1
|
Farina S, Cattabiani A, Mandge D, Shichkova P, Isbister JB, Jacquemier J, King JG, Markram H, Keller D. A multiscale electro-metabolic model of a rat neocortical circuit reveals the impact of ageing on central cortical layers. PLoS Comput Biol 2025; 21:e1013070. [PMID: 40393041 DOI: 10.1371/journal.pcbi.1013070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 05/27/2025] [Accepted: 04/19/2025] [Indexed: 05/22/2025] Open
Abstract
The high energetic demands of the brain arise primarily from neuronal activity. Neurons consume substantial energy to transmit information as electrical signals and maintain their resting membrane potential. These energetic requirements are met by the neuro-glial-vascular (NGV) ensemble, which generates energy in a coupled metabolic process. In ageing, metabolic function becomes impaired, producing less energy and, consequently, the system is unable to sustain the neuronal energetic needs. We propose a multiscale model of electro-metabolic coupling in a reconstructed rat neocortex. This combines an electro-morphologically reconstructed electrophysiological model with a detailed NGV metabolic model. Our results demonstrate that the large-scale model effectively captures electro-metabolic processes at the circuit level, highlighting the importance of heterogeneity within the circuit, where energetic demands vary according to neuronal characteristics. Finally, in metabolic ageing, our model indicates that the middle cortical layers are particularly vulnerable to energy impairment.
Collapse
Affiliation(s)
- Sofia Farina
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Alessandro Cattabiani
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Darshan Mandge
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Polina Shichkova
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
- Biognosys AG, Schlieren, Switzerland
| | - James B Isbister
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Jean Jacquemier
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - James G King
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
- Brain Mind Institute, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
2
|
Aizenbud I, Yoeli D, Beniaguev D, de Kock CPJ, London M, Segev I. What makes human cortical pyramidal neurons functionally complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628883. [PMID: 39763809 PMCID: PMC11702691 DOI: 10.1101/2024.12.17.628883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Humans exhibit unique cognitive abilities within the animal kingdom, but the neural mechanisms driving these advanced capabilities remain poorly understood. Human cortical neurons differ from those of other species, such as rodents, in both their morphological and physiological characteristics. Could the distinct properties of human cortical neurons help explain the superior cognitive capabilities of humans? Understanding this relationship requires a metric to quantify how neuronal properties contribute to the functional complexity of single neurons, yet no such standardized measure currently exists. Here, we propose the Functional Complexity Index (FCI), a generalized, deep learning-based framework to assess the input-output complexity of neurons. By comparing the FCI of cortical pyramidal neurons from different layers in rats and humans, we identified key morpho-electrical factors that underlie functional complexity. Human cortical pyramidal neurons were found to be significantly more functionally complex than their rat counterparts, primarily due to differences in dendritic membrane area and branching pattern, as well as density and nonlinearity of NMDA-mediated synaptic receptors. These findings reveal the structural-biophysical basis for the enhanced functional properties of human neurons.
Collapse
Affiliation(s)
- Ido Aizenbud
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniela Yoeli
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Beniaguev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christiaan PJ de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU Amsterdam
| | - Michael London
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Dura-Bernal S, Herrera B, Lupascu C, Marsh BM, Gandolfi D, Marasco A, Neymotin S, Romani A, Solinas S, Bazhenov M, Hay E, Migliore M, Reinmann M, Arkhipov A. Large-Scale Mechanistic Models of Brain Circuits with Biophysically and Morphologically Detailed Neurons. J Neurosci 2024; 44:e1236242024. [PMID: 39358017 PMCID: PMC11450527 DOI: 10.1523/jneurosci.1236-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024] Open
Abstract
Understanding the brain requires studying its multiscale interactions from molecules to networks. The increasing availability of large-scale datasets detailing brain circuit composition, connectivity, and activity is transforming neuroscience. However, integrating and interpreting this data remains challenging. Concurrently, advances in supercomputing and sophisticated modeling tools now enable the development of highly detailed, large-scale biophysical circuit models. These mechanistic multiscale models offer a method to systematically integrate experimental data, facilitating investigations into brain structure, function, and disease. This review, based on a Society for Neuroscience 2024 MiniSymposium, aims to disseminate recent advances in large-scale mechanistic modeling to the broader community. It highlights (1) examples of current models for various brain regions developed through experimental data integration; (2) their predictive capabilities regarding cellular and circuit mechanisms underlying experimental recordings (e.g., membrane voltage, spikes, local-field potential, electroencephalography/magnetoencephalography) and brain function; and (3) their use in simulating biomarkers for brain diseases like epilepsy, depression, schizophrenia, and Parkinson's, aiding in understanding their biophysical underpinnings and developing novel treatments. The review showcases state-of-the-art models covering hippocampus, somatosensory, visual, motor, auditory cortical, and thalamic circuits across species. These models predict neural activity at multiple scales and provide insights into the biophysical mechanisms underlying sensation, motor behavior, brain signals, neural coding, disease, pharmacological interventions, and neural stimulation. Collaboration with experimental neuroscientists and clinicians is essential for the development and validation of these models, particularly as datasets grow. Hence, this review aims to foster interest in detailed brain circuit models, leading to cross-disciplinary collaborations that accelerate brain research.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, New York 11203
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | | | - Carmen Lupascu
- Institute of Biophysics, National Research Council/Human Brain Project, Palermo 90146, Italy
| | - Brianna M Marsh
- University of California San Diego, La Jolla, California 92093
| | - Daniela Gandolfi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Samuel Neymotin
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- School of Medicine, New York University, New York 10012
| | - Armando Romani
- Swiss Federal Institute of Technology Lausanne (EPFL)/Blue Brain Project, Lausanne 1015, Switzerland
| | | | - Maxim Bazhenov
- University of California San Diego, La Jolla, California 92093
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Michele Migliore
- Institute of Biophysics, National Research Council/Human Brain Project, Palermo 90146, Italy
| | - Michael Reinmann
- Swiss Federal Institute of Technology Lausanne (EPFL)/Blue Brain Project, Lausanne 1015, Switzerland
| | | |
Collapse
|
4
|
Makarov R, Chavlis S, Poirazi P. DendroTweaks: An interactive approach for unraveling dendritic dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611191. [PMID: 39314451 PMCID: PMC11418972 DOI: 10.1101/2024.09.06.611191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Neurons rely on the interplay between dendritic morphology and ion channels to transform synaptic inputs into a sequence of somatic spikes. Detailed biophysical models with active dendrites have been instrumental in exploring this interaction. However, such models can be challenging to understand and validate due to the large number of parameters involved. In this work, we introduce DendroTweaks - a toolbox designed to illuminate how morpho-electric properties map to dendritic events and how these dendritic events shape neuronal output. DendroTweaks features a web-based graphical interface, where users can explore single-cell neuronal models and adjust their morphological and biophysical parameters with real-time visual feedback. In particular, DendroTweaks is tailored to interactive fine-tuning of subcellular properties, such as kinetics and distributions of ion channels, as well as the dynamics and allocation of synaptic inputs. It offers an automated approach for standardization and refinement of voltage-gated ion channel models to make them more comprehensible and reusable. The toolbox allows users to run various experimental protocols and record data from multiple dendritic and somatic locations, thereby enhancing model validation. Finally, it aims to deepen our understanding of which dendritic properties are essential for neuronal input-output transformation. Using this knowledge, one can simplify models through a built-in morphology reduction algorithm and export them for further use in faster, more interpretable networks. With DendroTweaks, users can gain better control and understanding of their models, advancing research on dendritic input-output transformations and their role in network computations.
Collapse
Affiliation(s)
- Roman Makarov
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 70013, Greece
- Department of Biology, University of Crete, Heraklion, 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 70013, Greece
| |
Collapse
|
5
|
Kumari S, Narayanan R. Ion-channel degeneracy and heterogeneities in the emergence of signature physiological characteristics of dentate gyrus granule cells. J Neurophysiol 2024; 132:991-1013. [PMID: 39110941 DOI: 10.1152/jn.00071.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Complex systems are neither fully determined nor completely random. Biological complex systems, including single neurons, manifest intermediate regimes of randomness that recruit integration of specific combinations of functionally specialized subsystems. Such emergence of biological function provides the substrate for the expression of degeneracy, the ability of disparate combinations of subsystems to yield similar function. Here, we present evidence for the expression of degeneracy in morphologically realistic models of dentate gyrus granule cells (GCs) through functional integration of disparate ion-channel combinations. We performed a 45-parameter randomized search spanning 16 active and passive ion channels, each biophysically constrained by their gating kinetics and localization profiles, to search for valid GC models. Valid models were those that satisfied 17 sub- and suprathreshold cellular-scale electrophysiological measurements from rat GCs. A vast majority (>99%) of the 15,000 random models were not electrophysiologically valid, demonstrating that arbitrarily random ion-channel combinations would not yield GC functions. The 141 valid models (0.94% of 15,000) manifested heterogeneities in and cross-dependencies across local and propagating electrophysiological measurements, which matched with their respective biological counterparts. Importantly, these valid models were widespread throughout the parametric space and manifested weak cross-dependencies across different parameters. These observations together showed that GC physiology could neither be obtained by entirely random ion-channel combinations nor is there an entirely determined single parametric combination that satisfied all constraints. The complexity, the heterogeneities in measurement and parametric spaces, and degeneracy associated with GC physiology should be rigorously accounted for while assessing GCs and their robustness under physiological and pathological conditions.NEW & NOTEWORTHY A recent study from our laboratory had demonstrated pronounced heterogeneities in a set of 17 electrophysiological measurements obtained from a large population of rat hippocampal granule cells. Here, we demonstrate the manifestation of ion-channel degeneracy in a heterogeneous population of morphologically realistic conductance-based granule cell models that were validated against these measurements and their cross-dependencies. Our analyses show that single neurons are complex entities whose functions emerge through intricate interactions among several functionally specialized subsystems.
Collapse
Affiliation(s)
- Sanjna Kumari
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Arnaudon A, Reva M, Zbili M, Markram H, Van Geit W, Kanari L. Controlling morpho-electrophysiological variability of neurons with detailed biophysical models. iScience 2023; 26:108222. [PMID: 37953946 PMCID: PMC10638024 DOI: 10.1016/j.isci.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Variability, which is known to be a universal feature among biological units such as neuronal cells, holds significant importance, as, for example, it enables a robust encoding of a high volume of information in neuronal circuits and prevents hypersynchronizations. While most computational studies on electrophysiological variability in neuronal circuits were done with single-compartment neuron models, we instead focus on the variability of detailed biophysical models of neuron multi-compartmental morphologies. We leverage a Markov chain Monte Carlo method to generate populations of electrical models reproducing the variability of experimental recordings while being compatible with a set of morphologies to faithfully represent specifi morpho-electrical type. We demonstrate our approach on layer 5 pyramidal cells and study the morpho-electrical variability and in particular, find that morphological variability alone is insufficient to reproduce electrical variability. Overall, this approach provides a strong statistical basis to create detailed models of neurons with controlled variability.
Collapse
Affiliation(s)
- Alexis Arnaudon
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Maria Reva
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Mickael Zbili
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Lida Kanari
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|