1
|
Abnormal white matter within brain structural networks is associated with high-impulse behaviour in codeine-containing cough syrup dependent users. Eur Arch Psychiatry Clin Neurosci 2021; 271:823-833. [PMID: 32124022 DOI: 10.1007/s00406-020-01111-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/08/2020] [Indexed: 10/24/2022]
Abstract
Codeine-containing cough syrup (CCS) is considered as one of the most popular drug of dependence among adolescents because of its inexpensiveness and easy availability. However, its relationship with neurobiological effects remains sparsely explored. Herein, we examined how high-impulse behaviours relate to changes in the brain structural networks. Forty codeine-containing cough syrup dependent (CCSD) users and age-, gender-, and number of cigarettes smoked per day -matched forty healthy control (HC) subjects underwent structural brain imaging via MRI. High-impulse behaviour was assessed using the 30-item self-rated Barratt Impulsiveness Scale (BIS-11), and structural networks were constructed using diffusion tensor imaging and AAL-90 template. Between-group topological metrics were compared using nonparametric permutations. Benjamin-Hochberg false discovery rate correction was used to correct for multiple comparisons (P < 0.05). The relationships between abnormal network metrics and clinical characteristics of CCS dependent (BIS-11 total score, CCS- dependent duration and mean dose) were examined by Spearman's correlation. Structural networks of the CCSD group demonstrated lower small-world properties than those of the HC group. Abnormal changes in nodal properties among CCSD users were located mainly in the frontal gyrus, inferior parietal lobe and olfactory cortex. NBS analysis further indicated disrupted structural connections between the frontal gyrus and multiple brain regions. There were significant correlations between abnormal nodal properties of the frontal gyrus and clinical characteristics (BIS-11 total score, CCS dependent duration and mean dose) in the CCSD group. These findings suggest that the high-impulse behavioural expression in CCS addiction is associated with widespread brain regions, particularly within those in the frontal cortex. Aberrant brain regions and disrupted connectivity of structural network may be the bases of neuropathology for underlying symptoms of high-impulse behaviours in CCSD users, which may provide a novel sight to better treat and prevent codeine dependency in adolescents.
Collapse
|
2
|
Yu XC, Yang JJ, Jin BH, Xu HL, Zhang HY, Xiao J, Lu CT, Zhao YZ, Yang W. A strategy for bypassing the blood-brain barrier: Facial intradermal brain-targeted delivery via the trigeminal nerve. J Control Release 2017; 258:22-33. [DOI: 10.1016/j.jconrel.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
|
3
|
Alavi MS, Hosseinzadeh H, Shamsizadeh A, Roohbakhsh A. The effect of O-1602, an atypical cannabinoid, on morphine-induced conditioned place preference and physical dependence. Pharmacol Rep 2016; 68:592-7. [PMID: 26971034 DOI: 10.1016/j.pharep.2015.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies show that some non-CB1/non-CB2 effects of cannabinoids are mediated through G protein coupled receptor 55 (GPR55). As this receptor is activated by some of cannabinoid receptor ligands and is involved in the modulation of pain, it was hypothesized that this receptor may also interact with opioids. This study examined the effect of atypical cannabinoid O-1602 as a GPR55 agonist on morphine-induced conditioned place preference (CPP) and physical dependence. METHODS We used a biased CPP model to evaluate the effect of O-1602 (0.2, 1 and 5mg/kg, intraperitoneal; ip) on the acquisition and expression of morphine-induced CPP in male mice. The locomotor activities of mice were also recorded. Moreover, repeated administration of morphine (50, 50 and 75mg/kg/day) for three days, induced physical dependence. The withdrawal signs such as jumps and diarrhea were precipitated by administration of naloxone (5mg/kg, ip). The effect of O-1602 on the development of morphine physical dependence was assessed by injection of O-1602 (0.2, 1 and 5mg/kg) before morphine administrations. RESULTS Morphine (40mg/kg, subcutaneous; sc), but not O-1602 (5mg/kg) elicited significant preference in the post-conditioning phase. O-1602 at the doses of 0.2 and 1mg/kg, but not 5mg/kg reduced acquisition of morphine CPP with an increase in locomotor activity at the dose of 5mg/kg. O-1602 at the doses of 0.2, 1 and 5mg/kg also reduced expression of morphine CPP with an increase in locomotor activity at the dose of 5mg/kg. O-1602 had a significant inhibitory effect on development of morphine-induced physical dependence at the dose of 5mg/kg by decreasing jumps and diarrhea during withdrawal syndrome. CONCLUSIONS The present results indicate that O-1602 decreased acquisition and expression of morphine CPP and inhibited development of morphine-induced physical dependence.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
The influence of electrical stimulation on dorsal raphe nucleus with different current intensities on morphine-induced conditioned place preference in male rats. Pharmacol Rep 2015; 67:832-6. [DOI: 10.1016/j.pharep.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 01/23/2023]
|
5
|
Zhan B, Ma HY, Wang JL, Liu CB. Sex differences in morphine-induced behavioral sensitization and social behaviors in ICR mice. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:103-8. [PMID: 25855229 DOI: 10.13918/j.issn.2095-8137.2015.2.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Gender and genetic strain are two prominent variants that influence drug abuse. Although certain sex-related behavioral responses have been previously characterized in ICR mice, little is known about the effects of sex on morphine-induced behavioral responses in this outbred strain. Therefore, in this study, we investigated the sex differences of morphine-induced locomotion, anxiety-like and social behaviors in ICR mice. After morphine or saline exposure for four consecutive days (twice daily), increased locomotion, more time spent in the central area, as well as attenuated rearing and self-grooming behaviors were found in morphine-treated females in an open field; no differences were found in locomotion and the time spent in the central area between male and female controls. When interacting with the same-sex individuals, female controls were engaged in more social investigation, following, body contacting and self-grooming behaviors than controls; morphine exposure reduced contacting and self-grooming behaviors in females; in contrast, these effects were not found in males. These results indicate that female ICR mice are more prosocial and are more susceptible to morphine exposure than males.
Collapse
Affiliation(s)
- Bo Zhan
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan 750021, China
| | - Hong-Yuan Ma
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan 750021, China
| | - Jian-Li Wang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan 750021, China.
| | - Chao-Bao Liu
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan 750021, China
| |
Collapse
|
6
|
Sadeghzadeh F, Babapour V, Haghparast A. Role of dopamine D1-like receptor within the nucleus accumbens in acute food deprivation- and drug priming-induced reinstatement of morphine seeking in rats. Behav Brain Res 2015; 287:172-81. [DOI: 10.1016/j.bbr.2015.03.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 12/27/2022]
|
7
|
Baharlouei N, Sarihi A, Komaki A, Shahidi S, Haghparast A. Blockage of acquisition and expression of morphine-induced conditioned place preference in rats due to activation of glutamate receptors type II/III in nucleus accumbens. Pharmacol Biochem Behav 2015; 135:192-8. [PMID: 26071679 DOI: 10.1016/j.pbb.2015.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 01/26/2023]
Abstract
Numerous studies have shown that glutamate in the nucleus accumbens (NAc) is an essential neurotransmitter for the extension of morphine-induced place preference. mGlu2/3 glutamate receptors in the NAc have important roles in the reward pathway. However, less is known about the role of this glutamate receptor subtype in morphine-induced conditioned place preference (CPP). In this study, we examined the effects of bilateral intra-accumbal administration of LY379268, an mGlu2/3 receptor agonist on the acquisition and expression of morphine-induced CPP in rats. Adult male Wistar rats (n=136; 220-250g) were evaluated in a CPP paradigm. Doses of LY379268 (0.3, 1 and 3μg/0.5μL saline per side) were administered into the NAc on both sides during the 3days of the conditioning (acquisition) or post-conditioning (expression) phase. The results show that bilateral intra-accumbal administration of LY379268 (0.3, 1 and 3μg) markedly decreased the acquisition of morphine-induced CPP in a dose-dependent manner. In a second series of experiments, we determined that injection of LY379268 into the NAc considerably attenuated the expression of morphine CPP only at the highest dose (3μg). Our findings suggest that activation of mGlu2/3 receptors in the NAc dose-dependently blocked both the establishment and the maintenance of morphine-induced CPP and confirmed the role of this system as a potential therapeutic target for addiction.
Collapse
Affiliation(s)
- Negar Baharlouei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, P. O. Box 65178, 38678 Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, P. O. Box 65178, 38678 Hamadan, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, P. O. Box 65178, 38678 Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, P. O. Box 65178, 38678 Hamadan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615, 1178 Tehran, Iran
| |
Collapse
|
8
|
Xu P, Li M, Bai Y, Lu W, Ling X, Li W. The effects of piracetam on heroin-induced CPP and neuronal apoptosis in rats. Drug Alcohol Depend 2015; 150:141-6. [PMID: 25801591 DOI: 10.1016/j.drugalcdep.2015.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/27/2015] [Accepted: 02/22/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Piracetam is a positive allosteric modulator of the AMPA receptor that has been used in the treatment of cognitive disorders for decades. Recent surveys and drug analyses have demonstrated that a heroin mixture adulterated with piracetam has spread rapidly in heroin addicts in China, but its addictive properties and the damage it causes to the central neural system are currently unknown. METHODS The effect of piracetam on the reward properties of heroin was assessed by conditioned place preference (CPP). Electron microscopy and radioimmunoassay were used to compare the effects of heroin mixed with equivalent piracetam (HP) and heroin alone on neuronal apoptosis and the levels of beta-endorphin (β-EP) in different brain subregions within the corticolimbic system, respectively. RESULTS Piracetam significantly enhanced heroin-induced CPP expression while piracetam itself didn't induce CPP. Morphological observations showed that HP-treated rats had less neuronal apoptosis than heroin-treated group. Interestingly, HP normalized the levels of β-EP in the medial prefrontal cortex (mPFC) and core of the nucleus accumbens (AcbC) subregions, in where heroin-treated rats showed decreased levels of β-EP. CONCLUSIONS These results indicate that piracetam potentiate the heroin-induced CPP and protect neurons from heroin-induced apoptosis. The protective role of HP might be related to the restoration of β-EP levels by piracetam. Our findings may provide a potential interpretation for the growing trend of HP abuse in addicts in China.
Collapse
Affiliation(s)
- Peng Xu
- School of Pharmaceutical Science, Peking University, Beijing 100191, PR China; Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, PR China
| | - Min Li
- School of Basic Medical Sciences, Peking University, Beijing 100191, PR China
| | - Yanping Bai
- Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, PR China
| | - Wei Lu
- School of Pharmaceutical Science, Peking University, Beijing 100191, PR China
| | - Xiaomei Ling
- School of Pharmaceutical Science, Peking University, Beijing 100191, PR China.
| | - Weidong Li
- School of Basic Medical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
9
|
Niu H, He X, Zhou T, Shi X, Zhang Q, Zhang Z, Qiao Y, Xu F, Hu M. Neural circuits containing olfactory neurons are involved in the prepulse inhibition of the startle reflex in rats. Front Behav Neurosci 2015; 9:74. [PMID: 25859195 PMCID: PMC4373374 DOI: 10.3389/fnbeh.2015.00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/08/2015] [Indexed: 11/24/2022] Open
Abstract
Many neuropsychiatric disorders, such as schizophrenia, have been associated with olfactory dysfunction and abnormalities in the prepulse inhibition (PPI) response to a startle reflex. However, whether these two abnormalities could be related is unclear. The present investigations were designed to determine whether theblockage of olfactory sensory input by zinc sulfate infusion in the olfactory naris (0.5 ml, 0.17 M, ZnE) can disturb the PPI response. Furthermore, a bilateral microinjection of lidocaine/MK801 in the olfactory bulb (OB) was administered to examine whether the blockage of olfactory sensory input could impair the PPI response. To identify the neural projection between olfaction and PPI-related areas, trans-synaptic retrograde tracing with the recombinant pseudorabies virus (PRV) was used. Our results demonstrated that blockage of olfactory sensory input could disturb olfactory behavior. In the function studies, we demonstrated that blockage of olfactory sensory input could impair the pre-pulse inhibition of the startle response following decreased c-Fos expression in relevant brain regions during the PPI responses. Furthermore, similar and more robust findings indicated that blockage of olfactory sensory input by microinjection of lidocaine/MK801 in the OB could impair the PPI response. In the circuit-level studies, we demonstrated that trans-synaptic retrograde tracing with PRV exhibited a large portion of labeled neurons in several regions of the olfactory cortices from the pedunculopontine tegmental nucleus (PPTg). Thus, these data suggest that the olfactory system participates in the PPI regulating fields and plays a role in the pre-pulse inhibition of the startle response in rats.
Collapse
Affiliation(s)
- Haichen Niu
- Department of Genetics, Xuzhou Medical College Xuzhou, China ; The Institute of Audiology and Speech Science, Xuzhou Medical Collage Xuzhou, China
| | - Xiaobin He
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China ; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan, China
| | - Ting Zhou
- Department of Genetics, Xuzhou Medical College Xuzhou, China
| | - Xi Shi
- The Institute of Audiology and Speech Science, Xuzhou Medical Collage Xuzhou, China
| | - Qiang Zhang
- Department of Genetics, Xuzhou Medical College Xuzhou, China
| | - Zhijian Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China
| | - Yuehua Qiao
- The Institute of Audiology and Speech Science, Xuzhou Medical Collage Xuzhou, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China ; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province Kunming, China
| |
Collapse
|
10
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Radahmadi M, Ramshini E, Hosseini N, Karimi S, Alaei H. Effect of electrical stimulation of nucleus accumbens with low, median and high currents intensities on conditioned place preference induced by morphine in rats. Adv Biomed Res 2014; 3:14. [PMID: 24600598 PMCID: PMC3929021 DOI: 10.4103/2277-9175.124643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 10/26/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Some investigators indicated the effect of electrical or chemical stimulation on different parts of the brain and its effect on animal's behaviors. Furthermore, drug addiction is known to be associated with dysfunction of memory and motivational systems. In this study, we aimed to evaluate the effect of electrical stimulation of nucleus accumbens (NAc) with different currents intensities on conditioned place preference (CPP) induced by morphine. MATERIALS AND METHODS Male Wistar rats were randomly divided for experimental groups (n = 8). We investigated the influence of electrical stimulation with different current intensities (low: 15 μA, median: 50 μA and high: 100 μA) on NAc with ineffective and effective dose of morphine (0.5 and 5 mg/kg, respectively) on acquisition and expression of morphine-induced place conditioning in male rats. RESULTS The doses of subcutaneous administration morphine (2.5 and 5 mg/kg, P < 0.05 and P < 0.001; respectively) induced CPP compared with saline group. Furthermore, our findings are showed that electrical stimulation (100 μA) of NAc suppressed morphine-induced CPP. It revealed impairment of learning and memory formation in conditioning process due to morphine administration. CONCLUSION It is possible that high current intensity (100 μA) had an accompanied effect by a reversal of the increased tissue contents of dopamine and its metabolites in the NAc of morphine-induced CPP rats. Furthermore, high current intensity in combination with ineffective dose of morphine (0.5 mg/kg) increased morphine-induced CPP probability via the prove reward system.
Collapse
Affiliation(s)
- Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Effat Ramshini
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Hosseini
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Karimi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|