1
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular characterization of chicken DA systems reveals that the avian personality gene, DRD4, is expressed in the mitral cells of the olfactory bulb. Front Neuroanat 2025; 19:1531200. [PMID: 39886560 PMCID: PMC11774857 DOI: 10.3389/fnana.2025.1531200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
Animal personalities are stable, context-dependent behavioral differences. Associations between the personality of birds and polymorphisms in the dopamine receptor D4 (DRD4) gene have been repeatedly observed. In mammals, our understanding of the role of the dopamine (DA) system in higher cognitive functions and psychiatric disorders is improving, and we are beginning to understand the relationship between the neural circuits modulating the DA system and personality traits. However, to understand the phylogenetic continuity of the neural basis of personality, it is necessary to clarify the neural circuits that process personality in other animals and compare them with those in mammals. In birds, the DA system is anatomically and molecularly similar to that in mammals; however, the function of DRD4 remains largely unknown. In this study, we used chicks as model birds to reveal the expression regions of the DA neuron-related markers tyrosine hydroxylase (TH), dopa decarboxylase (DDC), dopamine β-hydroxylase (DBH), and DRD4, as well as other DRDs throughout the forebrain. We found that DRD4 was selectively expressed in the mitral cells of the olfactory bulb (OB). Furthermore, a detailed comparison of the expression regions of DA neurons and DRD4 in the OB revealed a cellular composition similar to that of mammals. Our findings suggest that the animal personality gene DRD4 is important for olfactory information processing in birds, providing a new basis for comparing candidate neural circuits for personality traits between birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
Zhang M, Liu M, Wang W, Ren Z, Wang P, Xue Y, Wang X. The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys. Hypertens Res 2024; 47:2144-2156. [PMID: 38778170 DOI: 10.1038/s41440-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
To explore the mechanism of the hypertension in dopamine receptor-4 (Drd4) null mice, we determined the salt sensitivity and renal sodium transport proteins in Drd4-/- and Drd4+/+ mice with varied salt diets. On normal NaCl diet (NS), mean arterial pressures (MAP, telemetry) were higher in Drd4-/- than Drd4+/+; Low NaCl diet (LS) tended to decrease MAP in both strains; high NaCl diet (HS) elevated MAP with sodium excretion decreased and pressure-natriuresis curve shifted to right in Drd4-/- relative to Drd4+/+ mice. Drd4-/- mice exhibited increased renal sodium-hydrogen exchanger 3 (NHE3), sodium-potassium-2-chloride cotransporter (NKCC2), sodium-chloride cotransporter (NCC), and outer medullary α-epithelial sodium channel (αENaC) on NS, decreased NKCC2, NCC, αENaC, and αNa+-K+-ATPase on LS, and increased αENaC on HS. NKCC2, NCC, αENaC, and αNa+-K+-ATPase in plasma membrane were greater in Drd4-/- than in Drd4+/+ mice with HS. D4R was expressed in proximal and distal convoluted tubules, thick ascending limbs, and outer medullary collecting ducts and colocalized with NKCC2 and NCC. The phosphorylation of NKCC2 was enhanced but ubiquitination was reduced in the KO mice. There were no differences between the mouse strains in serum aldosterone concentrations and urinary dopamine excretions despite their changes with diets. The mRNA expressions of renal NHE3, NKCC2, NCC, and αENaC on NS were not altered in Drd4-/- mice. Thus, increased protein expressions of NHE3, NKCC2, NCC and αENaC are associated with hypertension in Drd4-/- mice; increased plasma membrane protein expression of NKCC2, NCC, αENaC, and αNa+-K+-ATPase may mediate the salt sensitivity of Drd4-/- mice.
Collapse
Affiliation(s)
- Mingzhuo Zhang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingda Liu
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xue
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Giorgioni G, Del Bello F, Pavletić P, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Recent findings leading to the discovery of selective dopamine D 4 receptor ligands for the treatment of widespread diseases. Eur J Med Chem 2020; 212:113141. [PMID: 33422983 DOI: 10.1016/j.ejmech.2020.113141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or β-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | | | | | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
4
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liao IM, Chen JC. Lack of dopamine D4 receptor participation in mouse hyperdopaminergic locomotor response. Behav Brain Res 2020; 396:112925. [PMID: 32971195 DOI: 10.1016/j.bbr.2020.112925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Chronic methamphetamine (METH) treatment induces behavioral sensitization in rodents. During this process, hyperactivation of the mesolimbic dopamine system plays a central role, and dopamine D2-like receptor-based antipsychotics are known to alleviate the behavioral hyperactivity. The atypical antipsychotic, clozapine (Clz), acts partially as a dopamine D4 receptor (D4R) antagonist and mitigates hyperdopaminergic drug addiction and/or comorbid psychotic symptoms; however, it remains unclear whether D4R blockade contributes to the therapeutic effects of Clz. Here, we evaluated the potential role of D4R in regulating hyperdopaminergia-induced behavioral hyperactivity in METH behavioral sensitization and dopamine transporter (DAT) knockdown (KD) mice. Clz or a D4R-selective antagonist, L-745,870, were co-administered to mice with daily METH in a METH sensitization model, and Clz or L-745,870 were administered alone in a DAT KD hyperactivity model. Locomotor activity and accumbal D4R expression were analyzed. Clz suppressed both the initiation and expression of METH behavioral sensitization, as well as DAT KD hyperactivity. However, repetitive Clz treatment induced tolerance to the suppression effect on METH sensitization initiation. In contrast, D4R inhibition by L-745,870 had no effect on METH sensitization or DAT KD hyperactivity. Accumbal D4R expression was similar between METH-sensitized mice with and without Clz co-treatment. In sum, our results suggest the mesolimbic D4R does not participate in behavioral sensitization encoded by hyperdopaminergia, a finding which likely extends to the therapeutic effects of Clz. Therefore, molecular targets other than D4R should be prioritized in the development of future therapeutics for treatment of hyperdopaminergia-dependent neuropsychiatric disorders.
Collapse
Affiliation(s)
- I-Mei Liao
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, United States
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Keelung, Taiwan; Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
6
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
7
|
Oshchepkov D, Ponomarenko M, Klimova N, Chadaeva I, Bragin A, Sharypova E, Shikhevich S, Kozhemyakina R. A Rat Model of Human Behavior Provides Evidence of Natural Selection Against Underexpression of Aggressiveness-Related Genes in Humans. Front Genet 2019; 10:1267. [PMID: 31921305 PMCID: PMC6923764 DOI: 10.3389/fgene.2019.01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
Aggressiveness is a hereditary behavioral pattern that forms a social hierarchy and affects the individual social rank and accordingly quality and duration of life. Thus, genome-wide studies of human aggressiveness are important. Nonetheless, the aggressiveness-related genome-wide studies have been conducted on animals rather than humans. Recently, in our genome-wide study, we uncovered natural selection against underexpression of human aggressiveness-related genes and proved it using F1 hybrid mice. Simultaneously, this natural selection equally supports two opposing traits in humans (dominance and subordination) as if self-domestication could have happened with its disruptive natural selection. Because there is still not enough scientific evidence that this could happen, here, we verified this natural selection pattern using quantitative PCR and two outbred rat lines (70 generations of artificial selection for aggressiveness or tameness, hereinafter: domestication). We chose seven genes—Cacna2d3, Gad2, Gria2, Mapk1, Nos1, Pomc, and Syn1—over- or underexpression of which corresponds to aggressive or domesticated behavior (in humans or mice) that has the same direction as natural selection. Comparing aggressive male rats with domesticated ones, we found that these genes are overexpressed statistically significantly in the hypothalamus (as a universal behavior regulator), not in the periaqueductal gray, where there was no aggressiveness-related expression of the genes in males. Database STRING showed statistically significant associations of the human genes homologous to these rat genes with long-term depression, circadian entrainment, Alzheimer’s disease, and the central nervous system disorders during chronic IL-6 overexpression. This finding more likely supports positive perspectives of further studies on self-domestication syndromes.
Collapse
Affiliation(s)
- Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Natural Science Department, Novosibirsk State University, Novosibirsk, Russia
| | - Natalya Klimova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Natural Science Department, Novosibirsk State University, Novosibirsk, Russia
| | - Anatoly Bragin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Natural Science Department, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana Shikhevich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Rimma Kozhemyakina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Natural Science Department, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
8
|
Dopamine D4 receptor gene expression plays important role in extinction and reinstatement of cocaine-seeking behavior in mice. Behav Brain Res 2019; 365:1-6. [DOI: 10.1016/j.bbr.2019.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
|
9
|
Keck T, Free RB, Day MM, Brown SL, Maddaluna MS, Fountain G, Cooper C, Fallon B, Holmes M, Stang CT, Burkhardt R, Bonifazi A, Ellenberger MP, Newman AH, Sibley DR, Wu C, Boateng CA. Dopamine D 4 Receptor-Selective Compounds Reveal Structure-Activity Relationships that Engender Agonist Efficacy. J Med Chem 2019; 62:3722-3740. [PMID: 30883109 PMCID: PMC6466480 DOI: 10.1021/acs.jmedchem.9b00231] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 01/08/2023]
Abstract
The dopamine D4 receptor (D4R) plays important roles in cognition, attention, and decision making. Novel D4R-selective ligands have promise in medication development for neuropsychiatric conditions, including Alzheimer's disease and substance use disorders. To identify new D4R-selective ligands, and to understand the molecular determinants of agonist efficacy at D4R, we report a series of eighteen novel ligands based on the classical D4R agonist A-412997 (1, 2-(4-(pyridin-2-yl)piperidin-1-yl)- N-( m-tolyl)acetamide). Compounds were profiled using radioligand binding displacement assays, β-arrestin recruitment assays, cyclic AMP inhibition assays, and molecular dynamics computational modeling. We identified several novel D4R-selective ( Ki ≤ 4.3 nM and >100-fold vs other D2-like receptors) compounds with diverse partial agonist and antagonist profiles, falling into three structural groups. These compounds highlight receptor-ligand interactions that control efficacy at D2-like receptors and may provide insights into targeted drug discovery, leading to a better understanding of the role of D4Rs in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas
M. Keck
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Cooper
Medical School of Rowan University, 401 Broadway, Camden, New
Jersey 08103, United
States
| | - R. Benjamin Free
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Marilyn M. Day
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sonvia L. Brown
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Michele S. Maddaluna
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Griffin Fountain
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Charles Cooper
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Brooke Fallon
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Matthew Holmes
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Christopher T. Stang
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Russell Burkhardt
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Michael P. Ellenberger
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy H. Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - David R. Sibley
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chun Wu
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Comfort A. Boateng
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| |
Collapse
|
10
|
Sumitomo A, Saka A, Ueta K, Horike K, Hirai K, Gamo NJ, Hikida T, Nakayama KI, Sawa A, Sakurai T, Tomoda T. Methylphenidate and Guanfacine Ameliorate ADHD-Like Phenotypes in Fez1-Deficient Mice. MOLECULAR NEUROPSYCHIATRY 2018; 3:223-233. [PMID: 29888233 DOI: 10.1159/000488081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/01/2018] [Indexed: 01/18/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that, while prevalent, has a stagnant track record for advances in treatment. The limited availability of animal models with appropriate face and predictive validities has hampered progress in developing novel neurobiological hypotheses and testing new therapeutic options for this condition. Here, we report that mice deficient in Fez1, a gene specifically expressed in the nervous system with documented functions in neurodevelopment, show hyperactivity and impulsivity phenotypes, which are ameliorated by administering methylphenidate (MPH) or guanfacine (GFC), two pharmacological agents used for ADHD treatment. Fez1-knockout (KO) mice show reduced expression of tyrosine hydroxylase in the midbrain and the brain stem and have reduced levels of dopamine, norepinephrine, or their metabolites in both the nucleus accumbens and the prefrontal cortex. These neurochemical changes in Fez1-KO mice were normalized by MPH or GFC. We propose that Fez1-KO mice can be used as a model to evaluate the role of altered neurodevelopment in the manifestation of ADHD-like behavioral phenotypes, as well as to investigate the neurobiological mechanisms of existing and new pharmacotherapeutic agents for ADHD.
Collapse
Affiliation(s)
- Akiko Sumitomo
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayumi Saka
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keisho Ueta
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kouta Horike
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuko Hirai
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nao J Gamo
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Takatoshi Hikida
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Takeshi Sakurai
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshifumi Tomoda
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Rivera A, Gago B, Suárez-Boomgaard D, Yoshitake T, Roales-Buján R, Valderrama-Carvajal A, Bilbao A, Medina-Luque J, Díaz-Cabiale Z, Craenenbroeck KV, Borroto-Escuela DO, Kehr J, Rodríguez de Fonseca F, Santín L, de la Calle A, Fuxe K. Dopamine D 4 receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction. Addict Biol 2017; 22:1232-1245. [PMID: 27212105 DOI: 10.1111/adb.12407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/03/2016] [Accepted: 03/30/2016] [Indexed: 01/08/2023]
Abstract
Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D4 receptor (D4 R) activation counteracts morphine-induced adaptive changes of the μ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D4 R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D4 R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D4 R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D4 R/MOR interaction. In addition, D4 R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D4 R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.
Collapse
Affiliation(s)
- Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Belén Gago
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Diana Suárez-Boomgaard
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Takashi Yoshitake
- Karolinska Institute; Department of Physiology and Pharmacology; Stockholm Sweden
| | - Ruth Roales-Buján
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | | | - Ainhoa Bilbao
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim; University of Heidelberg; Mannheim Germany
| | - José Medina-Luque
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Zaida Díaz-Cabiale
- Karolinska Institute; Department of Physiology and Pharmacology; Stockholm Sweden
| | | | | | - Jan Kehr
- Karolinska Institute; Department of Physiology and Pharmacology; Stockholm Sweden
| | | | - Luis Santín
- Universidad de Málaga; Instituto de Investigación Biomédica, Facultad de Psicología; Málaga Spain
| | - Adelaida de la Calle
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Kjell Fuxe
- Karolinska Institute; Department of Neuroscience; Stockholm Sweden
| |
Collapse
|
12
|
Badache S, Bouslama S, Brahmia O, Baïri AM, Tahraoui AK, Ladjama A. Prenatal noise and restraint stress interact to alter exploratory behavior and balance in juvenile rats, and mixed stress reverses these effects. Stress 2017; 20:320-328. [PMID: 28316272 DOI: 10.1080/10253890.2017.1307962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We aimed to investigate in adolescent rats the individual and combined effects of prenatal noise and restraint stress on balance control, exploration, locomotion and anxiety behavior. Three groups of pregnant rats were exposed to daily repeated stress from day 11 to day 19 of pregnancy: 3 min noise (Noise Stress, NS); 10 min restraint (restraint stress, RS); or 3 min noise followed by 10 min restraint (mixed stress, MS). On postnatal days (PND) 44, 45 and 46, four groups of male rats (Control, NS, RS:, MS; 16 rats each), were tested as follows: (1) beam walking (BW), (2) open field (OF) and (3) elevated plus maze (EPM). Our results show that the NS group had significantly impaired balance control, locomotion and both horizontal and vertical exploration (p < .01 for all measures). The RS group showed only a decrease in vertical exploration (p < .05). In contrast, locomotion and balance were not affected in the MS group (OF: crossed squares: p = .34, missteps: p = .18). However, MS rats exhibited significantly higher anxiety levels (less time in EPM open arms: p < .05), and took more time to complete BW: p < .05). Hence, combined prenatal stressors exert non-additive effects on locomotion, exploration and balance control, but induce greater anxiety through additive effects. Terminal plasma ACTH concentration was increased by prenatal stress, especially noise, which group had the largest adrenal glands. Overall, contrary to expectation, combined prenatal stressors can interact to increase anxiety level, but diminish alteration of exploration, locomotion and impaired balance control, which were strongly induced by noise stress. Lay summary: Experience of stress in pregnancy can have negative effects on the offspring that are long-lasting. Here, we used laboratory rats to see whether repeated episodes of exposure to loud noise or preventing free movement, alone or together, during pregnancy had different effects on behaviors of the adolescent offspring. Using standard tests, we found the prenatal stresses caused the offspring to be anxious, and not to balance when moving around as well as normal offspring; the degree of impairment depended on the type of stress - loud noise exposure had the greatest effects, but if the stresses were combined the effects were not worse. The results point to the need to aim to avoid stress in pregnant women.
Collapse
Affiliation(s)
- Soumeya Badache
- a Laboratory of Biochemistry and Applied Microbiology, Department of Biochemistry, Faculty of Science , University Badji Mokhtar-Annaba , Algeria
| | - Slim Bouslama
- b Department of Biochemistry, Faculty of Science , University Badji Mokhtar-Annaba , Algeria
| | - Oualid Brahmia
- c Department of Medicine, Faculty of Medical Sciences , University Badji Mokhtar-Annaba , Algeria
| | - Abdel Madjid Baïri
- d Laboratory of Applied Neuroendocrinology, Department of Biology, Faculty of Science , University Badji Mokhtar-Annaba , Algeria
| | - Abdel Krim Tahraoui
- d Laboratory of Applied Neuroendocrinology, Department of Biology, Faculty of Science , University Badji Mokhtar-Annaba , Algeria
| | - Ali Ladjama
- a Laboratory of Biochemistry and Applied Microbiology, Department of Biochemistry, Faculty of Science , University Badji Mokhtar-Annaba , Algeria
| |
Collapse
|
13
|
Pillidge K, Porter AJ, Young JW, Stanford SC. Perseveration by NK1R-/- ('knockout') mice is blunted by doses of methylphenidate that affect neither other aspects of their cognitive performance nor the behaviour of wild-type mice in the 5-Choice Continuous Performance Test. J Psychopharmacol 2016; 30:837-47. [PMID: 27097734 PMCID: PMC4994704 DOI: 10.1177/0269881116642541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The underlying cause(s) of abnormalities expressed by patients with attention deficit hyperactivity disorder (ADHD) have yet to be delineated. One factor that has been associated with increased vulnerability to ADHD is polymorphism(s) of TACR1, which is the human equivalent of the rodent NK1 (substance P-preferring) receptor gene (Nk1r). We have reported previously that genetically altered mice, lacking functional NK1R (NK1R-/-), express locomotor hyperactivity, which was blunted by the first-line treatment for ADHD, methylphenidate. Here, we compared the effects of this psychostimulant (3, 10 and 30 mg/kg, intraperitoneally) on the behaviour of NK1R-/- mice and their wild types in the 5-Choice Continuous Performance Test, which emulates procedures used to study attention and response control in ADHD patients. Methylphenidate increased total trials (a measure of 'productivity') completed by wild types, but not by NK1R-/- mice. Conversely, this drug reduced perseveration by NK1R-/- mice, but not by wild types. Other drug-induced changes in key behaviours were not genotype dependent, especially at the highest dose: for example, % omissions (an index of inattentiveness) was increased, whereas % false alarms and % premature responses (measures of impulsivity) declined in both genotypes, indicating reduced overall response. These findings are discussed in the context of the efficacy of methylphenidate in the treatment of ADHD. Moreover, they lead to several testable proposals. First, methylphenidate does not improve attention in a subgroup of ADHD patients with a functional deficit of TACR1. Second, these patients do not express excessive false alarms when compared with other groups of subjects, but they do express excessive perseveration, which would be ameliorated by methylphenidate.
Collapse
Affiliation(s)
- Katharine Pillidge
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Ashley J Porter
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
14
|
Yaoita F. Animal Models for Elucidation of the Mechanisms of Neuropsychiatric Disorders Induced by Sleep and Dietary Habits. YAKUGAKU ZASSHI 2016; 136:895-904. [PMID: 27252067 DOI: 10.1248/yakushi.15-00283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous changes in human lifestyle in modern life increase the risk of disease. Especially, modern sleep and dietary habits are crucial factors affecting lifestyle disease. In terms of sleep, decreases in total sleep time and in rapid eye movement sleep time have been observed in attention-deficit/hyperactivity disorder (ADHD) patients. From a dietary perspective, mastication during eating has several good effects on systemic, mental, and physical functions of the body. However, few animal experiments have addressed the influence of this decline in sleep duration or of long-term powdered diet feeding on parameters reflecting systemic health. In our studies, we examined both the influence of intermittent sleep deprivation (SD) treatment and long-term powdered diet feeding on emotional behavior in mice, and focused on the mechanisms underlying these impaired behaviors. Our findings were as follows: SD treatment induced hypernoradrenergic and hypodopaminergic states within the frontal cortex. Furthermore, hyperactivity and an explosive number of jumps were observed. Both the hypernoradrenergic state and the jumps were improved by treatment with ADHD therapeutic drugs. On the other hand, long-term powdered diet feeding increased social interaction behaviors. The feeding affected the dopaminergic function of the frontal cortex. In addition, the long-term powdered diet fed mice presented systemic illness signs, such as elevations of blood glucose, and hypertension. This review, describing the SD mice and long-term powdered diet fed mice can be a useful model for elucidation of the mechanism of neuropsychiatric disorders or the discovery of new therapeutic targets in combatting effects of the modern lifestyle.
Collapse
Affiliation(s)
- Fukie Yaoita
- Department of Pharmacology, Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
15
|
Thanos PK, Roushdy K, Sarwar Z, Rice O, Ashby CR, Grandy DK. The effect of dopamine D4 receptor density on novelty seeking, activity, social interaction, and alcohol binge drinking in adult mice. Synapse 2015; 69:356-64. [PMID: 25914336 DOI: 10.1002/syn.21822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 01/11/2023]
Abstract
The dopamine D4 receptor has been postulated to play a role in the pathophysiology of alcoholism. This study examined how varying levels of D4 expression and their associated behaviors in male and female mice correlate with future alcohol intake. We hypothesized that: (1) mice with low (Drd4(+/-) ) or deficient (Drd4(-/-) ) in D4 receptors would show enhanced ethanol consumption compared with control mice (Drd4(+/+) ), and (2) a specific phenotype in these mice is associated with future vulnerability for alcohol consumption. Individually housed mice were allowed free access to ethanol (20% vv) in the dark (DID). The behaviors measured in male and female mice were: novel object recognition, open-field locomotor activity, and social interaction. Correlation analyses showed that in male Drd4(-/-) mice (relative to Drd4(+/+) controls), anxiolytic behavior was significantly correlated with increased alcohol consumption. Also, in male Drd4(-/-) mice, there was a significant positive correlation between increased exploratory behavior and increased alcohol consumption. These findings were not observed in females. In conclusion, our data suggest that the dopamine D4 receptor gene has an important role in increased exploratory and anxiolytic behavior only in males and these behaviors were positively correlated with increased alcohol consumption. This interaction between sex hormones and dopamine D4 receptor genotype/function predicting future alcohol abuse and correlation with anxiolytic and exploratory behavior in male mice could have important implications for better understanding of vulnerabilities associated with addiction.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Department of Psychology, Behavioral Neuropharmacology and Neuroimaging Lab, Stony Brook University, Stony Brook, New York
| | - Kareema Roushdy
- Department of Psychology, Behavioral Neuropharmacology and Neuroimaging Lab, Stony Brook University, Stony Brook, New York
| | - Zehan Sarwar
- Department of Psychology, Behavioral Neuropharmacology and Neuroimaging Lab, Stony Brook University, Stony Brook, New York
| | - Onarae Rice
- Department of Psychology, Furman University, Greenville, South Carolina
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. Johns University, Queens, New York
| | - David K Grandy
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon.,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
16
|
López-Cruz L, Pardo M, Salamone JD, Correa M. Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: studies using medium to high doses in animal models. Behav Brain Res 2014; 270:213-22. [PMID: 24859174 DOI: 10.1016/j.bbr.2014.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Caffeine and theophylline are methylxanthines that are broadly consumed, sometimes at high doses, and act as minor psychostimulants. Both are nonselective adenosine antagonists for A1 and A2A receptors, which are colocalized with dopamine D1 and D2 receptors in striatal areas. Adenosine antagonists generally have opposite actions to those of dopamine antagonists. Although the effects of caffeine are widely known, theophylline has been much less well characterized, especially at high doses. METHODS Adult male CD1 mice were used to study the effect of a broad range of doses (25.0, 50.0 or 100.0mg/kg) of caffeine and theophylline on measures of spontaneous locomotion and coordination, as well as the pattern of c-Fos immunoreactivity in brain areas rich in adenosine and dopamine receptors. In addition, we evaluated possible anxiety and stress effects of these doses. RESULTS Caffeine, at these doses, impaired or suppressed locomotion in several paradigms. However, theophylline was less potent than caffeine at suppressing motor parameters, and even stimulated locomotion. Both drugs induced corticosterone release, however caffeine was more efficacious at intermediate doses. While caffeine showed an anxiogenic profile at all doses, theophylline only did so at the highest dose used (50mg/kg). Only theophylline increased c-Fos immunoreactivity in cortical areas. CONCLUSION Theophylline has fewer disruptive effects than caffeine on motor parameters and produces less stress and anxiety effects. These results are relevant for understanding the potential side effects of methylxanthines when consumed at high doses.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Marta Pardo
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain; Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| |
Collapse
|
17
|
Di Ciano P, Grandy DK, Le Foll B. Dopamine D4 receptors in psychostimulant addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:301-21. [PMID: 24484981 DOI: 10.1016/b978-0-12-420118-7.00008-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the cloning of the D4 receptor in the 1990s, interest has been building in the role of this receptor in drug addiction, given the importance of dopamine in addiction. Like the D3 receptor, the D4 receptor has limited distribution within the brain, suggesting it may have a unique role in drug abuse. However, compared to the D3 receptor, few studies have evaluated the importance of the D4 receptor. This may be due, in part, to the relative lack of compounds selective for the D4 receptor; the early studies were mainly conducted in mice lacking the D4 receptor. In this review, we summarize the literature on the structure and localization of the D4 receptor before reviewing the data from D4 knockout mice that used behavioral models relevant to the understanding of stimulant use. We also present evidence from more recent pharmacological studies using selective D4 agonists and antagonists and animal models of drug-seeking and drug-taking. The data summarized here suggest a role for D4 receptors in relapse to stimulant use. Therefore, treatments based on antagonism of the D4 receptor may be useful treatments for relapse to nicotine, cocaine, and amphetamine use.
Collapse
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - David K Grandy
- Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL. Dopaminergic function in relation to genes associated with risk for schizophrenia. PROGRESS IN BRAIN RESEARCH 2014; 211:79-112. [DOI: 10.1016/b978-0-444-63425-2.00004-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Niijima-Yaoita F, Tsuchiya M, Saito H, Nagasawa Y, Murai S, Arai Y, Nakagawasai O, Nemoto W, Tadano T, Tan-No K. Influence of a long-term powdered diet on the social interaction test and dopaminergic systems in mice. Neurochem Int 2013; 63:309-15. [PMID: 23871718 DOI: 10.1016/j.neuint.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 06/22/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
It is well known that the characteristics of mastication are important for the maintenance of our physical well-being. In this study, to assess the importance of the effects of food hardness during mastication, we investigated whether a long-term powdered diet might cause changes in emotional behavior tests, including spontaneous locomotor activity and social interaction (SI) tests, and the dopaminergic system of the frontal cortex and hippocampus in mice. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The dopamine turnover and expression of dopamine receptors mRNA in the frontal cortex were also evaluated. Spontaneous locomotor activity, SI time and dopamine turnover of the frontal cortex were increased in powdered diet-fed mice. On the other hand, the expression of dopamine-4 (D4) receptors mRNA in the frontal cortex was decreased in powdered diet-fed mice. Moreover, we examined the effect of PD168077, a selective D4 agonist, on the increased SI time in powdered diet-fed mice. Treatment with PD168077 decreased the SI time. These results suggest that the masticatory dysfunction induced by long-term powdered diet feeding may cause the increased SI time and the changes in the dopaminergic system, especially dopamine D4 receptor subtype in the frontal cortex.
Collapse
Affiliation(s)
- Fukie Niijima-Yaoita
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baird AL, Coogan AN, Kaufling J, Barrot M, Thome J. Daily methylphenidate and atomoxetine treatment impacts on clock gene protein expression in the mouse brain. Brain Res 2013; 1513:61-71. [DOI: 10.1016/j.brainres.2013.03.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/29/2022]
|