1
|
Tokunou Y, Yamazaki T, Fujikawa T, Okamoto A. Decoding in-cell respiratory enzyme dynamics by label-free in situ electrochemistry. Proc Natl Acad Sci U S A 2025; 122:e2418926122. [PMID: 40117313 PMCID: PMC11962448 DOI: 10.1073/pnas.2418926122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/07/2025] [Indexed: 03/23/2025] Open
Abstract
Deciphering metabolic enzyme catalysis in living cells remains a formidable challenge due to the limitations of in vivo assays, which focus on enzymes isolated from respiration. This study introduces an innovative whole-cell electrochemical assay to reveal the Michaelis-Menten landscape of respiratory enzymes amid complex molecular interactions. We controlled the microbial current generation's rate-limiting step, extracting in vivo kinetic parameters (Km, Ki, and kcat) for the periplasmic nitrite (NrfA) and fumarate (FccA) reductases. Notably, while NrfA kinetics mirrored those of its purified form, FccA exhibited unique kinetic behavior. Further exploration using a mutant strain lacking CymA, a periplasmic hub protein, revealed its crucial role in modulating FccA's kinetics, challenging the prevailing view that molecular crowding is the main cause of discrepancies between in vivo and in vitro enzyme kinetics. This platform offers a groundbreaking approach to studying cellular respiratory enzymatic kinetics, paving the way for future research in bioenergetics and medicine.
Collapse
Affiliation(s)
- Yoshihide Tokunou
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki305-8572, Japan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
- School of Life Science, Hokkaido University, Sapporo, Hokkaido060-0808, Japan
| | - Takashi Fujikawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
| | - Akihiro Okamoto
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki305-8572, Japan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki305-0044, Japan
- School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido060-8628, Japan
- Research Center for Autonomous Systems Materialogy, Institute of Integrated Research, Institute of Science Tokyo (Science Tokyo), Yokohama, Kanagawa226-8503, Japan
| |
Collapse
|
2
|
Ciemniecki JA, Ho CL, Horak RD, Okamoto A, Newman DK. Mechanistic study of a low-power bacterial maintenance state using high-throughput electrochemistry. Cell 2024; 187:6882-6895.e8. [PMID: 39447571 PMCID: PMC11606744 DOI: 10.1016/j.cell.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Mechanistic studies of life's lower metabolic limits have been limited due to a paucity of tractable experimental systems. Here, we show that redox-cycling of phenazine-1-carboxamide (PCN) by Pseudomonas aeruginosa supports cellular maintenance in the absence of growth with a low mass-specific metabolic rate of 8.7 × 10-4 W (g C)-1 at 25°C. Leveraging a high-throughput electrochemical culturing device, we find that non-growing cells cycling PCN tolerate conventional antibiotics but are susceptible to those that target membrane components. Under these conditions, cells conserve energy via a noncanonical, facilitated fermentation that is dependent on acetate kinase and NADH dehydrogenases. Across PCN concentrations that limit cell survival, the cell-specific metabolic rate is constant, indicating the cells are operating near their bioenergetic limit. This quantitative platform opens the door to further mechanistic investigations of maintenance, a physiological state that underpins microbial survival in nature and disease.
Collapse
Affiliation(s)
- John A Ciemniecki
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chia-Lun Ho
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo 060-8628, Hokkaido, Japan
| | - Richard D Horak
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo 060-8628, Hokkaido, Japan; Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan.
| | - Dianne K Newman
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
3
|
Valero A, Petrash DA, Kuchenbuch A, Korth B. Enriching electroactive microorganisms from ferruginous lake waters - Mind the sulfate reducers! Bioelectrochemistry 2024; 157:108661. [PMID: 38340618 DOI: 10.1016/j.bioelechem.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Electroactive microorganisms are pivotal players in mineral transformation within redox interfaces characterized by pronounced oxygen and dissolved metal gradients. Yet, their systematic cultivation from such environments remains elusive. Here, we conducted an anodic enrichment using anoxic ferruginous waters from a post-mining lake as inoculum. Weak electrogenicity (j = ∼5 µA cm-2) depended on electroactive planktonic cells rather than anodic biofilms, with a preference for formate as electron donor. Addition of yeast extract decreased the lag phase but did not increase current densities. The enriched bacterial community varied depending on the substrate composition but mainly comprised of sulfate- and nitrate-reducing bacteria (e.g., Desulfatomaculum spp. and Stenotrophomonas spp.). A secondary enrichment strategy resulted in different bacterial communities composed of iron-reducing (e.g., Klebsiella spp.) and fermentative bacteria (e.g., Paeniclostridium spp.). Secondary electron microscopy and energy-dispersive X-ray spectroscopy results indicate the precipitation of sulfur- and iron-rich organomineral aggregates at the anode surface, presumably impeding current production. Our findings indicate that (i) anoxic waters containing geogenically derived metals can be used to enrich weak electricigens, and (ii) it is necessary to specifically inhibit sulfate reducers. Otherwise, sulfate reducers tend to dominate over EAM during cultivation, which can lead to anode passivation due to biomineralization.
Collapse
Affiliation(s)
- Astolfo Valero
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Daniel A Petrash
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague, Czech Republic
| | - Anne Kuchenbuch
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|