1
|
Sun R, Chen Y, Pei Y, Wang W, Zhu Z, Zheng Z, Yang L, Sun L. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon 2024; 10:e38165. [PMID: 39364250 PMCID: PMC11447355 DOI: 10.1016/j.heliyon.2024.e38165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
The poly (lactic-co-glycolic acid) (PLGA) based nanoparticles have been applied for drug delivery due to their simple preparation, biodegradability, and ideal biocompatibility. In this study, the factors affecting the degradation of PLGA-based nanoparticles are reviewed, encompassing the ratio of PLA to PGA, relative molecular weight, crystallinity, and preparation process of PLGA nanoparticles. The drug release behavior of PLGA-based nanoparticles, such as the degradation environment, encapsulated drug properties of polymers, and drug loading rates, are also discussed. Since gastrointestinal cancer is one of the major global threats to human health, this paper comprehensively summarizes the application of PLGA nanoparticles in gastrointestinal cancers from diagnosis, chemotherapy, radiotherapy, and novel tumor treatment methods (immunotherapy, gene therapy, and photothermal therapy). Finally, the future application of PLGA-based drug delivery systems in treating gastrointestinal cancers is discussed. The bottleneck of application status and the prospect of PLGA-nanoparticles in gastrointestinal tumor application are presented. To truly realize the great and wide application of PLGA-based nanoparticles, collaborative progress in the field of nanomaterials and life sciences is needed.
Collapse
Affiliation(s)
- Rui Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanfei Chen
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanjiang Pei
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Wenbin Wang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhi Zhu
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhaohua Zheng
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Limeng Yang
- School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Li Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| |
Collapse
|
2
|
Yugami M, Hayakawa-Yano Y, Ogasawara T, Yokoyama K, Furukawa T, Hara H, Hashikami K, Tsuji I, Takebayashi H, Araki S, Okano H, Yano M. Sbp2l contributes to oligodendrocyte maturation through translational control in Tcf7l2 signaling. iScience 2023; 26:108451. [PMID: 38213786 PMCID: PMC10783607 DOI: 10.1016/j.isci.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Oligodendrocytes (OLs) are the myelin-forming cells in the CNS that support neurons through the insulating sheath of axons. This unique feature and developmental processes are achieved by extrinsic and intrinsic gene expression programs, where RNA-binding proteins can contribute to dynamic and fine-tuned post-transcriptional regulation. Here, we identified SECIS-binding protein 2-like (Sbp2l), which is specifically expressed in OLs by integrated transcriptomics. Histological analysis revealed that Sbp2l is a molecular marker of OL maturation. Sbp2l knockdown (KD) led to suppression of matured OL markers, but not a typical selenoprotein, Gpx4. Transcriptome analysis demonstrated that Sbp2l KD decreased cholesterol-biosynthesis-related genes regulated by Tcf7l2 transcription factor. Indeed, we confirmed the downregulation of Tcf7l2 protein without changing its mRNA in Sbp2l KD OPCs. Furthermore, Sbp2l KO mice showed the decrease of Tcf7l2 protein and deficiency of OL maturation. These results suggest that Sbp2l contributes to OL maturation by translational control of Tcf7l2.
Collapse
Affiliation(s)
- Masato Yugami
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahisa Ogasawara
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Yokoyama
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takako Furukawa
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Hiroe Hara
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kentaro Hashikami
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Isamu Tsuji
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Shinsuke Araki
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Korade Z, Heffer M, Mirnics K. Medication effects on developmental sterol biosynthesis. Mol Psychiatry 2022; 27:490-501. [PMID: 33820938 PMCID: PMC8490477 DOI: 10.1038/s41380-021-01074-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/01/2023]
Abstract
Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during pregnancy, these compounds might have detrimental effects on the developing brain of the offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this is particularly pronounced in a mouse model when both the mother and the offspring carry the Dhcr7+/- genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/- single allele mutations suggest that the same gene*medication interaction also occurs in humans. The public health relevance of these findings is high, as DHCR7-inhibitors can be considered teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting medications should be used with caution in individuals with mutations in sterol biosynthesis genes. In an age of precision medicine, further research in this area could open opportunities to improve patient and fetal/infant safety by tailoring medication prescriptions according to patient genotype and life stage.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198.,Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Marija Heffer
- J. J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Department of Medical Biology and Genetics, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Károly Mirnics
- Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| |
Collapse
|
4
|
Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) alters transcriptional profiles, lipid metabolism and behavior in zebrafish larvae. Heliyon 2021; 7:e07951. [PMID: 34553086 PMCID: PMC8441171 DOI: 10.1016/j.heliyon.2021.e07951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Plasticizers are commonly used in different consumer goods and personal care products to provide flexibility, durability and elasticity to polymers. Due to their reported toxicity, the use of several plasticizers, including phthalates has been regulated and/or banned from the market. Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) is an alternative plasticizer that was introduced to replace toxic plasticizers. Increasing global demand and lack of toxicity data and safety assessment of DINCH have raised the concern to human and animal health. Hence, in the present study, we investigated the adverse effects of DINCH (at concentrations ranging from 0.01 to 10 μM) in early developmental stages of zebrafish using different endpoints such as hatching rate, developmental abnormalities, lipid content, behavior analysis and gene expression. We found that DINCH caused hatching delay in a dose-dependent manner and altered the expression of genes involved in stress response. Lipid staining using Oil Red O stain showed a slight lipid accumulation around the yolk, brain, eye and neck with increasing concentration. Genes associated with lipid transport such as fatty acid synthesis, β-oxidation, elongation, lipid transport were significantly altered by DINCH. Genes involved in cholesterol biosynthesis and homeostasis were also affected by DINCH indicating possible developmental neurotoxicity. Behavioral analysis of larvae demonstrated a distinct locomotor activity upon exposure to DINCH. The present data shows that DINCH could induce physiological and metabolic toxicity to aquatic organisms. Hence, further analyses and environmental monitoring of DINCH should be conducted to determine its safety and toxicity levels.
Collapse
|
5
|
Derina K, Korotkova E, Taishibekova Y, Salkeeva L, Kratochvil B, Barek J. Electrochemical nonenzymatic sensor for cholesterol determination in food. Anal Bioanal Chem 2018; 410:5085-5092. [DOI: 10.1007/s00216-018-1164-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
|
6
|
Korade Z, Genaro-Mattos TC, Tallman KA, Liu W, Garbett KA, Koczok K, Balogh I, Mirnics K, Porter NA. Vulnerability of DHCR7+/- mutation carriers to aripiprazole and trazodone exposure. J Lipid Res 2017; 58:2139-2146. [PMID: 28972118 DOI: 10.1194/jlr.m079475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
Smith-Lemli-Opitz syndrome is a recessive disorder caused by mutations in 7-dehydrocholesterol reductase (DHCR)7 with a heterozygous (HET) carrier frequency of 1-3%. A defective DHCR7 causes accumulation of 7-dehydrocholesterol (DHC), which is a highly oxidizable and toxic compound. Recent studies suggest that several antipsychotics, including the highly prescribed pharmaceuticals, aripiprazole (ARI) and trazodone (TRZ), increase 7-DHC levels in vitro and in humans. Our investigation was designed to compare the effects of ARI and TRZ on cholesterol (Chol) synthesis in fibroblasts from DHCR7+/- human carriers and controls (CTRs). Six matched pairs of fibroblasts were treated and their sterol profile analyzed by LC-MS. Significantly, upon treatment with ARI and TRZ, the total accumulation of 7-DHC was higher in DHCR7-HET cells than in CTR fibroblasts. The same set of experiments was repeated in the presence of 13C-lanosterol to determine residual Chol synthesis, revealing that ARI and TRZ strongly inhibit de novo Chol biosynthesis. The results suggest that DHCR7 carriers have increased vulnerability to both ARI and TRZ exposure compared with CTRs. Thus, the 1-3% of the population who are DHCR7 carriers may be more likely to sustain deleterious health consequences on exposure to compounds like ARI and TRZ that increase levels of 7-DHC, especially during brain development.
Collapse
Affiliation(s)
- Zeljka Korade
- Departments of Pediatrics and Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, NE 68198
| | - Thiago C Genaro-Mattos
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | - Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | | | - Katalin Koczok
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen, Debrecen 4032, Hungary
| | - Istvan Balogh
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen, Debrecen 4032, Hungary
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
7
|
Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 2016; 321:24-41. [PMID: 26577932 PMCID: PMC4824539 DOI: 10.1016/j.neuroscience.2015.11.010] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 02/02/2023]
Abstract
Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker.
Collapse
Affiliation(s)
- C L Muller
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA.
| | - A M J Anacker
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
| | - J Veenstra-VanderWeele
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Columbia University; Center for Autism and the Developing Brain, New York Presbyterian Hospital; New York State Psychiatric Institute, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
| |
Collapse
|
8
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Roubertoux PL, Carlier M, Tordjman S. Deficit in Social Relationships and Reduced Field of Interest in Mice. ORGANISM MODELS OF AUTISM SPECTRUM DISORDERS 2015. [DOI: 10.1007/978-1-4939-2250-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Chachua T, Goletiani C, Maglakelidze G, Sidyelyeva G, Daniel M, Morris E, Miller J, Shang E, Wolgemuth DJ, Greenberg DA, Velíšková J, Velíšek L. Sex-specific behavioral traits in the Brd2 mouse model of juvenile myoclonic epilepsy. GENES BRAIN AND BEHAVIOR 2014; 13:702-12. [PMID: 25130458 DOI: 10.1111/gbb.12160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
Abstract
Idiopathic generalized epilepsy represents about 30-35% of all epilepsies in humans. The bromodomain BRD2 gene has been repeatedly associated with the subsyndrome of juvenile myoclonic epilepsy (JME). Our previous work determined that mice haploinsufficient in Brd2 (Brd2+/-) have increased susceptibility to provoked seizures, develop spontaneous seizures and have significantly decreased gamma-aminobutyric acid (GABA) markers in the direct basal ganglia pathway as well as in the neocortex and superior colliculus. Here, we tested male and female Brd2+/- and wild-type littermate mice in a battery of behavioral tests (open field, tube dominance test, elevated plus maze, Morris water maze and Barnes maze) to identify whether Brd2 haploinsufficiency is associated with the human behavioral patterns, the so-called JME personality. Brd2+/- females but not males consistently displayed decreased anxiety. Furthermore, we found a highly significant dominance trait (aggression) in the Brd2+/- mice compared with the wild type, more pronounced in females. Brd2+/- mice of either sex did not differ from wild-type mice in spatial learning and memory tests. Compared with wild-type littermates, we found decreased numbers of GABA neurons in the basolateral amygdala, which is consistent with the increase in aggressive behavior. Our results indicate that Brd2+/- haploinsufficient mice show no cognitive impairment but have behavioral traits similar to those found in patients with JME (recklessness, aggression). This suggests that either the BRD2 gene is directly responsible for influencing many traits of JME or it controls upstream regulators of individual phenotypes.
Collapse
Affiliation(s)
- T Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu W, Xu L, Lamberson C, Haas D, Korade Z, Porter NA. A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome. J Lipid Res 2013; 55:329-37. [PMID: 24259532 DOI: 10.1194/jlr.d043877] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe a highly sensitive method for the detection of 7-dehydrocholesterol (7-DHC), the biosynthetic precursor of cholesterol, based on its reactivity with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in a Diels-Alder cycloaddition reaction. Samples of biological tissues and fluids with added deuterium-labeled internal standards were derivatized with PTAD and analyzed by LC-MS. This protocol permits fast processing of samples, short chromatography times, and high sensitivity. We applied this method to the analysis of cells, blood, and tissues from several sources, including human plasma. Another innovative aspect of this study is that it provides a reliable and highly reproducible measurement of 7-DHC in 7-dehydrocholesterol reductase (Dhcr7)-HET mouse (a model for Smith-Lemli-Opitz syndrome) samples, showing regional differences in the brain tissue. We found that the levels of 7-DHC are consistently higher in Dhcr7-HET mice than in controls, with the spinal cord and peripheral nerve showing the biggest differences. In addition to 7-DHC, sensitive analysis of desmosterol in tissues and blood was also accomplished with this PTAD method by assaying adducts formed from the PTAD "ene" reaction. The method reported here may provide a highly sensitive and high throughput way to identify at-risk populations having errors in cholesterol biosynthesis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | | | | | | | | | | |
Collapse
|
12
|
Kerr TM, Muller CL, Miah M, Jetter CS, Pfeiffer R, Shah C, Baganz N, Anderson GM, Crawley JN, Sutcliffe JS, Blakely RD, Veenstra-Vanderweele J. Genetic background modulates phenotypes of serotonin transporter Ala56 knock-in mice. Mol Autism 2013; 4:35. [PMID: 24083388 PMCID: PMC3851031 DOI: 10.1186/2040-2392-4-35] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022] Open
Abstract
Background Previously, we identified multiple, rare serotonin (5-HT) transporter (SERT) variants in children with autism spectrum disorder (ASD). Although in our study the SERT Ala56 variant was over-transmitted to ASD probands, it was also seen in some unaffected individuals, suggesting that associated ASD risk is influenced by the epistatic effects of other genetic variation. Subsequently, we established that mice expressing the SERT Ala56 variant on a 129S6/S4 genetic background display multiple biochemical, physiological and behavioral changes, including hyperserotonemia, altered 5-HT receptor sensitivity, and altered social, communication, and repetitive behavior. Here we explore the effects of genetic background on SERT Ala56 knock-in phenotypes. Methods To explore the effects of genetic background, we backcrossed SERT Ala56 mice on the 129 background into a C57BL/6 (B6) background to achieve congenic B6 SERT Ala56 mice, and assessed autism-relevant behavior, including sociability, ultrasonic vocalizations, and repetitive behavior in the home cage, as well as serotonergic phenotypes, including whole blood serotonin levels and serotonin receptor sensitivity. Results One consistent phenotype between the two strains was performance in the tube test for dominance, where mutant mice displayed a greater tendency to withdraw from a social encounter in a narrow tube as compared to wildtype littermate controls. On the B6 background, mutant pup ultrasonic vocalizations were significantly increased, in contrast to decreased vocalizations seen previously on the 129 background. Several phenotypes seen on the 129 background were reduced or absent when the mutation was placed on the B6 background, including hyperserotonemia, 5-HT receptor hypersensivity, and repetitive behavior. Conclusions Our findings provide a cogent example of how epistatic interactions can modulate the impact of functional genetic variation and suggest that some aspects of social behavior may be especially sensitive to changes in SERT function. Finally, these results provide a platform for the identification of genes that may modulate the risk of ASD in humans.
Collapse
Affiliation(s)
- Travis M Kerr
- Department of Psychiatry, Vanderbilt University, 465 21st Ave S, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|