1
|
Porras-García E, Mas-Nieto M, Delgado-García JM, Domínguez-Del-Toro E. Noradrenergic projections regulate the acquisition of classically conditioned eyelid responses in wild-type and are impaired in kreisler mice. Sci Rep 2023; 13:11458. [PMID: 37454229 PMCID: PMC10349844 DOI: 10.1038/s41598-023-38278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
During embryonic development, heterozygous mutant kreisler mice undergo ectopic expression of the Hoxa3 gene in the rostral hindbrain, affecting the opioid and noradrenergic systems. In this model, we have investigated behavioral and cognitive processes in their adulthood. We confirmed that pontine and locus coeruleus neuronal projections are impaired, by using startle and pain tests and by analyzing immunohistochemical localization of tyrosine hydroxylase. Our results showed that, even if kreisler mice are able to generate eyelid reflex responses, there are differences with wild-types in the first component of the response (R1), modulated by the noradrenergic system. The acquisition of conditioned motor responses is impaired in kreisler mice when using the trace but not the delay paradigm, suggesting a functional impairment in the hippocampus, subsequently confirmed by reduced quantification of alpha2a receptor mRNA expression in this area but not in the cerebellum. Moreover, we demonstrate the involvement of adrenergic projection in eyelid classical conditioning, as clonidine prevents the appearance of eyelid conditioned responses in wild-type mice. In addition, hippocampal motor learning ability was restored in kreisler mice by administration of adrenergic antagonist drugs, and a synergistic effect was observed following simultaneous administration of idazoxan and naloxone.
Collapse
Affiliation(s)
- Elena Porras-García
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Magdalena Mas-Nieto
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013, Sevilla, Spain
| | - José María Delgado-García
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013, Sevilla, Spain
| | | |
Collapse
|
2
|
Singh UA, Iyengar S. The Role of the Endogenous Opioid System in the Vocal Behavior of Songbirds and Its Possible Role in Vocal Learning. Front Physiol 2022; 13:823152. [PMID: 35273519 PMCID: PMC8902293 DOI: 10.3389/fphys.2022.823152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The opioid system in the brain is responsible for processing affective states such as pain, pleasure, and reward. It consists of three main receptors, mu- (μ-ORs), delta- (δ-ORs), and kappa- (κ-ORs), and their ligands – the endogenous opioid peptides. Despite their involvement in the reward pathway, and a signaling mechanism operating in synergy with the dopaminergic system, fewer reports focus on the role of these receptors in higher cognitive processes. Whereas research on opioids is predominated by studies on their addictive properties and role in pain pathways, recent studies suggest that these receptors may be involved in learning. Rodents deficient in δ-ORs were poor at recognizing the location of novel objects in their surroundings. Furthermore, in chicken, learning to avoid beads coated with a bitter chemical from those without the coating was modulated by δ-ORs. Similarly, μ-ORs facilitate long term potentiation in hippocampal CA3 neurons in mammals, thereby having a positive impact on spatial learning. Whereas these studies have explored the role of opioid receptors on learning using reward/punishment-based paradigms, the role of these receptors in natural learning processes, such as vocal learning, are yet unexplored. In this review, we explore studies that have established the expression pattern of these receptors in different brain regions of birds, with an emphasis on songbirds which are model systems for vocal learning. We also review the role of opioid receptors in modulating the cognitive processes associated with vocalizations in birds. Finally, we discuss the role of these receptors in regulating the motivation to vocalize, and a possible role in modulating vocal learning.
Collapse
|
3
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
4
|
Role of dorsal hippocampus κ opioid receptors in contextual aversive memory consolidation in rats. Neuropharmacology 2018; 135:253-267. [DOI: 10.1016/j.neuropharm.2018.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
|
5
|
Loh R, Collins S, Galvez R. Neocortical prodynorphin expression is transiently increased with learning: Implications for time- and learning-dependent neocortical kappa opioid receptor activation. Behav Brain Res 2017; 335:145-150. [PMID: 28802836 DOI: 10.1016/j.bbr.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 01/04/2023]
Abstract
There are several lines of evidence that indicate a prominent role for the opioid system in the acquisition and consolidation of learned associations. Specifically, kappa opioid receptor (KOR) modulation has been demonstrated to alter various behavioral tasks including whisker trace eyeblink conditioning (WTEB). WTEB is an associative conditioning paradigm in which a neutral conditioned stimulus (CS; Whisker stimulation) is paired following a short stimulus free trace interval with a salient unconditioned stimulus that elicits a blink response (US; Eye shock). Work from our laboratory has shown that WTEB conditioning is dependent upon and induces plasticity in primary somatosensory cortex (S1), a likely site for memory storage. Our subsequent studies have shown that WTEB acquisition or consolidation are impaired when the initial or later phase of KOR activation in S1 is respectively blocked. Interestingly, this mechanism by which KOR is activated in S1 during learning remains unexplored. Dynorphin (DYN), KOR's endogenous ligand, is synthesized from the precursor prodynorphin (PD) that is synthesized from preprodynorphin (PPD). In S1, most PPD is found in inhibitory GABAergic somatostatin interneurons (SOM), suggesting that these SOM interneurons are upstream regulators of learning induced KOR activation. Using immunofluorescence to investigate the expression of PD and SOM, the current study found that PD/SOM expression was transiently increased in S1 during learning. Interestingly, these findings have direct implications towards a time- and learning-dependent role for KOR activation in neocortical mechanisms mediating learning.
Collapse
Affiliation(s)
- Ryan Loh
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| | - Sean Collins
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| | - Roberto Galvez
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Loh R, Chau L, Aijaz A, Wu K, Galvez R. Antagonizing the different stages of kappa opioid receptor activation selectively and independently attenuates acquisition and consolidation of associative memories. Behav Brain Res 2017; 323:1-10. [PMID: 28119127 DOI: 10.1016/j.bbr.2017.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/04/2023]
Abstract
Previous work from our laboratory has shown that nonspecific kappa opioid receptor (KOR) antagonism in primary somatosensory cortex (S1) can inhibit acquisition for the forebrain-dependent associative task, Whisker-Trace Eyeblink conditioning (WTEB). Although studies have demonstrated that KOR activation can alter stimuli salience, our studies controlled for these factors, demonstrating that KOR also plays a role in facilitating learning. KOR has two distinct phases of activation followed by internalization/downregulation, that each independently activate kinases and transcription factors known to mediate task acquisition and memory consolidation respectively. The current study demonstrated that antagonism of the initial phase of KOR activation in S1 via local injections of the g-protein inhibitor, pertussis toxin (PTX), blocked initial WTEB acquisition without affecting retention of the association. In contrast, KOR late phase antagonism in S1 via local injections of the GRK3-specific antagonist, guanidinonaltrindole (GNTI), blocked retention of the WTEB association without affecting task acquisition. Consistent with the known mechanism for KOR activation, KOR protein expression in S1 was found to be decreased following WTEB training, further supporting the involvement of neocortical KOR activation with learning. Prior studies have shown that task acquisition and memory consolidation are mediated by distinct molecular processes; however, little is known regarding a potential mechanism driving these processes. The current study suggests that neocortical KOR activation mediates activation of these processes with learning. This study provides the first evidence for a time- and learning-dependent property of neocortical KOR in facilitating acquisition and consolidation of associative memories, while elucidating an unexplored neocortical learning mechanism.
Collapse
Affiliation(s)
- Ryan Loh
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| | - Lily Chau
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| | - Ali Aijaz
- Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| | - Kevin Wu
- Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| | - Roberto Galvez
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|