1
|
Geisler CE, Hayes MR. Metabolic hormone action in the VTA: Reward-directed behavior and mechanistic insights. Physiol Behav 2023; 268:114236. [PMID: 37178855 PMCID: PMC10330780 DOI: 10.1016/j.physbeh.2023.114236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Dysfunctional signaling in midbrain reward circuits perpetuates diseases characterized by compulsive overconsumption of rewarding substances such as substance abuse, binge eating disorder, and obesity. Ventral tegmental area (VTA) dopaminergic activity serves as an index for how rewarding stimuli are perceived and triggers behaviors necessary to obtain future rewards. The evolutionary linking of reward with seeking and consuming palatable foods ensured an organism's survival, and hormone systems that regulate appetite concomitantly developed to regulate motivated behaviors. Today, these same mechanisms serve to regulate reward-directed behavior around food, drugs, alcohol, and social interactions. Understanding how hormonal regulation of VTA dopaminergic output alters motivated behaviors is essential to leveraging therapeutics that target these hormone systems to treat addiction and disordered eating. This review will outline our current understanding of the mechanisms underlying VTA action of the metabolic hormones ghrelin, glucagon-like peptide-1, amylin, leptin, and insulin to regulate behavior around food and drugs of abuse, highlighting commonalities and differences in how these five hormones ultimately modulate VTA dopamine signaling.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Ramírez-Plascencia OD, Saderi N, Cárdenas-Romero S, García-García F, Peña-Escudero C, Flores-Sandoval O, Azuara-Álvarez L, Báez-Ruiz A, Salgado-Delgado R. Leptin and adiponectin regulate the activity of nuclei involved in sleep-wake cycle in male rats. Front Neurosci 2022; 16:907508. [PMID: 35937866 PMCID: PMC9355486 DOI: 10.3389/fnins.2022.907508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological and experimental evidence recognize a relationship between sleep-wake cycles and adiposity levels, but the mechanisms that link both are not entirely understood. Adipose tissue secretes adiponectin and leptin hormones, mainly involved as indicators of adiposity levels and recently associated to sleep. To understand how two of the main adipose tissue hormones could influence sleep-wake regulation, we evaluated in male rats, the effect of direct administration of adiponectin or leptin in the ventrolateral preoptic nuclei (VLPO), a major area for sleep promotion. The presence of adiponectin (AdipoR1 and AdipoR2) and leptin receptors in VLPO were confirmed by immunohistochemistry. Adiponectin administration increased wakefulness during the rest phase, reduced delta power, and activated wake-promoting neurons, such as the locus coeruleus (LC), tuberomammillary nucleus (TMN) and hypocretin/orexin neurons (OX) within the lateral hypothalamus (LH) and perifornical area (PeF). Conversely, leptin promoted REM and NREM sleep, including increase of delta power during NREM sleep, and induced c-Fos expression in VLPO and melanin concentrating hormone expressing neurons (MCH). In addition, a reduction in wake-promoting neurons activity was found in the TMN, lateral hypothalamus (LH) and perifornical area (PeF), including in the OX neurons. Moreover, leptin administration reduced tyrosine hydroxylase (TH) immunoreactivity in the LC. Our data suggest that adiponectin and leptin act as hormonal mediators between the status of body energy and the regulation of the sleep-wake cycle.
Collapse
Affiliation(s)
- Oscar Daniel Ramírez-Plascencia
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nadia Saderi
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Skarleth Cárdenas-Romero
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Fabio García-García
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| | - Carolina Peña-Escudero
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| | - Omar Flores-Sandoval
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Lucia Azuara-Álvarez
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Adrián Báez-Ruiz
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Roberto Salgado-Delgado
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- *Correspondence: Roberto Salgado-Delgado,
| |
Collapse
|
3
|
Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr Res Rev 2021; 35:236-251. [PMID: 34184629 DOI: 10.1017/s0954422421000196] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic-pituitary-adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.
Collapse
|
4
|
de Vrind VAJ, van ‘t Sant LJ, Rozeboom A, Luijendijk-Berg MCM, Omrani A, Adan RAH. Leptin Receptor Expressing Neurons in the Substantia Nigra Regulate Locomotion, and in The Ventral Tegmental Area Motivation and Feeding. Front Endocrinol (Lausanne) 2021; 12:680494. [PMID: 34276560 PMCID: PMC8281287 DOI: 10.3389/fendo.2021.680494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is an anorexigenic hormone, important in the regulation of body weight. Leptin plays a role in food reward, feeding, locomotion and anxiety. Leptin receptors (LepR) are expressed in many brain areas, including the midbrain. In most studies that target the midbrain, either all LepR neurons of the midbrain or those of the ventral tegmental area (VTA) were targeted, but the role of substantia nigra (SN) LepR neurons has not been investigated. These studies have reported contradicting results regarding motivational behavior for food reward, feeding and locomotion. Since not all midbrain LepR mediated behaviors can be explained by LepR neurons in the VTA alone, we hypothesized that SN LepR neurons may provide further insight. We first characterized SN LepR and VTA LepR expression, which revealed LepR expression mainly on DA neurons. To further understand the role of midbrain LepR neurons in body weight regulation, we chemogenetically activated VTA LepR or SN LepR neurons in LepR-cre mice and tested for motivational behavior, feeding and locomotion. Activation of VTA LepR neurons in food restricted mice decreased motivation for food reward (p=0.032) and food intake (p=0.020), but not locomotion. In contrast, activation of SN LepR neurons in food restricted mice decreased locomotion (p=0.025), but not motivation for food reward or food intake. Our results provide evidence that VTA LepR and SN LepR neurons serve different functions, i.e. activation of VTA LepR neurons modulated motivation for food reward and feeding, while SN LepR neurons modulated locomotor activity.
Collapse
Affiliation(s)
- Véronne A. J. de Vrind
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Lisanne J. van ‘t Sant
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Annemieke Rozeboom
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Mieneke C. M. Luijendijk-Berg
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Azar Omrani
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Roger A. H. Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Roger A. H. Adan,
| |
Collapse
|
5
|
Yagin NL, Aliasgari F, Alizadeh M, Aliasgharzadeh S, Mahdavi R. Comparison of endocannabinoids levels, FAAH gene polymorphisms, and appetite regulatory substances in women with and without binge eating disorder: a cross- sectional study. Nutr Res 2020; 83:86-93. [DOI: 10.1016/j.nutres.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
|
6
|
Novelle MG, Diéguez C. Unravelling the role and mechanism of adipokine and gastrointestinal signals in animal models in the nonhomeostatic control of energy homeostasis: Implications for binge eating disorder. EUROPEAN EATING DISORDERS REVIEW 2018; 26:551-568. [PMID: 30280451 DOI: 10.1002/erv.2641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Marta G. Novelle
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS); University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Santiago de Compostela Spain
| | - Carlos Diéguez
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS); University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Santiago de Compostela Spain
| |
Collapse
|
7
|
Holsen LM, Jackson B. Reward Capacity Predicts Leptin Dynamics During Laboratory-Controlled Eating in Women as a Function of Body Mass Index. Obesity (Silver Spring) 2017; 25:1564-1568. [PMID: 28722317 PMCID: PMC5573628 DOI: 10.1002/oby.21930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/23/2017] [Accepted: 06/12/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The role of leptin in mesolimbic signaling of non-food-related rewards has been well established at the preclinical level, yet studies in humans are lacking. The present investigation explored the association between hedonic capacity and leptin dynamics and whether this association differed by BMI class. METHODS In this cross-sectional study of 75 women (42 with BMIs in the lean range and 33 with BMIs in the obesity range), serum leptin before and after meal consumption was measured. Reward capacity was assessed using the Snaith-Hamilton Pleasure Scale (SHAPS). Multiple regression tested whether reward capacity was associated with the leptin area under the curve (AUC), with an interaction term to test differences between the lean and obesity groups. RESULTS The interaction of SHAPS by BMI group was robust (β = -0.40, P = 0.005); among women with obesity, a greater SHAPS score was associated with a lower leptin AUC (β = -0.35, P = 0.002, adjusted R2 = 0.66). Among those in the lean group, the association was not statistically significant (β = -0.16, P = 0.252, adjusted R2 = 0.22). Findings were above and beyond BMI and age. CONCLUSIONS In this sample, a robust negative association between reward capacity and circulating leptin was stronger in women with obesity compared with lean counterparts. These findings suggest that despite likely leptin resistance, inhibitory leptin functioning related to nonfood rewards may be spared in women with obesity.
Collapse
Affiliation(s)
- Laura M. Holsen
- Division of Women’s Health, Department of Medicine, and Department of Psychiatry, Boston, MA, United States of America
- Harvard Medical School, Boston, MA United States of America
| | - Benita Jackson
- Department of Psychology, Smith College, Northampton, MA, United States of America
| |
Collapse
|
8
|
Abstract
Obesity has reached epidemic prevalence, and much research has focused on homeostatic and nonhomeostatic mechanisms underlying overconsumption of food. Mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), is a key substrate for nonhomeostatic feeding. The goal of the present review is to compare changes in mesolimbic dopamine function in human obesity with diet-induced obesity in rodents. Additionally, we will review the literature to determine if dopamine signaling is altered with binge eating disorder in humans or binge eating modeled in rodents. Finally, we assess modulation of dopamine neurons by neuropeptides and peripheral peptidergic signals that occur with obesity or binge eating. We find that while decreased dopamine concentration is observed with obesity, there is inconsistency outside the human literature on the relationship between striatal D2 receptor expression and obesity. Finally, few studies have explored how orexigenic or anorexigenic peptides modulate dopamine neuronal activity or striatal dopamine in obese models. However, ghrelin modulation of dopamine neurons may be an important factor for driving binge feeding in rodents.
Collapse
|
9
|
Reichelt AC, Westbrook RF, Morris MJ. Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses. Br J Pharmacol 2015; 172:5225-38. [PMID: 26403657 DOI: 10.1111/bph.13321] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/28/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022] Open
Abstract
Understanding the neurobiological substrates that encode learning about food-associated cues and how those signals are modulated is of great clinical importance especially in light of the worldwide obesity problem. Inappropriate or maladaptive responses to food-associated cues can promote over-consumption, leading to excessive energy intake and weight gain. Chronic exposure to foods rich in fat and sugar alters the reinforcing value of foods and weakens inhibitory neural control, triggering learned, but maladaptive, associations between environmental cues and food rewards. Thus, responses to food-associated cues can promote cravings and food-seeking by activating mesocorticolimbic dopamine neurocircuitry, and exert physiological effects including salivation. These responses may be analogous to the cravings experienced by abstaining drug addicts that can trigger relapse into drug self-administration. Preventing cue-triggered eating may therefore reduce the over-consumption seen in obesity and binge-eating disorder. In this review we discuss recent research examining how cues associated with palatable foods can promote reward-based feeding behaviours and the potential involvement of appetite-regulating peptides including leptin, ghrelin, orexin and melanin concentrating hormone. These peptide signals interface with mesolimbic dopaminergic regions including the ventral tegmental area to modulate reactivity to cues associated with palatable foods. Thus, a novel target for anti-obesity therapeutics is to reduce non-homeostatic, reward driven eating behaviour, which can be triggered by environmental cues associated with highly palatable, fat and sugar rich foods.
Collapse
Affiliation(s)
- A C Reichelt
- School of Psychology, UNSW Sydney, Sydney, UNSW, Australia.,School of Medical Sciences, UNSW Sydney, Sydney, UNSW, Australia
| | - R F Westbrook
- School of Psychology, UNSW Sydney, Sydney, UNSW, Australia
| | - M J Morris
- School of Medical Sciences, UNSW Sydney, Sydney, UNSW, Australia
| |
Collapse
|
10
|
Liu J, Guo M, Lu XY. Leptin/LepRb in the Ventral Tegmental Area Mediates Anxiety-Related Behaviors. Int J Neuropsychopharmacol 2015; 19:pyv115. [PMID: 26438799 PMCID: PMC4772826 DOI: 10.1093/ijnp/pyv115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Leptin, an adipose-derived hormone, has been implicated in emotional regulation. We have previously shown that systemic administration of leptin produces anxiolytic-like effects and deletion of the leptin receptor, LepRb, in midbrain dopamine neurons leads to an anxiogenic phenotype. This study investigated whether activation or deletion of LepRb in the ventral tegmental area of adult mice is capable of inducing anxiolytic and anxiogenic effects, respectively. METHODS Mice were cannulated in the ventral tegmental area and received bilateral intra-ventral tegmental area infusions of leptin or the JAK2/STAT3 inhibitor AG490. Anxiety-like behaviors were assessed using the elevated plus-maze, light-dark box, and novelty suppressed feeding tests. Deletion of LepRb in the ventral tegmental area was achieved by bilateral injection of AAV-Cre into the ventral tegmental area of adult Lepr(flox/flox) mice. Anxiety-related behaviors were evaluated 3 weeks after viral injection. RESULTS Intra-ventral tegmental area infusions of leptin reduced anxiety-like behaviors, as indicated by increased percent open-arm time and open-arm entries in the elevated plus-maze test, increased time spent in the light side and decreased latency to enter the light side of the light-dark box, and decreased latency to feed in the novelty suppressed feeding test. Blockade of JAK2/STAT3 signaling in the ventral tegmental area by AG490 attenuated the anxiolytic effect produced by systemic administration of leptin. Lepr(flox/flox) mice injected with AAV-Cre into the ventral tegmental area showed decreased leptin-induced STAT3 phosphorylation and enhanced anxiety-like behaviors in the elevated plus-maze test and the novelty suppressed feeding test. CONCLUSIONS These findings suggest that leptin-LepRb signaling in the ventral tegmental area plays an important role in the regulation of anxiety-related behaviors.
Collapse
Affiliation(s)
| | | | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX (Drs Liu, Guo, and Lu); Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University, Binzhou, China (Dr Guo).
| |
Collapse
|
11
|
Leptin resistance in obesity: An epigenetic landscape. Life Sci 2015; 140:57-63. [PMID: 25998029 DOI: 10.1016/j.lfs.2015.05.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 01/14/2023]
Abstract
Leptin is an adipocyte-secreted hormone that inhibits food intake and stimulates energy expenditure through interactions with neuronal pathways in the brain, particularly pathways involving the hypothalamus. Intact functioning of the leptin route is required for body weight and energy homeostasis. Given its function, the discovery of leptin increased expectations for the treatment of obesity. However, most obese individuals and subjects with a predisposition to regain weight after losing it have leptin concentrations than lean individuals, but despite the anorexigenic function of this hormone, appetite is not effectively suppressed in these individuals. This phenomenon has been deemed leptin resistance and could be the result of impairments at a number of levels in the leptin signalling pathway, including reduced access of the hormone to its receptor due to changes in receptor expression or changes in post-receptor signal transduction. Epigenetic regulation of the leptin signalling circuit could be a potential mechanism of leptin function disturbance. This review discusses the molecular mechanisms, particularly the epigenetic regulation mechanisms, involved in leptin resistance associated with obesity and the therapeutic potential of these molecular mechanisms in the battle against the obesity pandemic.
Collapse
|
12
|
Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015; 289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/27/2014] [Accepted: 12/31/2014] [Indexed: 12/30/2022]
|
13
|
Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 2015; 64:35-46. [PMID: 25497342 DOI: 10.1016/j.metabol.2014.10.015] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Obesity is a chronic disease that represents one of the most serious global health burdens associated to an excess of body fat resulting from an imbalance between energy intake and expenditure, which is regulated by environmental and genetic interactions. The adipose-derived hormone leptin acts via a specific receptor in the brain to regulate energy balance and body weight, although this protein can also elicit a myriad of actions in peripheral tissues. Obese individuals, rather than be leptin deficient, have in most cases, high levels of circulating leptin. The failure of these high levels to control body weight suggests the presence of a resistance process to the hormone that could be partly responsible of disturbances on body weight regulation. Furthermore, leptin resistance can impair physiological peripheral functions of leptin such as lipid and carbohydrate metabolism and nutrient intestinal utilization. The present document summarizes those findings regarding leptin resistance development and the role of this hormone in the development and maintenance of an obese state. Thus, we focused on the effect of the impaired leptin action on adipose tissue, liver, skeletal muscle and intestinal function and the accompanying relationships with diet-induced obesity. The involvement of some inflammatory mediators implicated in the development of obesity and their roles in leptin resistance development are also discussed.
Collapse
Affiliation(s)
- Neira Sáinz
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jaione Barrenetxe
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
14
|
Murray S, Tulloch A, Gold MS, Avena NM. Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol 2014; 10:540-52. [PMID: 24958311 DOI: 10.1038/nrendo.2014.91] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With rising rates of obesity, research continues to explore the contributions of homeostatic and hedonic mechanisms related to eating behaviour. In this Review, we synthesize the existing information on select biological mechanisms associated with reward-related food intake, dealing primarily with consumption of highly palatable foods. In addition to their established functions in normal feeding, three primary peripheral hormones (leptin, ghrelin and insulin) play important parts in food reward. Studies in laboratory animals and humans also show relationships between hyperphagia or obesity and neural pathways involved in reward. These findings have prompted questions regarding the possibility of addictive-like aspects in food consumption. Further exploration of this topic may help to explain aberrant eating patterns, such as binge eating, and provide insight into the current rates of overweight and obesity.
Collapse
Affiliation(s)
- Susan Murray
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, P&S Box 30 DOM/NYORC, 630 West 168th Street, New York, NY 10032-3702, USA
| | - Alastair Tulloch
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, P&S Box 30 DOM/NYORC, 630 West 168th Street, New York, NY 10032-3702, USA
| | - Mark S Gold
- Department of Psychiatry, College of Medicine, University of Florida, McKnight Brain Institute, 1149 SW Newell Drive, L4-100, Gainesville, FL 32610, USA
| | - Nicole M Avena
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, P&S Box 30 DOM/NYORC, 630 West 168th Street, New York, NY 10032-3702, USA
| |
Collapse
|
15
|
Ma W, Yuan L, Yu H, Xi Y, Xiao R. Mitochondrial dysfunction and oxidative damage in the brain of diet-induced obese rats but not in diet-resistant rats. Life Sci 2014; 110:53-60. [PMID: 25058918 DOI: 10.1016/j.lfs.2014.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/19/2014] [Accepted: 07/12/2014] [Indexed: 12/11/2022]
Abstract
AIMS It has been suggested that obesity triggered by consuming a high-fat diet (HF) can account for oxidative damage and mitochondrial dysfunction. Thus, we aim to explore the oxidative stress and mitochondrial dysfunction detected in the brain of diet-induced obese (DIO) rats. MAIN METHODS Sprague-Dawley (SD) rats were fed either a HF diet or a normal-fat (NF) diet for 10weeks to obtain the control (CON), DIO and diet-resistant (DR) rats. d-Galactose was injected subcutaneously for 10weeks to establish oxidative stress model (MOD) rats. Then, the levels of total antioxidant capacity (T-AOC), lipid peroxidation (LPO), malondialdehyde (MDA), both in plasma and brain tissue, and catalase (CAT) in plasma were measured using enzymic assay kits and the levels of ghrelin, neuropeptide Y (NPY) and leptin in both plasma and brain tissue were measured by using enzyme-linked immunosorbent assay (ELISA) kits. Mitochondrial reactive oxygen species (ROS) formation in brain tissues was detected with 2, 7-dichlorofluorescein diacetate (DCFH2-DA) dyeing. The mitochondrial membrane potential (MMP) was measured with tetrachloro-tetraethyl benzimidazol carbocyanine iodide (JC-1) by a flow cytometer. KEY FINDINGS HF diet leads to an obese or DR state characterized by increased or decreased adiposity. The HF diet increased brain LPO, which was accompanied by lower ghrelin levels in DIO rats compared with DR rats. In addition, the increased mitochondrial ROS and lower MMP were detected in DIO rat comparing with DR rats. SIGNIFICANCE The current results demonstrated that mitochondrial dysfunction and oxidative damage in the brains of DIO rats, induced by HF diets, might be measurable.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Linhong Yuan
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huanling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yuandi Xi
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|