1
|
Gardiner CL, Weakley J, Leota J, Burke LM, Karagounis LG, Russell S, Johnston RD, Townshend A, Halson SL. Dose response effects of theacrine on cognitive performance and subsequent sleep. Sci Rep 2024; 14:28614. [PMID: 39562624 PMCID: PMC11576848 DOI: 10.1038/s41598-024-79046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Psychostimulants can be employed as a countermeasure to cognitive declines resulting from insufficient sleep. Although caffeine is the most consumed psychostimulant, consumption can cause adverse side-effects, including sleep disturbance. Therefore, there is interest in identifying alternative supplements that improve cognitive performance without compromising subsequent sleep. Here we investigate the influence of the dose and timing of theacrine consumption on cognitive performance and subsequent sleep using conditions that replicate a low (100 mg) and high (400 mg) dose consumed in the morning (12 h prior to bedtime), afternoon (eight hours prior to bedtime), and evening (four hours prior to bedtime). We found no significant effect of the low or high theacrine dose on subsequent sleep although the high dose showed small non-significant effects on sleep efficiency and wake after sleep onset at each timepoint of consumption. However, consuming theacrine within eight hours of bedtime improved next-morning cognitive performance, with the 400 mg dose reducing the number of lapses on the Psychomotor Vigilance Task, although there were no significant effects on reaction time. Our findings provide initial scientific evidence suggesting that theacrine consumption may improve some aspects of next-morning cognitive performance but not others, with small non-significant effects on nighttime sleep.
Collapse
Affiliation(s)
- Carissa L Gardiner
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia.
- Carnegie Applied Rugby Research (CARR) Centre, Institute of Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK.
| | - Josh Leota
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Australia
| | - Leonidas G Karagounis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Suzanna Russell
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Rich D Johnston
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
- Carnegie Applied Rugby Research (CARR) Centre, Institute of Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - Andrew Townshend
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Shona L Halson
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| |
Collapse
|
2
|
La Monica MB, Raub B, Malone K, Hartshorn S, Grdic J, Gustat A, Sandrock J. Methylliberine Ingestion Improves Various Indices of Affect but Not Cognitive Function in Healthy Men and Women. Nutrients 2023; 15:4509. [PMID: 37960163 PMCID: PMC10650428 DOI: 10.3390/nu15214509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
This study assessed the acute effects of oral methylliberine (DynamineTM) supplementation on cognitive function and indices of well-being. This was a double-blind, randomized, within-subject crossover trial. In total, 25 healthy men and women (33.5 ± 10.7 yr, 172.7 ± 8.6 cm, 73.3 ± 11.0 kg) underwent pretesting before ingesting methylliberine (100 mg) or a placebo (PLA) for 3 days. On the fourth day, the participants were tested before their fourth dose (baseline) and every hour post-ingestion for 3 h. After a one-week washout period, the participants repeated testing with the alternate investigational product. The testing battery consisted of vitals, Stroop test, Trail Making Test-B, and visual analog scales that assessed various indices of well-being. Mixed factorial ANOVAs with repeated measures were used to assess all variables. There were significant (p ≤ 0.050) interactions in terms of concentration, motivation, and mood. Methylliberine improved concentration at 1 and 3 h, motivation at 3 h, and mood at 1, 2, and 3 h (p ≤ 0.050). Methylliberine improved energy, sustained energy, and mood in all participants to a greater extent than PLA at 1 h and 3 h relative to baseline (p ≤ 0.050). PLA improved motivation at 1 and 2 h and mood at 2 h (p ≤ 0.050). Methylliberine improved concentration, well-being, and the ability to tolerate stress to a greater extent than PLA at 3 h relative to baseline (p ≤ 0.050). Women observed elevations in sustained energy at 1 and 3 h (p ≤ 0.050) with methylliberine vs. PLA. Methylliberine had a negligible influence on cognitive function and vitals (p > 0.050), and no adverse events were reported. Methylliberine significantly improved subjective feelings of energy, concentration, motivation, and mood, but not cognitive function. PLA improved motivation and mood at hours 1 and 2, while methylliberine sustained these benefits for longer. Methylliberine also improved concentration, well-being, and the ability to tolerate stress to a greater degree than PLA, while having no detrimental effects on vital signs. Methylliberine also seemed to have a positive impact on sustained energy in women.
Collapse
|
3
|
Strictinin, a Major Ingredient in Yunnan Kucha Tea Possessing Inhibitory Activity on the Infection of Mouse Hepatitis Virus to Mouse L Cells. Molecules 2023; 28:molecules28031080. [PMID: 36770747 PMCID: PMC9921699 DOI: 10.3390/molecules28031080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Theacrine and strictinin of Yunnan Kucha tea prepared from a mutant variety of wild Pu'er tea plants were two major ingredients responsible for the anti-influenza activity. As the COVID-19 outbreak is still lurking, developing safe and cost-effective therapeutics is an urgent need. This study aimed to evaluate the effects of these tea compounds on the infection of mouse hepatitis virus (MHV), a β-coronavirus serving as a surrogate for SARS-CoV. Treatment with strictinin (100 μM), but not theacrine, completely eliminated MHV infection, as indicated by a pronounced reduction in plaque formation, nucleocapsid protein expression, and progeny production of MHV. Subsequently, a time-of-drug addition protocol, including pre-, co-, or post-treatment, was exploited to further evaluate the possible mechanism of antiviral activity mediated by strictinin, and remdesivir, a potential drug for the treatment of SARS-CoV-2, was used as a positive control against MHV infection. The results showed that all three treatments of remdesivir (20 μM) completely blocked MHV infection. In contrast, no significant effect on MHV infection was observed when cells were pre-treated with strictinin (100 μM) prior to infection, while significant inhibition of MHV infection was observed when strictinin was introduced upon viral adsorption (co-treatment) and after viral entry (post-treatment). Of note, as compared with the co-treatment group, the inhibitory effect of strictinin was more striking in the post-treatment group. These results indicate that strictinin suppresses MHV infection by multiple mechanisms; it possibly interferes with viral entry and also critical step(s) of viral infection. Evidently, strictinin significantly inhibited MHV infection and might be a suitable ingredient for protection against coronavirus infection.
Collapse
|
4
|
Li X, Cai K, Fan Z, Wang J, Wang L, Wang Q, Wang L, Pei X, Zhao X. Dissection of transcriptome and metabolome insights into the isoquinoline alkaloid biosynthesis during stem development in Phellodendron amurense (Rupr.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111461. [PMID: 36122814 DOI: 10.1016/j.plantsci.2022.111461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Phellodendron amurense (Rupr.) is a well-known medicinal plant with high medicinal value, and its various tissues are enriched in various active pharmaceutical ingredients. Isoquinoline alkaloids are the primary medicinal component of P. amurense and have multiple effects, such as anti-inflammation, antihypertension, and antitumor effects. However, the potential regulatory mechanism of isoquinoline alkaloid biosynthesis during stem development in P. amurense is still poorly understood. In the present study, a total of eight plant hormones for each stem development stage were detected; of those, auxin, gibberellins and brassinosteroids were significantly highly increased in perennial stems and played key roles during stem development in P. amurense. We also investigated the content and change pattern of secondary metabolites and comprehensively identified some key structural genes involved in the isoquinoline alkaloid biosynthesis pathway by combining the transcriptome and metabolomics. A total of 39,978 DEGs were identified in the present study, and six of those had candidate structural genes (NCS, GOT2, TYNA, CODM, TYR, TAT and PSOMT1) that were specifically related to isoquinoline alkaloid biosynthesis in P. amurense. Corydalmine, cyclanoline, dehydroyanhunine, (S)-canadine and corybulbine were the most significantly upregulated metabolites among the different comparative groups. Three differentially expressed metabolites, dopamine, (S)-corytuberine and (S)-canadine, were enriched in the isoquinoline alkaloid biosynthesis pathway. Furthermore, bHLH and WRKY transcription factors play key roles in the isoquinoline alkaloid biosynthesis pathway in P. amurense. The results not only provide comprehensive genetic information for understanding the molecular mechanisms of isoquinoline alkaloid biosynthesis but also lay a foundation for the combinatory usage of the medicinal active ingredient of P. amurense.
Collapse
Affiliation(s)
- Xiang Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 15004, China.
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 15004, China.
| | - Zuoyi Fan
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Jingyuan Wang
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Lianfu Wang
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Qi Wang
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Lixing Wang
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Xiaona Pei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China.
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 15004, China.
| |
Collapse
|
5
|
Cerqueira HSC, Filho HT, Corrêa Junior M, Martinelli Junior CE. Effects of Theacrine as a Pre-Workout Supplement. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14037. [PMID: 36360914 PMCID: PMC9654377 DOI: 10.3390/ijerph192114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The search to increase physical performance is inherent to physical activity practitioners, and nutrition features are among the alternatives to seeking such an increase. The literature from the area has shown that different substances can promote beneficial effects over physical performance. One substance that has come into the spotlight is theacrine, an alkaloid similar to caffeine, which aims to increase physical performance. However, the studies on this supplement are scarce. Therefore, this study is a randomized, controlled trial that aimed to verify the effects of theacrine supplementation over physical performance in young male athletes, by applying a battery of physical tests. Twenty-two male amateur flag-football athletes were recruited. Subjects were divided into two groups and assessed at two moments, which were 72 h apart. The first assessment served as a basal measurement. In the second, the subjects ingested the supplement or a placebo 60 min before the following tests: sextuple jump, agility T test, 30 m sprint, 40 s run test (Matsudo test), and 12 min run test (Cooper test). There was no difference between the groups in any of the tests. Therefore, the findings of this study do not support the use of theacrine to increase physical performance.
Collapse
Affiliation(s)
| | - Hugo Tourinho Filho
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-900, Brazil
| | - Marcos Corrêa Junior
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14876-018, Brazil
| | | |
Collapse
|
6
|
Tartar JL, Banks JB, Marang M, Pizzo F, Antonio J. A Combination of Caffeine, TeaCrine® (Theacrine), and Dynamine® (Methylliberine) Increases Cognitive Performance and Reaction Time Without Interfering With Mood in Adult Male Egamers. Cureus 2021; 13:e20534. [PMID: 35103121 PMCID: PMC8768451 DOI: 10.7759/cureus.20534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Involvement in video game activities and competitive video gaming (esports) is a rapidly growing field. Moreover, there is a marked interest in identifying nutritional supplements to safely improve egamer performance. Methodology We conducted a repeated-measure, randomized crossover study to compare the effects of caffeine (125 mg), caffeine (125 mg) + Dynamine® (75 mg) + TeaCrine® (50 mg) (CDT), and matched placebo across three testing sessions (one week apart) among 50 young male egamers. We tested the effect of each product on multiple measures of cognition, self-reported mood (anxiety, alertness, and headache), and biomarkers of arousal (cortisol and salivary alpha-amylase). We also measured electroencephalogram power during the cognitive tasks. Finally, we tested whether individual differences in xenobiotic metabolism would affect the study outcome measures by genotyping each participant for cytochrome P450 1A2*1F (CYP1A2*1F) allele status. Results Compared to pre-dose, CDT improved performance on the Flanker Test of Inhibitory Control and improved reaction time on the Psychomotor Vigilance Task post-dose. Compared to the placebo, caffeine increased self-reported anxiety whereas the CDT combination increased self-reported alertness. Compared to the CDT combination, caffeine increased self-reported headaches. Physiological measures suggested that increases in delta EEG power and cortisol production are associated with the effects observed in the CDT condition to optimize certain aspects of egamer performance. CYP1A2*1F allele status did not moderate outcome variables between conditions in this study. Conclusions CDT is a safe and effective product for improving cognitive performance among egamers without increasing self-reported anxiety or headaches. EEG changes demonstrate that CDT increased attention to internal processing (i.e., increased cortical delta power) and potentially increased cognitive control (i.e., increased cortical theta frequency), while the increases in cortisol suggest increased energy mobilization. Future work should aim to clarify the physiological underpinnings of CDT-induced changes in performance and examine the effects of CDT under naturalistic egamer conditions.
Collapse
|
7
|
Attenuation of Tumor Development in Mammary Carcinoma Rats by Theacrine, an Antagonist of Adenosine 2A Receptor. Molecules 2021; 26:molecules26247455. [PMID: 34946538 PMCID: PMC8706909 DOI: 10.3390/molecules26247455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Caffeine has been reported to induce anti-tumor immunity for attenuating breast cancer by blocking the adenosine 2A receptor. Molecular modeling showed that theacrine, a purine alkaloid structurally similar to caffeine, might be an antagonist of the adenosine 2A receptor equivalent to or more effective than caffeine. Theacrine was further demonstrated to be an effective antagonist of the adenosine 2A receptor as its concurrent supplementation significantly reduced the elevation of AMPK phosphorylation level in MCF-7 human breast cells induced by CGS21680, an agonist of adenosine 2A receptors. In an animal model, the development of mammary carcinoma induced by 7,12-Dimethylbenz[a]anthracene in Sprague–Dawley rats could be attenuated by daily supplement of theacrine of 50 or 100 mg/kg body weight. Both expression levels of cleaved-caspase-3/pro-caspase-3 and granzyme B in tumor tissues were significantly elevated when theacrine was supplemented, indicating the induction of programmed cell death in tumor cells might be involved in the attenuation of mammary carcinoma. Similar to the caffeine, significant elevation of interferon-γ and tumor necrosis factor-α was observed in the serum and tumor tissues of rats after the theacrine supplement of 50 mg/kg body weight. Taken together, theacrine is an effective antagonist of adenosine 2A receptors and possesses great potential to be used to attenuate breast cancer.
Collapse
|
8
|
Ouyang SH, Zhai YJ, Wu YP, Xie G, Wang GE, Mao ZF, Hu HH, Luo XH, Sun WY, Liang L, Duan WJ, Kurihara H, Li YF, He RR. Theacrine, a Potent Antidepressant Purine Alkaloid from a Special Chinese Tea, Promotes Adult Hippocampal Neurogenesis in Stressed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7016-7027. [PMID: 34060828 DOI: 10.1021/acs.jafc.1c01514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Daily intake of tea has been known to relate to a low risk of depression. In this study, we report that a special variety of tea in China, Camellia assamica var. kucha (kucha), possesses antidepressant effects but with less adverse effects as compared to traditional tea Camellia sinensis. This action of kucha is related to its high amount of theacrine, a purine alkaloid structurally similar to caffeine. We investigated the antidepressant-like effects and mechanisms of theacrine in chronic water immersion restraint stress and chronic unpredictable mild stress mice models. PC12 cells and primary hippocampal neural stem cells were treated with stress hormone corticosterone (CORT) to reveal the potential antidepression mechanism of theacrine from the perspective of adult hippocampus neurogenesis. Results of behavioral and neurotransmitter analysis showed that intragastric administration of theacrine significantly counteracted chronic stress-induced depression-like disorders and abnormal 5-hydroxytryptamine (5-HT) metabolism with less central excitability. Further investigation from both in vivo and in vitro experiments indicated that the antidepressant mechanism of theacrine was associated with promoting adult hippocampal neurogenesis, via the modulation of the phosphodiesterase-4 (PDE4)/cyclic adenosine monophosphate (cAMP)/cAMP response-element binding (CREB)/brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway. Collectively, our findings could promote the prevalence of kucha as a common beverage with uses for health care and contribute to the development of theacrine as a potential novel antidepressant medicine.
Collapse
Affiliation(s)
- Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Yu-Jia Zhai
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Guo Xie
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China
| | - Guo-En Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhong-Fu Mao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hui-Hua Hu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xue-Hua Luo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Sheng YY, Xiang J, Wang ZS, Jin J, Wang YQ, Li QS, Li D, Fang ZT, Lu JL, Ye JH, Liang YR, Zheng XQ. Theacrine From Camellia kucha and Its Health Beneficial Effects. Front Nutr 2020; 7:596823. [PMID: 33392238 PMCID: PMC7773691 DOI: 10.3389/fnut.2020.596823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Theacrine, i.e., 1,3,7,9-tetramethyluric acid, is one of the major purine alkaloids found in leaf of a wild tea plant species Camellia kucha Hung T. Chang. Theacrine has been attracted great attentions academically owing to its diverse health benefits. Present review examines the advances in the research on the health beneficial effects of theacrine, including antioxidant effect, anti-inflammatory effect, locomotor activation and reducing fatigue effects, improving cognitive effect, hypnotic effect, ameliorating lipid metabolism and inhibiting breast cancer cell metastasis effect. The inconsistent results in this research field and further expectations were also discussed.
Collapse
Affiliation(s)
- Yue-Yue Sheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jing Xiang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ze-Shi Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jing Jin
- Zhejiang Agricultural Technology Extension Center, Hangzhou, China
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Da Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Zhou-Tao Fang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Development of a liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for characterizing caffeine, methylliberine, and theacrine pharmacokinetics in humans. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122278. [DOI: 10.1016/j.jchromb.2020.122278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/20/2022]
|
11
|
Duan WJ, Liang L, Pan MH, Lu DH, Wang TM, Li SB, Zhong HB, Yang XJ, Cheng Y, Liu B, Li WX, Kurihara H, Bi W, Li YF, He RR. Theacrine, a purine alkaloid from kucha, protects against Parkinson's disease through SIRT3 activation. PHYTOMEDICINE 2020; 77:153281. [PMID: 32707370 DOI: 10.1016/j.phymed.2020.153281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxidative damage of dopaminergic neurons is the fundamental causes of Parkinson's disease (PD) that has no standard cure at present. Theacrine, a purine alkaloid from Chinese tea Kucha, has been speculated to benefit the neurodegeneration in PD, through similar actions to its chemical analogue caffeine, albeit excluding side effects. Theacrine has nowadays gained a lot of interest for its multiple benefits, while the investigations are weak and insufficient. HYPOTHESIS/PURPOSE It is well-known that tea has a wide range of functions, especially in the prevention and treatment of neurodegenerative diseases. Theacrine is an active monomer compound in Camellia assamica var. kucha Hung T. Chang & H.S.Wang (Kucha), which appears to be effective and safe in PD therapy. The aim of this study is to examine its actions in diverse PD models and explore the mechanisms. STUDY DESIGN For determination of theacrine's effects, we employed diverse oxidative damage-associated PD models, including 6-OHDA-treated rats, MPTP-treated mice/zebrafish and MPP+-treated SH-SY5Y cells, and using caffeine, selegiline and depranyl as positve control. For investigation and verification of the mechanisms, we utilized approaches testing mitochondrial function-related parameters and enzyme activity as well as applied gene knockdown and overexpression. METHODS We employed behavioral tests including spontaneous activity, pole, swimming, rotarod and gait, immunohistochemistry, HPLC, flow cytometry, immunohistochemistry, Western blot, gene knockdown by siRNA and overexpression by plasmid in this study. RESULTS Theacrine is demonstrated to retrieve the loss of dopaminergic neurons and the damages of behavioral performance in multiple animal models of PD (6-OHDA-treated rats and in MPTP-treated mice and zebrafish). The followed data of MPP+-treated SH-SY5Y cells indicate that theacrine relieves apoptosis resulted from oxidative damage and mitochondrial dysfunction. Further investigations illustrate that theacrine activates SIRT3 directly. It is of advantage to prevent apoptosis through SIRT3-mediated SOD2 deacetylation that reduces ROS accumulation and restores mitochondrial function. This concept is elaborated by 3TYP that inhibits SIRT3 enzyme activity and knockdown/overexpression of SIRT3 gene, demonstrating a crucial role of SIRT3 in theacrine-benefited dopaminergic neurons. CONCLUSION Theacrine prevents apoptosis of dopaminergic neurons through directly activating SIRT3 which deacetylating SOD2 and restoring mitochondrial functions.
Collapse
Affiliation(s)
- Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming-Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dan-Hua Lu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ting-Mei Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shan-Bing Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Han-Bing Zhong
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuan-Jun Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China; Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei-Xi Li
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Baiyacha, a wild tea plant naturally occurring high contents of theacrine and 3″-methyl-epigallocatechin gallate from Fujian, China. Sci Rep 2020; 10:9715. [PMID: 32546720 PMCID: PMC7297968 DOI: 10.1038/s41598-020-66808-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
Baiyacha (BYC) is a kind of wild tea plant growing and utilizing in the remote mountain area of Fujian province, Southeastern China. However, scientific studies on this plant remain limited. Our results showed that BYC exhibits the typical morphological characteristics of Camellia gymnogyna Chang, a closely related species of C. sinensis (L.) O. Kuntze, which was not found in Fujian before. Chemical profiling revealed that parts of BYC plants are rich in purine alkaloids and catechins, especially featuring high levels of theacrine and 3″-methyl-epigallocatechin gallate (EGCG3″Me), chemical compounds with multiple biological activities that are rarely observed in regular tea plants. The contents of EGCG3″Me and theacrine in BYC both increased with the leaf maturity of tea shoots, whereas the caffeine content decreased significantly. The obtained results provide abundant information about the morphology and chemical compounds of BYC and may be used for tea production, breeding, and scientific research in the future.
Collapse
|
13
|
Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea. Nat Commun 2020; 11:1473. [PMID: 32193380 PMCID: PMC7081346 DOI: 10.1038/s41467-020-15324-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/04/2020] [Indexed: 12/02/2022] Open
Abstract
Caffeine is a major component of xanthine alkaloids and commonly consumed in many popular beverages. Due to its occasional side effects, reduction of caffeine in a natural way is of great importance and economic significance. Recent studies reveal that caffeine can be converted into non-stimulatory theacrine in the rare tea plant Camellia assamica var. kucha (Kucha), which involves oxidation at the C8 and methylation at the N9 positions of caffeine. However, the underlying molecular mechanism remains unclear. Here, we identify the theacrine synthase CkTcS from Kucha, which possesses novel N9-methyltransferase activity using 1,3,7-trimethyluric acid but not caffeine as a substrate, confirming that C8 oxidation takes place prior to N9-methylation. The crystal structure of the CkTcS complex reveals the key residues that are required for the N9-methylation, providing insights into how caffeine N-methyltransferases in tea plants have evolved to catalyze regioselective N-methylation through fine tuning of their active sites. These results may guide the future development of decaffeinated drinks. Kucha is a rare variety of tea tree that produces the non-stimulatory theacrine instead of caffeine. Here the authors show that theacrine synthase from Kucha has N9-methyltransferase activity resulting from amino acid substitutions that explain substrate specificity and could potentially guide production of caffeine-free tea.
Collapse
|
14
|
Safety of Short-Term Supplementation with Methylliberine (Dynamine ®) Alone and in Combination with TeaCrine ® in Young Adults. Nutrients 2020; 12:nu12030654. [PMID: 32121218 PMCID: PMC7146520 DOI: 10.3390/nu12030654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Methylliberine (Dynamine®; DYM) and theacrine (Teacrine®; TCR) are purine alkaloids purported to have similar neuro-energetic effects as caffeine. There are no published human safety data on DYM, and research on TCR is limited. The purpose of this study was to examine the effect of four weeks of DYM supplementation with and without TCR on cardiovascular function and blood biomarkers. One-hundred twenty-five men and women (mean age 23.0 yrs, height 169.7 cm, body mass 72.1 kg; n = 25/group) were randomly assigned to one of five groups: low-dose DYM (100 mg), high-dose DYM (150 mg), low-dose DYM with TCR (100 mg + 50 mg), high-dose DYM with TCR (150 mg + 25 mg) , and placebo. Regardless of group and sex, significant main effects for time were noted for heart rate, systolic blood pressure, and QTc (p < 0.001), high-density lipoproteins (p = 0.002), mean corpuscular hemoglobin (p = 0.018), basophils (p = 0.006), absolute eosinophils (p = 0.010), creatinine (p = 0.004), estimated glomerular filtration rate (p = 0.037), chloride (p = 0.030), carbon dioxide (p = 0.023), bilirubin (p = 0.027), and alanine aminotransferase (p = 0.043), among others. While small changes were found in some cardiovascular and blood biomarkers, no clinically significant changes occurred. This suggests that DYM alone or in combination with TCR consumed at the dosages used in this study does not appear to negatively affect markers of health over four weeks of continuous use.
Collapse
|
15
|
Cesareo KR, Mason JR, Saracino PG, Morrissey MC, Ormsbee MJ. The effects of a caffeine-like supplement, TeaCrine®, on muscular strength, endurance and power performance in resistance-trained men. J Int Soc Sports Nutr 2019; 16:47. [PMID: 31660991 PMCID: PMC6816173 DOI: 10.1186/s12970-019-0316-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
Background TeaCrine® is the synthetic version to naturally occurring theacrine (1, 3, 7, 9-tetramethyluric acid) found in the leaves of Camellia kucha tea plants. A few studies have examined the effects of TeaCrine® on cognitive perception, but no research exists examining its effects on resistance exercise performance. The purpose of this study was to determine the efficacy of TeaCrine®, a caffeine-like compound, on maximal muscular strength, endurance, and power performance in resistance-trained men. Methods Twelve resistance-trained men participated in a randomized, double-blind, cross-over designed study. Each participant performed one-repetition maximum (1RM) bench press, 1RM squat, bench press repetitions to failure (RTF) at 70% 1RM, squat RTF at 70% 1RM, and 2-km rowing time trial 90 min after consumption of: (1) Caffeine 300 mg (CAFF300); (2) TeaCrine® 300 mg (TEA300); (3) TeaCrine® + Caffeine (COMBO; 150 mg/150 mg); (4) Placebo 300 mg (PLA). Power and velocity were measured using a TENDO Power Analyzer. Visual analogue scales for energy, focus, motivation to exercise, and fatigue were administered at baseline and 90 min post-treatment ingestion (pre-workout). Rating of perceived exertion was assessed after bench press RTF and squat RTF. Results There were no differences between groups for 1RM, RTF, and power in the bench press and squat exercises. Only CAFF300 resulted in significant increases in perceived energy and motivation to exercise vs. TEA300 and PLA (Energy: + 9.8%, 95% confidence interval [3.3–16.4%], p < 0.01; + 15.3%, 95% CI [2.2–28.5%], p < 0.02; Motivation to exercise: + 8.9%, 95% CI [0.2–17.6%], p = 0.04, + 14.8%, 95% CI [4.7–24.8%], p < 0.01, respectively) and increased focus (+ 9.6%, 95% CI [2.1–17.1%], p = 0.01) vs. TEA300, but there were no significant differences between CAFF300 and COMBO (Energy + 3.9% [− 6.9–14.7%], Focus + 2.5% [− 6.3–11.3%], Motivation to exercise + 0.5% [− 11.6–12.6%]; p > 0.05). Conclusion Neither TEA300, CAFF300, COMBO, or PLA (when consumed 90 min pre-exercise) improved muscular strength, power, or endurance performance in resistance-trained men. Only CAFF300 improved measures of focus, energy, and motivation to exercise.
Collapse
Affiliation(s)
- Kyle R Cesareo
- Department of Nutrition, Food & Exercise Sciences, Institute of Sports Sciences & Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA.,The Center for Applied Health Sciences, Canfield, OH, 44515, USA
| | - Justin R Mason
- Department of Nutrition, Food & Exercise Sciences, Institute of Sports Sciences & Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA.,Deparment of Occupational Therapy, University of Florida, Gainesville, FL, 32611, USA
| | - Patrick G Saracino
- Department of Nutrition, Food & Exercise Sciences, Institute of Sports Sciences & Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA
| | - Margaret C Morrissey
- Department of Nutrition, Food & Exercise Sciences, Institute of Sports Sciences & Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA.,Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, 60268, USA
| | - Michael J Ormsbee
- Department of Nutrition, Food & Exercise Sciences, Institute of Sports Sciences & Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA. .,Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
16
|
A Toxicological Evaluation of Methylliberine (Dynamine®). J Toxicol 2019; 2019:4981420. [PMID: 31911801 PMCID: PMC6930730 DOI: 10.1155/2019/4981420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
Methylliberine (CAS 51168-26-4), a methoxiuric acid, is a caffeine metabolite present at low levels in various Coffea plants; however, very little has been published regarding this compound and we could find no toxicological data in the public domain. Therefore, we undertook the toxicological investigation of a pure, synthetic form of methylliberine in order to evaluate its potential health hazards as a food ingredient. A (1) bacterial reverse mutation test, (2) in vitro mammalian chromosomal aberration test, (3) in vivo mammalian micronucleus test, and (4) 90-day repeated-dose oral toxicity study in rats with a 28-day recovery period were conducted. No in vitro mutagenic or clastogenic activity was observed in the presence or absence of metabolic activation up to the maximum OECD recommended test concentrations. No genotoxicity was observed in the mammalian micronucleus study up to the highest dose tested of 700 mg/kg bw. In the 90-day study, methylliberine was administered to Han:WIST rats at doses of 0, 75, 112, 150, 187, and 225 mg/kg bw/day. No mortality or morbidity was observed and no toxicologically relevant clinical effects or effects on clinical pathology parameters were observed. In male animals, test item-related effects on body weight and sexual organs, which were not reversible after a 28-day recovery period without treatment, were observed in the high-dose group. Body weight development was also slightly and reversibly depressed in the 187 mg/kg bw/day male group. No toxicological effects were observed in females. The NOAEL for females was determined to be 225 mg/kg bw/day, the highest dose tested, while the NOAEL for males was determined to be 150 mg/kg bw/day. Future studies are encouraged to corroborate the safety, and assess efficacy, of methylliberine in humans.
Collapse
|
17
|
Ko JH, Yang MH, Baek SH, Nam D, Jung SH, Ahn KS. Theacrine attenuates epithelial mesenchymal transition in human breast cancer MDA-MB-231 cells. Phytother Res 2019; 33:1934-1942. [PMID: 31172618 DOI: 10.1002/ptr.6389] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/22/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Theacrine, a purine alkaloid structurally similar to caffeine, has recently become of interest as a potential therapeutic compound. Here, we investigated the antimetastatic potential of theacrine on human breast cancer MDA-MB-231 cells. We observed that theacrine can reverse epithelial-to-mesenchymal transition (EMT), which resulted in a decrease in the levels of mesenchymal markers (Fibronectin, Vimentin, N-cadherin, Twist, and Snail) and an increase in the levels of epithelial markers (Occludin and E-cadherin) in the cells. Additionally, theacrine attenuates TGF-β-induced EMT, cell adhesion, migration, and invasion in MDA-MB-231 cells. Overall, our results suggest that theacrine may inhibit the breast cancer cell metastasis by reversing the EMT process.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Woosuk University, Wanju, Republic of Korea
| | - Dongwoo Nam
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Bello ML, Walker AJ, McFadden BA, Sanders DJ, Arent SM. The effects of TeaCrine® and caffeine on endurance and cognitive performance during a simulated match in high-level soccer players. J Int Soc Sports Nutr 2019; 16:20. [PMID: 30999897 PMCID: PMC6472067 DOI: 10.1186/s12970-019-0287-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Theacrine (1,3,7,9-tetramethyluric-acid) is a pure alkaloid with a similar structure to caffeine and acts comparably as an adenosine receptor antagonist. Early studies have shown non-habituating effects, including increases in energy and focus in response to Teacrine®, the compound containing pure theacrine. The purpose of this study was to determine and compare the effects of Teacrine® and caffeine on cognitive performance and time-to-exhaustion during a simulated soccer game in high-level male and female athletes. METHODS Male and female soccer players (N = 24; MAge = 20.96 ± 2.05y, MMaleVO2max = 55.31 ± 3.39 mL/O2/kg, MFemaleVO2max = 50.97 ± 3.90 mL/O2/kg) completed a 90-min simulated treadmill soccer match over four randomized sessions (TeaCrine®, caffeine, TeaCrine® + caffeine, placebo). Cognitive testing at halftime and end-of-game including simple reaction time (SRT), choice RT (CRT), and cognitive-load RT with distraction questions (COGRT/COGRTWrong) was performed, with a run time-to-exhaustion (TTE) at 85% VO2max following end-of-game cognitive testing. Session times and pre-exercise nutrition were controlled. RM-MANOVAs with univariate follow-ups were conducted and significance was set at P < 0.05. RESULTS TTE trended towards significance in TeaCrine® and TeaCrine® + caffeine conditions compared to placebo (P < 0.052). A condition main effect (P < 0.05) occurred with faster CRT in caffeine and TeaCrine® + caffeine compared to placebo. COGRTWrong showed a significant time main effect, with better accuracy at end-of-game compared to halftime (P < 0.05). A time x condition interaction in SRT (P < 0.05) showed placebo improved from halftime to end-of-game. CONCLUSIONS The 27-38% improvements in TTE reflect increased performance capacity that may have important implications for overtime scenarios. These findings suggest TeaCrine® favorably impacts endurance and the combination with caffeine provides greater benefits on cognitive function than either supplement independently.
Collapse
Affiliation(s)
- Marissa L Bello
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Alan J Walker
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Bridget A McFadden
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - David J Sanders
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Shawn M Arent
- IFNH Center for Health and Human Performance, Rutgers University, 61 Dudley Rd, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
19
|
Daou M, Sassi JM, Miller MW, Gonzalez AM. Effects of a Multi-Ingredient Energy Supplement on Cognitive Performance and Cerebral-Cortical Activation. J Diet Suppl 2019. [DOI: 10.1080/19390211.2018.1440686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Marcos Daou
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | | | - Adam M. Gonzalez
- Department of Health Professions, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
20
|
Ramamoorthy V, Campa A, Rubens M, Martinez SS, Fleetwood C, Stewart T, Liuzzi JP, George F, Khan H, Li Y, Baum MK. Caffeine and Insomnia in People Living With HIV From the Miami Adult Studies on HIV (MASH) Cohort. J Assoc Nurses AIDS Care 2017; 28:897-906. [PMID: 28830705 PMCID: PMC5830125 DOI: 10.1016/j.jana.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
We explored the relationship between caffeine consumption, insomnia, and HIV disease progression (CD4+ T cell counts and HIV viral loads). Caffeine intake and insomnia levels were measured using the Modified Caffeine Consumption Questionnaire and the Pittsburgh Insomnia Rating Scale (PIRS) in 130 clinically stable participants who were living with HIV, taking antiretroviral therapy, and recruited from the Miami Adult Studies on HIV cohort. Linear regressions showed that caffeine consumption was significantly and adversely associated with distress score, quality-of-life score, and global PIRS score. Linear regression analyses also showed that global PIRS score was significantly associated with lower CD4+ T cell counts and higher HIV viral loads. Caffeine could have precipitated insomnia in susceptible people living with HIV, which could be detrimental to their disease progression states.
Collapse
Affiliation(s)
| | - Adriana Campa
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University (FIU), Miami, Florida, USA
| | - Muni Rubens
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, FIU, Miami, Florida, USA
| | - Sabrina S. Martinez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, FIU, Miami, Florida, USA
| | | | - Tiffanie Stewart
- Center for Nanoscience and Technology, University of Notre Dame, Notre Dame, Indiana, USA
| | - Juan P. Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, FIU, Miami, Florida, USA
| | - Florence George
- Department of Mathematics and Statistics, School of Integrated Science and Humanity, FIU, Miami, Florida, USA
| | - Hafiz Khan
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Yinghui Li
- Statistical Research II, Department of Information Technology, FIU, Miami, Florida, USA
| | - Marianna K. Baum
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, FIU, and the Director, Baum Research Group, Miami, Florida, USA
| |
Collapse
|
21
|
He H, Ma D, Crone LB, Butawan M, Meibohm B, Bloomer RJ, Yates CR. Assessment of the Drug-Drug Interaction Potential Between Theacrine and Caffeine in Humans. JOURNAL OF CAFFEINE RESEARCH 2017; 7:95-102. [PMID: 28875060 DOI: 10.1089/jcr.2017.0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Theacrine, a methylurate class purine alkaloid, triggers diverse pharmacologic responses, including psychostimulatory activity by modulation of adenosinergic and dopaminergic pathways. In a double-blind, placebo-controlled study, theacrine increased energy, concentration, and mood, while reducing fatigue. Because caffeine, a methylxanthine purine alkaloid, is frequently coadministered with theacrine, we sought to determine if a pharmacokinetic and/or pharmacodynamic interaction existed between theacrine and caffeine. Methods: Eight healthy adults received theacrine, as TeaCrine® (25 or 125 mg), caffeine (150 mg), or a combination of theacrine (125 mg) and caffeine (150 mg) in a randomized, double-blind crossover study. Blood samples were collected over a 24-hour period and analyzed by Liquid chromatrography-mass spectrometry/mass spectrometry (LC-MS/MS) for theacrine, caffeine, and paraxanthine. Pharmacodynamic response markers, heart rate and blood pressure, were recorded. Results: Theacrine pharmacokinetics was similar following administration of theacrine alone. Caffeine coadministration increased maximum plasma concentration and area under the curve of theacrine without altering theacrine half-life. Theacrine had no impact on caffeine or paraxanthine pharmacokinetics. There was no difference between treatment groups with regard to heart rate or systolic/diastolic blood pressure. Conclusions: Coadministration of theacrine and caffeine results in a clinically significant pharmacokinetic interaction, viz., increased theacrine exposure. Enhanced oral bioavailability is the most likely mechanism by which caffeine alters theacrine exposure. However, further studies examining the contribution of presystemic elimination mechanisms, for example, efflux transport and/or gut metabolism, to theacrine bioavailability are needed to confirm the exact mechanism(s). Hemodynamic parameters were unaltered despite the pharmacokinetic interaction, suggesting that coadministration of caffeine and theacrine is safe at the doses administered.
Collapse
Affiliation(s)
- Hui He
- Department of Pharmaceutical Sciences, University of Tennessee College of Pharmacy, Memphis, Tennessee
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee College of Pharmacy, Memphis, Tennessee
| | - Laura Brooks Crone
- Cardiorespiratory/Metabolic Laboratory, School of Health Studies, University of Memphis, Memphis, Tennessee
| | - Matthew Butawan
- Cardiorespiratory/Metabolic Laboratory, School of Health Studies, University of Memphis, Memphis, Tennessee
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee College of Pharmacy, Memphis, Tennessee
| | - Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory, School of Health Studies, University of Memphis, Memphis, Tennessee
| | - Charles R Yates
- Department of Pharmaceutical Sciences, University of Tennessee College of Pharmacy, Memphis, Tennessee
| |
Collapse
|
22
|
Koozehchian MS, Earnest CP, Jung YP, Collins PB, O'Connor A, Dalton R, Shin SY, Sowinski R, Rasmussen C, Murano PS, Greenwood M, Kreider RB. Dose Response to One Week of Supplementation of a Multi-Ingredient Preworkout Supplement Containing Caffeine Before Exercise. JOURNAL OF CAFFEINE RESEARCH 2017. [DOI: 10.1089/jcr.2017.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Majid S. Koozehchian
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Conrad P. Earnest
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
- Nutrabolt, Bryan, Texas
| | - Y. Peter Jung
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - P. Blaise Collins
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Abigail O'Connor
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Ryan Dalton
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Song Yi Shin
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Ryan Sowinski
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Chris Rasmussen
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Peter S. Murano
- Department of Nutrition and Food Sciences, Institute for Obesity Research and Program Evaluation, Texas A&M University, College Station, Texas
| | - Mike Greenwood
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Richard B. Kreider
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
23
|
Li YF, Ouyang SH, Chang YQ, Wang TM, Li WX, Tian HY, Cao H, Kurihara H, He RR. A comparative analysis of chemical compositions in Camellia sinensis var. puanensis Kurihara, a novel Chinese tea, by HPLC and UFLC-Q-TOF-MS/MS. Food Chem 2017; 216:282-8. [DOI: 10.1016/j.foodchem.2016.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 12/17/2022]
|
24
|
Li Z, He J, Zhang Y, Wang QG, Zhao Y, Qu HH, Wang XQ, Kong H, Zhang WK, Xu JK. Development of an enzyme-linked immunosorbent assay using specific monoclonal antibodies against theacrine and its application. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.06.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
A 90-Day Oral Toxicological Evaluation of the Methylurate Purine Alkaloid Theacrine. J Toxicol 2016; 2016:6206859. [PMID: 27635133 PMCID: PMC5011229 DOI: 10.1155/2016/6206859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 01/19/2023] Open
Abstract
A 90-day repeated-dose oral toxicological evaluation was conducted according to GLP and OECD guidelines on the methylurate purine alkaloid theacrine, which is found naturally in certain plants. Four groups of Hsd.Brl.Han Wistar rats (ten/sex/group) were administered theacrine by gavage doses of 0 (vehicle only), 180, 300, and 375 mg/kg bw/day. Two females and one male in the 300 and 375 mg/kg bw/day groups, respectively, died during the study. Histological examination revealed centrilobular hepatocellular necrosis as the probable cause of death. In 375 mg/kg bw/day males, slight reductions in body weight development, food consumption, and feed efficiency, decreased weight of the testes and epididymides and decreased intensity of spermatogenesis in the testes, lack or decreased amount of mature spermatozoa in the epididymides, and decreased amount of prostatic secretions were detected at the end of the three months. At 300 mg/kg bw/day, slight decreases in the weights of the testes and epididymides, along with decreased intensity of spermatogenesis in the testes, and lack or decreased amount of mature spermatozoa in the epididymides were detected in male animals. The NOAEL was considered to be 180 mg/kg bw/day, as at this dose there were no toxicologically relevant treatment-related findings in male or female animals.
Collapse
|
26
|
Ziegenfuss TN, Habowski SM, Sandrock JE, Kedia AW, Kerksick CM, Lopez HL. A Two-Part Approach to Examine the Effects of Theacrine (TeaCrine®) Supplementation on Oxygen Consumption, Hemodynamic Responses, and Subjective Measures of Cognitive and Psychometric Parameters. J Diet Suppl 2016; 14:9-24. [DOI: 10.1080/19390211.2016.1178678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Chad M. Kerksick
- School of Sport, Recreation and Exercise Sciences, Exercise, Nutrition and Performance Laboratory, Lindenwood University, St. Charles, MO, USA
| | | |
Collapse
|
27
|
Taylor L, Mumford P, Roberts M, Hayward S, Mullins J, Urbina S, Wilborn C. Safety of TeaCrine®, a non-habituating, naturally-occurring purine alkaloid over eight weeks of continuous use. J Int Soc Sports Nutr 2016; 13:2. [PMID: 26766930 PMCID: PMC4711067 DOI: 10.1186/s12970-016-0113-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/06/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Theacrine (1,3,7,9-tetramethyluric acid) is a purine alkaloid found in certain coffee (Coffea) species, fruits (Cupuacu [Theobroma grandiflorum]), and tea (Camellia assamica, var. kucha) that has anti-inflammatory, analgesic, and neuro-locomotor properties. Recent preliminary research has also reported increased feelings of energy, reduced fatigue, and strong effects on improving focus, concentration, and motivation to exercise. The purpose of this study was to examine the safety and non-habituating effects of TeaCrine®, a nature-identical, chemically equivalent bioactive version of theacrine. METHODS Sixty healthy men (mean ± SD age, height, weight: 22.9 ± 4.7 years, 183.5 ± 9.2 cm, 86.5 ± 13.7 kg) and women (22.3 ± 4.5 years, 165.2 ± 12.3 cm, 69.0 ± 17.4 kg) were placed into one of three groups: placebo (PLA, n = 20), 200 mg TeaCrine® (LD, n = 19) or 300 mg Teacrine® (HD, n = 21) and ingested their respective supplement once daily for 8 weeks. Primary outcomes were fasting clinical safety markers (heart rate, blood pressure, lipid profiles, hematologic blood counts, biomarkers of liver/kidney/immune function) and energy, focus, concentration, anxiety, motivation to exercise, and POMS measured prior to daily dosing to ascertain potential tachyphylactic responses and habituation effects. Data were analyzed via two-way (group × time) ANOVAs and statistical significance was accepted at p < 0.05. RESULTS All values for clinical safety markers fell within normal limits and no group × time interactions were noted. No evidence of habituation was noted as baseline values for energy, focus, concentration, anxiety, motivation to exercise, and POMS remained stable in all groups across the 8-week study protocol. CONCLUSIONS These findings support the clinical safety and non-habituating neuro-energetic effects of TeaCrine® supplementation over 8 weeks of daily use (up to 300 mg/day). Moreover, there was no evidence of a tachyphylactic response that is typical of neuroactive agents such as caffeine and other stimulants.
Collapse
Affiliation(s)
- Lem Taylor
- Department of Exercise and Sport Science, Human Performance Lab & Exercise Biochemistry Lab, University of Mary Hardin-Baylor, Belton, TX USA
| | - Petey Mumford
- School of Kinesiology, Auburn University, Auburn, AL USA
| | - Mike Roberts
- School of Kinesiology, Auburn University, Auburn, AL USA
| | - Sara Hayward
- Department of Exercise and Sport Science, Human Performance Lab & Exercise Biochemistry Lab, University of Mary Hardin-Baylor, Belton, TX USA
| | - Jacy Mullins
- Department of Exercise and Sport Science, Human Performance Lab & Exercise Biochemistry Lab, University of Mary Hardin-Baylor, Belton, TX USA
| | - Stacie Urbina
- Department of Exercise and Sport Science, Human Performance Lab & Exercise Biochemistry Lab, University of Mary Hardin-Baylor, Belton, TX USA
| | - Colin Wilborn
- Department of Exercise and Sport Science, Human Performance Lab & Exercise Biochemistry Lab, University of Mary Hardin-Baylor, Belton, TX USA
| |
Collapse
|
28
|
Cognitive Performance and Mood Following Ingestion of a Theacrine-Containing Dietary Supplement, Caffeine, or Placebo by Young Men and Women. Nutrients 2015; 7:9618-32. [PMID: 26610558 PMCID: PMC4663612 DOI: 10.3390/nu7115484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023] Open
Abstract
Theacrine is a purine alkaloid found primarily in the leaves of the Camellia Kucha plant and is now included within dietary supplements. To compare the effects of a theacrine-containing dietary supplement with caffeine and placebo on energy and mood, as well as objective measures of cognitive performance, heart rate, and blood pressure, 10 healthy men (20.8 ± 0.7 years) and 10 healthy women (22.2 ± 1.1 years) ingested the dietary supplement TheaTrim (Purus Labs; containing a branded form of theacrine (Teacrine™) and caffeine (150 mg)), caffeine only (150 mg), or a placebo on three different days, separated by approximately one week. Before, and for up to 4 h following, ingestion of the assigned condition, subjects completed a subjective assessment of energy and mood, as well as tests of cognitive performance (trail making test (TMT), digit symbol substitution test (DSST)), and reaction time. Heart rate and blood pressure were measured. No condition or interaction effects were noted for TMT, DSST, or reaction time, despite a trend for improvement in selected variables with both TheaTrim and caffeine treatment. Condition effects or trends were noted for subjective feelings, with values for attentive, alert, focused, and energetic higher for TheaTrim than for placebo and caffeine, while values for lethargic and groggy were lower for TheaTrim than for placebo and caffeine. Heart rate and blood pressure were largely unaffected by treatment. These data indicate that TheaTrim treatment does not result in a statistically significant improvement in cognitive performance but may favorably impact multiple subjective feelings related to energy and mood.
Collapse
|
29
|
Li YF, Chen M, Wang C, Li XX, Ouyang SH, He CC, Mao ZF, Tsoi B, Kurihara H, He RR. Theacrine, a purine alkaloid derived from Camellia assamica var. kucha , ameliorates impairments in learning and memory caused by restraint-induced central fatigue. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Ortiz R, Ulrich H, Zarate CA, Machado-Vieira R. Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:117-31. [PMID: 25445063 PMCID: PMC4262688 DOI: 10.1016/j.pnpbp.2014.10.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 02/09/2023]
Abstract
Uric acid and purines (such as adenosine) regulate mood, sleep, activity, appetite, cognition, memory, convulsive threshold, social interaction, drive, and impulsivity. A link between purinergic dysfunction and mood disorders was first proposed a century ago. Interestingly, a recent nationwide population-based study showed elevated risk of gout in subjects with bipolar disorder (BD), and a recent meta-analysis and systematic review of placebo-controlled trials of adjuvant purinergic modulators confirmed their benefits in bipolar mania. Uric acid may modulate energy and activity levels, with higher levels associated with higher energy and BD spectrum. Several recent genetic studies suggest that the purinergic system - particularly the modulation of P1 and P2 receptor subtypes - plays a role in mood disorders, lending credence to this model. Nucleotide concentrations can be measured using brain spectroscopy, and ligands for in vivo positron emission tomography (PET) imaging of adenosine (P1) receptors have been developed, thus allowing potential target engagement studies. This review discusses the key role of the purinergic system in the pathophysiology of mood disorders. Focusing on this promising therapeutic target may lead to the development of therapies with antidepressant, mood stabilization, and cognitive effects.
Collapse
Affiliation(s)
- Robin Ortiz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | - Henning Ulrich
- Departament of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neuroscience, LIM27, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
31
|
Effect of chronic coffee consumption on weight gain and glycaemia in a mouse model of obesity and type 2 diabetes. Nutr Diabetes 2014; 4:e123. [PMID: 24979152 PMCID: PMC4079928 DOI: 10.1038/nutd.2014.19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 12/29/2022] Open
Abstract
Objective: Epidemiological evidence shows that chronic coffee consumption in humans is correlated with a lower incidence of type 2 diabetes mellitus. For the experimental exploration of the underlying mechanisms, this effect needs to be replicated in an animal model of type 2 diabetes with a short lifespan. Design: Male C57BL/6 mice consumed regular coffee or water ad libitum and the development of obesity and diabetes caused by high-fat diet (55% lipids, HFD) was observed from week 10 on for 35 weeks in comparison with mice feeding on a defined normal diet (9% lipids, ND). Results: The massive weight gain in HFD mice was dose-dependently retarded (P=0.034), the moderate weight gain in ND mice was abolished (P<0.001) by coffee consumption, probably because of a lower feeding efficiency. The consumption of fluid (water or coffee) was significantly diminished by HFD (P<0.001), resulting in a higher coffee exposure of ND mice. On week 21 intraperitoneal glucose tolerance tests (IPGTT) showed a dose-dependent faster decline of elevated glucose levels in coffee-consuming HFD mice (P=0.016), but not in ND mice. Remarkably, a spontaneous decrease in non-fasting glycaemia occurred after week 21 in all treatment groups (P<0.001). On week 39 the IPGTT showed diminished peak of glucose levels in coffee-consuming HFD mice (P<0.05). HFD mice were hyperinsulinaemic and had significantly (P<0.001) enlarged islets. Coffee consumption did not affect islet size or parameters of beta-cell apoptosis, proliferation and insulin granule content. Conclusion: Coffee consumption retarded weight gain and improved glucose tolerance in a mouse model of type 2 diabetes and corresponding controls. This gives rise to the expectation that further insight into the mechanism of the diabetes-preventive effect of coffee consumption in humans may be gained by this approach.
Collapse
|
32
|
Li WX, Li YF, Zhai YJ, Chen WM, Kurihara H, He RR. Theacrine, a purine alkaloid obtained from Camellia assamica var. kucha, attenuates restraint stress-provoked liver damage in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6328-6335. [PMID: 23678853 DOI: 10.1021/jf400982c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Theacrine (1,3,7,9-tetramethyluric acid), a purine alkaloid, has proven to be beneficial in maintaining several brain functions and is being studied for potential medicinal uses in recent years. In this study, we isolated theacrine from Camellia assamica var. kucha and investigated its protective effects on liver damage induced by restraint stress in mice. Results showed that 18 h of restraint stress could induce liver damage, with an obvious increase in levels of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This finding was further confirmed by hepatic pathological examination, which showed inflammatory cell infiltration and focal necrosis of hepatocytes. However, oral administration of theacrine (10, 20, 30 mg/kg for 7 consecutive days) was found to decrease plasma ALT and AST levels, reduce hepatic mRNA levels of inflammatory mediators (IL-1β, TNF-α, IL-6, and IFN-γ), and reverse the histologic damages in stressed mice. Simultaneously, theacrine also significantly decreased the content of malondialdehyde and increased oxygen radical absorbance capacity (ORAC) level in the plasma and liver of stressed mice. These results suggested that the protective effects of theacrine on stress-induced liver damage might be correlated with its antioxidative activity. The antioxidative capacity of theacrine was further evaluated by in vitro ORAC and cellular antioxidant activity assay. The results suggested that the antioxidative capacity of theacrine was not due to the direct action on free radical clearance. Moreover, the elevated activities and gene expressions of superoxide dismutase, catalase, and glutathione peroxidase, as well as the reduced activity of xanthine oxidase by theacrine treatment in stressed mice suggested that the antioxidative activity might be due to the strengthening of the antioxidant system in vivo. On the basis of the above results, theacrine is possibly a good candidate for protecting against or treating lifestyle diseases and might contribute to the study of natural products.
Collapse
Affiliation(s)
- Wei-Xi Li
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|