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiol Rev 2012; 92:1005-60. [PMID: 22811424 DOI: 10.1152/physrev.00037.2011] [Citation(s) in RCA: 469] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The interstitium describes the fluid, proteins, solutes, and the extracellular matrix (ECM) that comprise the cellular microenvironment in tissues. Its alterations are fundamental to changes in cell function in inflammation, pathogenesis, and cancer. Interstitial fluid (IF) is created by transcapillary filtration and cleared by lymphatic vessels. Herein we discuss the biophysical, biomechanical, and functional implications of IF in normal and pathological tissue states from both fluid balance and cell function perspectives. We also discuss analysis methods to access IF, which enables quantification of the cellular microenvironment; such methods have demonstrated, for example, that there can be dramatic gradients from tissue to plasma during inflammation and that tumor IF is hypoxic and acidic compared with subcutaneous IF and plasma. Accumulated recent data show that IF and its convection through the interstitium and delivery to the lymph nodes have many and diverse biological effects, including in ECM reorganization, cell migration, and capillary morphogenesis as well as in immunity and peripheral tolerance. This review integrates the biophysical, biomechanical, and biological aspects of interstitial and lymph fluid and its transport in tissue physiology, pathophysiology, and immune regulation.
Collapse
Affiliation(s)
- Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway; and Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A. Swartz
- Department of Biomedicine, University of Bergen, Bergen, Norway; and Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Intestinal lymph-borne factors induce lung release of inflammatory mediators and expression of adhesion molecules after an intestinal ischemic insult. J Surg Res 2011; 176:195-201. [PMID: 21872880 DOI: 10.1016/j.jss.2011.06.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) is a documented cause of acute lung injury (ALI) and systemic inflammation. We previously reported that obstruction of thoracic lymphatic flow during intestinal I/R blunts pulmonary neutrophil recruitment and microvascular injury and decreases the systemic levels of tumor necrosis factor. Here, we consider the existence of a gut-lung axis promoting the induction of systemic inflammation, whereby drained intestinal lymph stimulates lung expression of adhesion molecules and matrix components and generation of inflammatory mediators. MATERIAL AND METHODS Upon administration of anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min, followed by 2 h of intestinal reperfusion (I/R); groups of rats were subjected to I/R with or without thoracic lymphatic duct ligation immediately before the procedure. The non-manipulated rats were used to investigate basal parameters. RESULTS Obstruction of thoracic lymphatic flow before intestinal I/R decreased the ability of cultured lung tissue explants to release IL-1β, IL-10, and VEGF. In contrast, lymphatic obstruction normalized the elevated lung expression of PECAM-1 caused by intestinal I/R. On the other hand, lung E-selectin expression was significantly reduced, whereas fibronectin expression and collagen synthesis were not affected. Lymph levels of LTB(4) and TXB(2) were found to be significantly increased. CONCLUSIONS These data suggest that lymph factors drained from the intestine during ischemic trauma stimulate the lung to generate inflammatory mediators and alter the expression of adhesion molecules. Disturbances in lung homeostasis mediated by lymph might contribute to the spread of inflammatory processes, thereby accounting for the systemic inflammation induced by intestinal I/R.
Collapse
|
44
|
Chakraborty S, Nepiyushchikh Z, Davis MJ, Zawieja DC, Muthuchamy M. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R. Microcirculation 2011; 18:24-35. [PMID: 21166923 DOI: 10.1111/j.1549-8719.2010.00064.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. METHODS A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP-mediated signaling pathways in lymphatics. RESULTS We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC₂₀) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC₂₀ after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. CONCLUSIONS These data provide the first evidence that SP-mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Division of Lymphatic Biology, Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center College of Medicine, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
45
|
Souza-Smith FM, Kurtz KM, Molina PE, Breslin JW. Adaptation of mesenteric collecting lymphatic pump function following acute alcohol intoxication. Microcirculation 2011; 17:514-24. [PMID: 21040117 DOI: 10.1111/j.1549-8719.2010.00050.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Acute alcohol intoxication increases intestinal lymph flow by unknown mechanisms, potentially impacting mucosal immunity. We tested the hypothesis that enhanced intrinsic pump function of mesenteric lymphatics contributes to increased intestinal lymph flow during alcohol intoxication. METHODS Acute alcohol intoxication was produced by intragastric administration of 30% alcohol to conscious, unrestrained rats through surgically implanted catheters. Time-matched controls received either no bolus, vehicle, or isocaloric dextrose. Thirty minutes after alcohol administration, rats were anesthetized and mesenteric collecting lymphatics were isolated and cannulated to study intrinsic pumping parameters. In separate experiments, mesenteric lymphatics were isolated to examine direct effects of alcohol on intrinsic pump activity. RESULTS Lymphatics isolated from alcohol-intoxicated animals displayed significantly decreased CF compared to the dextrose group, elevated SVI versus all other groups, and decreased myogenic responsiveness compared to sham. Elevating pressure from 2 to 4 cm H₂O increased the volume flow index 2.4-fold in the alcohol group versus 1.4-fold for shams. Isolated lymphatics exposed to 20 mM alcohol had reduced myogenic tone, without changes in CF or SVI. CONCLUSIONS Alcohol intoxication enhances intrinsic pumping by mesenteric collecting lymphatics. Alcohol directly decreases lymphatic myogenic tone, but effects on phasic contractions occur by an unidentified mechanism.
Collapse
Affiliation(s)
- Flavia M Souza-Smith
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
46
|
Chakraborty S, Zawieja S, Wang W, Zawieja DC, Muthuchamy M. Lymphatic system: a vital link between metabolic syndrome and inflammation. Ann N Y Acad Sci 2010; 1207 Suppl 1:E94-102. [PMID: 20961312 DOI: 10.1111/j.1749-6632.2010.05752.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metabolic syndrome is defined by a cluster of different metabolic risk factors that include overall and central obesity, elevated fasting glucose levels, dyslipidemia, hypertension, and intimal atherogenesis. Metabolic syndrome leads to increased risk for the development of type 2 diabetes and cardiovascular disease (e.g., heart disease and stroke). The exacerbated progression of metabolic syndrome to cardiovascular disease has lead to intense study of the physiological ramifications of metabolic syndrome on the blood vasculature. These studies have particularly focused on the signaling and architectural alterations that manifest in hypertension and atherosclerosis. However, despite the overlap of metabolic syndrome pathology with lymphatic function, tangent effects on the lymphatic system have not been extensively documented. In this review, we discuss the current status of metabolic syndrome and provide evidence for, and the remaining challenges in studying, the connections among the lymphatic system, lipid transport, obesity, insulin resistance, and general inflammation.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Division of Lymphatic Biology, Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center College of Medicine, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
47
|
Alexander JS, Chaitanya GV, Grisham MB, Boktor M. Emerging roles of lymphatics in inflammatory bowel disease. Ann N Y Acad Sci 2010; 1207 Suppl 1:E75-85. [PMID: 20961310 DOI: 10.1111/j.1749-6632.2010.05757.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mobilization and recruitment of blood and lymphatic vasculatures are widely described in inflammatory bowel diseases (IBDs). Although angiogenesis contributes to intense gut inflammation, it remains unclear whether and when lymphangiogenesis amplifies or protects in IBD. The prolonged maintenance of lymphatic (over blood vessels) in inflammation indicates that lymphatic-blood vessel interactions may regulate IBD pathogenesis and restitution. Although lymphatic expansion helps to restore fluid balance and clear cytokines and immune cells, lymphatic failure results in accumulation of these factors and exacerbates IBD. Lymphatic obstruction and remodeling may impair lymphatic pumping, leading to repeated rounds of lymphangiogenesis. Early descriptions of Crohn's disease and ulcerative colitis describe colon lymphatic congestion, remodeling, expansion, and many other features that are recapitulated in experimental IBD and also by intestinal lymphatic obstruction, supporting lymphangitis as a cause and consequence of IBD. Growth factors, cytokines, gut flora, Toll receptors, and leukocytes all regulate inflammation and gut lymphatic remodeling in IBD. This review summarizes the importance of lymphatics and lymphangiogenesis in IBD etiology that may be useful in diagnosis and therapy of gut inflammation.
Collapse
Affiliation(s)
- J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130-3932, USA.
| | | | | | | |
Collapse
|