1
|
Hoblos R, Khalil K, Karam M, Bazzi S. The role of NF-κB transcription factor in the regulation of cytokine induced thermal hyperalgesia in a Leishmania major model in BALB/c mice. Exp Parasitol 2024; 267:108864. [PMID: 39577554 DOI: 10.1016/j.exppara.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Cutaneous leishmaniasis caused mainly by Leishmania major (L. major) is one of the trending models used to investigate induced hyperalgesia and the involved cytokines. Previous studies approached the role of several cytokines in the observed hyperalgesia, but the molecular mechanisms orchestrating such a response still needed to be addressed. In this study, we inspect the role of the NF-κB in the modulation of L. major-prompted hyperalgesia and cytokine expression in BALB/c mice by administering celastrol, a potent blocker of this transcription factor. Intraperitoneal injection of 0.5 mg/kg and 1 mg/kg of celastrol attenuated the L. major-induced thermal hyperalgesia in BALB/c mice for 15 days and 21 days, respectively, as detected by hot plate and tail flick behavioral assessments. Cytokine levels were quantified in the infected paws of BALB/c mice using Sandwich ELISA. The administration of 1 mg/kg celastrol decreased TNF-α levels in L. major infected mice for 23 days, and IL-1β expression declined significantly for 23 days using both celastrol dosages. However, no significant change was observed in the levels of IL-10 in our experimental groups. The activation of NF-κB was detected by observing the phosphorylation levels of the p65 subunit using PathScan phospho-ELISA. The level of NF-κB phosphorylation was elevated in L. major infected BALB/c mice. Only administering 1 mg/kg celastrol suppressed the phosphorylation of p65, thus inactivating NF-kB. In conclusion, our results provide new insights into the correlation between the activation of NF-kB, the induction of thermal hyperalgesia, and the expression of TNF-α and IL-1β in the L. major-induced hyperalgesia model.
Collapse
Affiliation(s)
- Reem Hoblos
- University of Balamand, Faculty of Arts and Sciences, Lebanon
| | - Karl Khalil
- Lebanese American University, School of Medicine, Lebanon.
| | - Marc Karam
- University of Balamand, Faculty of Arts and Sciences, Lebanon
| | - Samer Bazzi
- University of Balamand, Faculty of Arts and Sciences, Lebanon
| |
Collapse
|
2
|
Sadlon A, Takousis P, Ankli B, Alexopoulos P, Perneczky R, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Association of Chronic Pain with Biomarkers of Neurodegeneration, Microglial Activation, and Inflammation in Cerebrospinal Fluid and Impaired Cognitive Function. Ann Neurol 2023; 95:10.1002/ana.26804. [PMID: 37787094 PMCID: PMC10987399 DOI: 10.1002/ana.26804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Debate surrounds the role of chronic pain as a risk factor for cognitive decline and dementia. This study aimed at examining the association of chronic pain with biomarkers of neurodegeneration using data from the Alzheimer's Disease Neuroimaging Initiative. METHODS Participants were classified using the ATN (amyloid, tau, neurodegeneration) classification. Chronic pain was defined as persistent or recurrent pain reported at baseline. For each ATN group, analysis of covariance models identified differences in cerebrospinal fluid (CSF) levels of amyloid β1-42 , phosphorylated tau 181 (ptau181 ), total tau (t-tau), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), and cognitive function between chronic pain states. Differences in CSF levels of inflammatory markers between chronic pain states were further analyzed. Linear mixed effect models examined longitudinal changes. RESULTS The study included 995 individuals, with 605 (60.81%) reporting chronic pain at baseline. At baseline, individuals with suspected non-Alzheimer pathophysiology and chronic pain showed increased CSF levels of t-tau and sTREM2. Chronic pain was associated with increased tumor necrosis factor α levels, irrespective of the ATN group. Longitudinally, an increase in ptau181 CSF levels was observed in chronic pain patients with negative amyloid and neurodegeneration markers. Amyloid-positive and neurodegeneration-negative chronic pain patients showed higher memory function cross-sectionally. No significant longitudinal decline in cognitive function was observed for any ATN group. INTERPRETATION Our study suggests that chronic pain induces neuronal damage and microglial activation in particular subgroups of patients along the AD spectrum. Further studies are needed to confirm these findings. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Angélique Sadlon
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom (UK)
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- Pain Clinic Basel, Basel, Switzerland
| | - Petros Takousis
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom (UK)
| | - Barbara Ankli
- Pain Clinic Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Panagiotis Alexopoulos
- Global Βrain Health Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Republic of Ireland
- Department of Psychiatry, Patras University General Hospital, Faculty of Medicine, School of Health Sciences, University of Patras, Patras, Greece
- Patras Dementia Day Care Centre, Patras, Greece
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Perneczky
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom (UK)
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Sheffield Institute for Translational Neurosciences (SITraN), University of Sheffield, Sheffield, United Kingdom (UK)
| | | |
Collapse
|
3
|
Kraev K, Geneva-Popova M, Hristov B, Uchikov P, Popova S, Kraeva M, Basheva-Kraeva Y, Sheytanov I, Petranova T, Stoyanova N, Atanassov M. Exploring the Novel Dimension of Immune Interactions in Pain: JAK Inhibitors' Pleiotropic Potential. Life (Basel) 2023; 13:1994. [PMID: 37895376 PMCID: PMC10608014 DOI: 10.3390/life13101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
This review explores the link between immune interactions and chronic pain, offering new perspectives on treatment. It focuses on Janus kinase (JAK) inhibitors' potential in pain management. Immune cells' communication with neurons shapes neuroinflammatory responses, and JAK inhibitors' effects on pain pathways are discussed, including cytokine suppression and microglial modulation. This review integrates studies from rheumatoid arthritis (RA) pain and central sensitization to highlight connections between immune interactions and pain. Studies on RA joint pain reveal the shift from cytokines to sensitization. Neurobiological investigations into central sensitization uncover shared pathways in chronic pain. Clinical evidence supports JAK inhibitors' efficacy on pain-related outcomes and their effects on neurons and immune cells. Challenges and future directions are outlined, including interdisciplinary collaboration and dosing optimization. Overall, this review highlights JAK inhibitors' potential to target immune-mediated pain pathways, underscoring the need for more research on immune-pain connections.
Collapse
Affiliation(s)
- Krasimir Kraev
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Mariela Geneva-Popova
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Bozhidar Hristov
- Second Department of Internal Diseases, Section “Gastroenterology”, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Gastroenterology, University Hospital “Kaspela”, 4001 Plovdiv, Bulgaria
| | - Petar Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Second Surgery Clinic, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Stanislava Popova
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Maria Kraeva
- Department of Otorhinolaryngology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yordanka Basheva-Kraeva
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| | - Ivan Sheytanov
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Tzvetanka Petranova
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Nina Stoyanova
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| | - Marin Atanassov
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| |
Collapse
|
4
|
Di Maio G, Villano I, Ilardi CR, Messina A, Monda V, Iodice AC, Porro C, Panaro MA, Chieffi S, Messina G, Monda M, La Marra M. Mechanisms of Transmission and Processing of Pain: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3064. [PMID: 36833753 PMCID: PMC9964506 DOI: 10.3390/ijerph20043064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Knowledge about the mechanisms of transmission and the processing of nociceptive information, both in healthy and pathological states, has greatly expanded in recent years. This rapid progress is due to a multidisciplinary approach involving the simultaneous use of different branches of study, such as systems neurobiology, behavioral analysis, genetics, and cell and molecular techniques. This narrative review aims to clarify the mechanisms of transmission and the processing of pain while also taking into account the characteristics and properties of nociceptors and how the immune system influences pain perception. Moreover, several important aspects of this crucial theme of human life will be discussed. Nociceptor neurons and the immune system play a key role in pain and inflammation. The interactions between the immune system and nociceptors occur within peripheral sites of injury and the central nervous system. The modulation of nociceptor activity or chemical mediators may provide promising novel approaches to the treatment of pain and chronic inflammatory disease. The sensory nervous system is fundamental in the modulation of the host's protective response, and understanding its interactions is pivotal in the process of revealing new strategies for the treatment of pain.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ciro Rosario Ilardi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Ashlei Clara Iodice
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
5
|
Using Network Pharmacology and Animal Experiment to Investigate the Therapeutic Mechanisms of Polydatin against Vincristine-Induced Neuropathic Pain. Mediators Inflamm 2022; 2022:6010952. [PMID: 36281234 PMCID: PMC9587674 DOI: 10.1155/2022/6010952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background Polydatin (PD) is the primary active compound in Polygonum cuspidatum Sieb and has been demonstrated to exert anti-inflammatory and neuroprotective activities. In the present study, we aimed to explore the therapeutic mechanisms of PD against chemotherapy-induced neuropathic pain. Methods The putative targets of PD were obtained from the CTD and SwissTargetPrediction databases. Neuropathic pain- and VIN-related targets were collected from the CTD and GeneCards databases. Subsequently, the intersection targets were obtained using the Venn tool, and the protein-protein interaction (PPI) was constructed by the STRING database. GO and KEGG enrichment analyses were performed to investigate the biological functions of the intersection targets. Further, a rat model of VIN-induced neuropathic pain was established to confirm the reliability of the network pharmacology findings. Results A total of 46 intersection targets were identified as potential therapeutic targets, mainly related to neuroinflammation. KEGG pathway analysis indicated that the IL-17 signaling pathway was involved in the mechanism of the antinociceptive effect of PD. PPI network analysis indicated that RELA, IL-6, TP53, MAPK3, and MAPK1 were located at crucial nodes in the network. Additionally, PD exerted an antinociceptive effect by increasing the nociceptive threshold. The results of qRT-PCR, western blot, and immunohisochemistry indicated that PD inhibited the IL-6, TP53, and MAPK1 levels in VIN-induced neuropathic pain rats. Conclusions Overall, this research provided evidence that suppressing inflammatory signaling pathways might be a potential mechanism action of PD's antinociceptive effect against VIN-induced neuropathic pain.
Collapse
|
6
|
Liu Y, Wang J, Zhang X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis. Int J Biol Sci 2022; 18:4400-4413. [PMID: 35864971 PMCID: PMC9295070 DOI: 10.7150/ijbs.72707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis remains a common but challenging gynecological disease among reproductive-aged women with an unclear pathogenesis and limited therapeutic options. Numerous pieces of evidence suggest that NF-κB signaling, a major regulator of inflammatory responses, is overactive in endometriotic lesions and contributes to the onset, progression, and recurrence of endometriosis. Several factors, such as estrogen, progesterone, oxidative stress, and noncoding RNAs, can regulate NF-κB signaling in endometriosis. In the present review, we discuss the mechanisms by which these factors regulate NF-κB during endometriosis progression and provide an update on the role of NF-κB in affecting endometriotic cells, peritoneal macrophages (PMs) as well as endometriosis-related symptoms, such as pain and infertility. Furthermore, the preclinical drugs for blocking NF-κB signaling in endometriosis are summarized, including plant-derived medicines, NF-κB inhibitors, other known drugs, and the potential anti-NF-κB drugs predicted through the Drug-Gene Interaction Database. The present review discusses most of the studies concerning the multifaceted role of NF-κB signaling in endometriosis and provides a summary of NF-κB-targeted treatment in detail.
Collapse
Affiliation(s)
- Yuanmeng Liu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
7
|
Chronic Pain in Musculoskeletal Diseases: Do You Know Your Enemy? J Clin Med 2022; 11:jcm11092609. [PMID: 35566735 PMCID: PMC9101840 DOI: 10.3390/jcm11092609] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain is a condition that characterises several diseases and represents a constantly growing issue with enormous socio-economic burdens, highlighting the importance of developing treatment algorithms appropriate to the patient’s needs and effective management strategies. Indeed, the algic condition must be assessed and treated independently of the underlying pathological process since it has an extremely negative impact on the emotional and psychic aspects of the individual, leading to isolation and depression. A full understanding of the pathophysiological mechanisms involved in nociceptive stimulation and central sensitization is an important step in improving approaches to musculoskeletal pain. In this context, the bidirectional relationship between immune cells and neurons involved in nociception could represent a key point in the understanding of these mechanisms. Therefore, we provide an updated overview of the magnitude of the musculoskeletal pain problem, in terms of prevalence and costs, and summarise the role of the most important molecular players involved in the development and maintenance of pain. Finally, based on the pathophysiological mechanisms, we propose a model, called the “musculoskeletal pain cycle”, which could be a useful tool to counteract resignation to the algic condition and provide a starting point for developing a treatment algorithm for the patient with musculoskeletal pain.
Collapse
|
8
|
Pereira EWM, Heimfarth L, Santos TK, Passos FRS, Siqueira-Lima P, Scotti L, Scotti MT, Almeida JRGDS, Campos AR, Coutinho HDM, Martin P, Quintans-Júnior LJ, Quintans JSS. Limonene, a citrus monoterpene, non-complexed and complexed with hydroxypropyl-β-cyclodextrin attenuates acute and chronic orofacial nociception in rodents: Evidence for involvement of the PKA and PKC pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153893. [PMID: 35026511 DOI: 10.1016/j.phymed.2021.153893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic orofacial pain is a serious public health problem with a prevalence of 7-11% in the population. This disorder has different etiologies and characteristics that make pharmacological treatment difficult. Natural products have been shown to be a promising source of treatments for the management of chronic pain, as an example the terpenes. PURPOSE The aim of this study was to evaluate the anti-nociceptive and anti-inflammatory effects of one of these terpenes, d-limonene (LIM - a common monoterpene found in citrus fruits) alone and complexed with hydroxypropyl-β-cyclodextrin (LIM/HPβCD) in preclinical animal models. METHODS Orofacial pain was induced by the administration of hypertonic saline on the corneal surface, the injection of formalin into the temporomandibular joint (TMJ), or chronic constriction injury of the infraorbital nerve (CCI-IoN). The study used male Wistar rats and Swiss mice treated with LIM (50 mg/kg), LIM/HPβCD (50 mg/kg), vehicle (control), gabapentin or morphine, and eyes wiping (induced by hypertonic saline), face rubbing (formalin-induced in TMJ) or mechanical hyperalgesia (provoked by CCI-IoN) were assessed. Additionally, ELISA was used to measure TNF-α, and western blot analysis to assess levels of PKAcα, NFκB, p38MAPK and phosphorylated PKC substrates. Serum levels of aspartate aminotransferase (AST) and alanine transferase (ALT) were also evaluated. RESULTS LIM and LIM/HPβCD significantly reduced (p < 0.001) corneal nociception and formalin-induced TMJ nociception. In addition, both substances attenuated (p < 0.001) mechanical hyperalgesia in the CCI-IoN model. The antinociceptive effect induced by LIM and HPβCD/LIM was associated with decreased TNF-α levels, downregulation of the NFκB and p38MAPK signalling pathways and reduced PKC substrate phosphorylation and PKA immunocontent. Moreover, the results demonstrated that complexation with HPβCD was able to decrease the therapeutic dose of LIM. CONCLUSION LIM was found to be a promising molecule for the treatment of orofacial pain due to its capacity to modulate some important mediators essential to the establishment of pain, and HPβCD can be a key tool to improve the profile of LIM.
Collapse
Affiliation(s)
- Erik W M Pereira
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Luana Heimfarth
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tiffany Kb Santos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | - Adriana R Campos
- Experimental Biology Centre (NUBEX). University of Fortaleza, Fortaleza, CE, Brazil
| | | | - Patrick Martin
- Univ Artois, UniLaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
9
|
Borghi SM, Bussulo SKD, Pinho-Ribeiro FA, Fattori V, Carvalho TT, Rasquel-Oliveira FS, Zaninelli TH, Ferraz CR, Casella AMB, Cunha FQ, Cunha TM, Casagrande R, Verri WA. Intense Acute Swimming Induces Delayed-Onset Muscle Soreness Dependent on Spinal Cord Neuroinflammation. Front Pharmacol 2022; 12:734091. [PMID: 35069187 PMCID: PMC8776654 DOI: 10.3389/fphar.2021.734091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Unaccustomed exercise involving eccentric contractions, high intensity, or long duration are recognized to induce delayed-onset muscle soreness (DOMS). Myocyte damage and inflammation in affected peripheral tissues contribute to sensitize muscle nociceptors leading to muscle pain. However, despite the essential role of the spinal cord in the regulation of pain, spinal cord neuroinflammatory mechanisms in intense swimming-induced DOMS remain to be investigated. We hypothesized that spinal cord neuroinflammation contributes to DOMS. C57BL/6 mice swam for 2 h to induce DOMS, and nociceptive spinal cord mechanisms were evaluated. DOMS triggered the activation of astrocytes and microglia in the spinal cord 24 h after exercise compared to the sham group. DOMS and DOMS-induced spinal cord nuclear factor κB (NFκB) activation were reduced by intrathecal treatments with glial inhibitors (fluorocitrate, α-aminoadipate, and minocycline) and NFκB inhibitor [pyrrolidine dithiocarbamate (PDTC)]. Moreover, DOMS was also reduced by intrathecal treatments targeting C-X3-C motif chemokine ligand 1 (CX3CL1), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β or with recombinant IL-10. In agreement, DOMS induced the mRNA and protein expressions of CX3CR1, TNF-α, IL-1β, IL-10, c-Fos, and oxidative stress in the spinal cord. All these immune and cellular alterations triggered by DOMS were amenable by intrathecal treatments with glial and NFκB inhibitors. These results support a role for spinal cord glial cells, via NFκB, cytokines/chemokines, and oxidative stress, in DOMS. Thus, unveiling neuroinflammatory mechanisms by which unaccustomed exercise induces central sensitization and consequently DOMS.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Centro de Pesquisa Em Ciências da Saúde, Universidade Norte do Paraná, Londrina, Brazil
| | - Sylvia K D Bussulo
- Centro de Pesquisa Em Ciências da Saúde, Universidade Norte do Paraná, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda S Rasquel-Oliveira
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Tiago H Zaninelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Camila R Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Antônio M B Casella
- Departamento de Clínica Médica, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernando Q Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago M Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Hospital Universitário, Universidade Estadual de Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
10
|
Han S, Yan RB, Guan S, Fan WJ, Chu HC, Liang YX. Current research progress in identifying the mechanism of berberine in pain regulation. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2021; 1:100019. [DOI: 10.1016/j.prmcm.2021.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Bussulo SKD, Ferraz CR, Carvalho TT, Verri WA, Borghi SM. Redox interactions of immune cells and muscle in the regulation of exercise-induced pain and analgesia: implications on the modulation of muscle nociceptor sensory neurons. Free Radic Res 2021; 55:757-775. [PMID: 34238089 DOI: 10.1080/10715762.2021.1953696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.
Collapse
Affiliation(s)
- Sylvia K D Bussulo
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Sergio M Borghi
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil.,Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| |
Collapse
|
12
|
Nonsurgical mouse model of endometriosis-associated pain that responds to clinically active drugs. Pain 2021; 161:1321-1331. [PMID: 32132396 DOI: 10.1097/j.pain.0000000000001832] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that affects approximately 10% of women. Debilitating pelvic or abdominal pain is one of its major clinical features. Current animal models of endometriosis-associated pain require surgery either to implant tissue or to remove the ovaries. Moreover, existing models do not induce spontaneous pain, which is the primary symptom of patients with chronic pain, including endometriosis. A lack of models that accurately recapitulate the disease phenotype must contribute to the high failure rate of clinical trials for analgesic drugs directed at chronic pain, including those for endometriosis. We set out to establish a murine model of endometriosis-associated pain. Endometriosis was induced nonsurgically by injecting a dissociated uterine horn into a recipient mouse. The induced lesions exhibited histological features that resemble human lesions along with an increase in proinflammatory cytokines and recruitment of immune cells. We also observed the presence of calcitonin gene-related peptide-, TRPA1-, and TRPV1-expressing nerve fibers in the lesions. This model induced mechanical allodynia, spontaneous abdominal pain, and changes in thermal selection behavior that indicate discomfort. These behavioral changes were reduced by drugs used clinically for endometriosis, specifically letrozole (aromatase inhibitor) and danazol (androgen). Endometriosis also induced neuronal changes as evidenced by activation of the NF-κB signaling pathway in TRPA1- and TRPV1-expressing dorsal root ganglion neurons. In conclusion, we have established a model of endometriosis-associated pain that responds to clinically active drugs and can, therefore, be used to identify novel therapies.
Collapse
|
13
|
Hashemzaei M, Rezaee R. A review on pain‐relieving activity of berberine. Phytother Res 2020; 35:2846-2853. [DOI: 10.1002/ptr.6984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Zabol University of Medical Sciences Zabol Iran
- Toxicology and Addiction Research Center Zabol University of Medical Sciences Zabol Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
14
|
Lan L, Xu M, Li J, Liu L, Xu M, Zhou C, Shen L, Tang Z, Wan F. Mas-related G protein-coupled receptor D participates in inflammatory pain by promoting NF-κB activation through interaction with TAK1 and IKK complex. Cell Signal 2020; 76:109813. [DOI: 10.1016/j.cellsig.2020.109813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/28/2023]
|
15
|
Effect of PKC/NF- κB on the Regulation of P2X 3 Receptor in Dorsal Root Ganglion in Rats with Sciatic Nerve Injury. Pain Res Manag 2020; 2020:7104392. [PMID: 33014214 PMCID: PMC7519985 DOI: 10.1155/2020/7104392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
Abstract
Background Protein kinase C (PKC), nuclear factor-kappa B p65 (NF-κB p65), and P2X3 receptor (P2X3R) play significant roles in the sensitization and transduction of nociceptive signals, which are considered as potential targets for the treatment of neuropathic pain. However, the mechanisms and relationships among them have not been clearly clarified. Methods 80 rats were randomized and divided into 10 groups (n = 8). Sciatic chronic constriction injury (CCI) rats were intrathecally administered with bisindolylmaleimide I (GF109203X), a PKC-selective antagonist once a day, or pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor twice a day. Sham-operated rats were intrathecally administered with saline. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were evaluated in all the groups before CCI operation (baseline) and on the 1st, 3rd, 7th, 10th, and 14th day after CCI operation. Protein levels of p-PKCα, p-NF-κB p65, and P2X3R were analyzed in the CCI ipsilateral L4-6 dorsal root ganglions (DRGs). Results Intrathecal injection of GF109203X or PDTC alleviated the TWL and MWT in the following 2 weeks after CCI surgery. The protein levels of p-PKCα, p-NF-κB p65, and P2X3R in the ipsilateral DRGs significantly increased after CCI operation, which could be partly reversed by intrathecal administration of GF109203X or PDTC. Conclusion The upregulation of p-PKCα, p-NF-κB p65, and P2X3R expression in the DRGs of CCI rats was involved in the occurrence and development of neuropathic pain. Phosphorylated PKCα and phosphorylated NF-κB p65 regulated with each other. Phosphorylated NF-κB p65 and PKCα have a mutual regulation relationship with P2X3R, respectively, while the specific regulatory mechanism needs further research.
Collapse
|
16
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
17
|
Carvalho AMS, Heimfarth L, Pereira EWM, Oliveira FS, Menezes IRA, Coutinho HDM, Picot L, Antoniolli AR, Quintans JSS, Quintans-Júnior LJ. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. JOURNAL OF NATURAL PRODUCTS 2020; 83:1107-1117. [PMID: 32091204 DOI: 10.1021/acs.jnatprod.9b01116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytol is a diterpene constituent of chlorophyll and has been shown to have several pharmacological properties, particularly in relation to the management of painful inflammatory diseases. Arthritis is one of the most common of these inflammatory diseases, mainly affecting the synovial membrane, cartilage, and bone in joints. Proinflammatory cytokines, such as TNF-α and IL-6, and the NFκB signaling pathway play a pivotal role in arthritis. However, as the mechanisms of action of phytol and its ability to reduce the levels of these cytokines are poorly understood, we decided to investigate its pharmacological effects using a mouse model of complete Freund's adjuvant (CFA)-induced arthritis. Our results showed that phytol was able to inhibit joint swelling and hyperalgesia throughout the whole treatment period. Moreover, phytol reduced myeloperoxidase (MPO) activity and proinflammatory cytokine release in synovial fluid and decreased IL-6 production as well as the COX-2 immunocontent in the spinal cord. It also downregulated the p38MAPK and NFκB signaling pathways. Therefore, our findings demonstrated that phytol can be an innovative antiarthritic agent due to its capacity to attenuate inflammatory reactions in joints and the spinal cord, mainly through the modulation of mediators that are key to the establishment of arthritic pain.
Collapse
Affiliation(s)
| | | | | | | | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France
| | | | | | | |
Collapse
|
18
|
Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, Casagrande R, Verri WA. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules 2020; 25:E762. [PMID: 32050623 PMCID: PMC7037709 DOI: 10.3390/molecules25030762] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Pathological pain can be initiated after inflammation and/or peripheral nerve injury. It is a consequence of the pathological functioning of the nervous system rather than only a symptom. In fact, pain is a significant social, health, and economic burden worldwide. Flavonoids are plant derivative compounds easily found in several fruits and vegetables and consumed in the daily food intake. Flavonoids vary in terms of classes, and while structurally unique, they share a basic structure formed by three rings, known as the flavan nucleus. Structural differences can be found in the pattern of substitution in one of these rings. The hydroxyl group (-OH) position in one of the rings determines the mechanisms of action of the flavonoids and reveals a complex multifunctional activity. Flavonoids have been widely used for their antioxidant, analgesic, and anti-inflammatory effects along with safe preclinical and clinical profiles. In this review, we discuss the preclinical and clinical evidence on the analgesic and anti-inflammatory proprieties of flavonoids. We also focus on how the development of formulations containing flavonoids, along with the understanding of their structure-activity relationship, can be harnessed to identify novel flavonoid-based therapies to treat pathological pain and inflammation.
Collapse
Affiliation(s)
- Camila R. Ferraz
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Thacyana T. Carvalho
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Marília F. Manchope
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Nayara A. Artero
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Fernanda S. Rasquel-Oliveira
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Victor Fattori
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil
| | - Waldiceu A. Verri
- Departament of Pathology, Center of Biological Sciences, Londrina State University, 86057–970 Londrina, Paraná, Brazil; (C.R.F.); (T.T.C.); (M.F.M.); (N.A.A.); (F.S.R.-O.); (V.F.)
| |
Collapse
|
19
|
Brandão AF, Bonet IJM, Pagliusi M, Zanetti GG, Pho N, Tambeli CH, Parada CA, Vieira AS, Sartori CR. Physical Activity Induces Nucleus Accumbens Genes Expression Changes Preventing Chronic Pain Susceptibility Promoted by High-Fat Diet and Sedentary Behavior in Mice. Front Neurosci 2020; 13:1453. [PMID: 32038148 PMCID: PMC6987254 DOI: 10.3389/fnins.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.
Collapse
Affiliation(s)
- Arthur Freitas Brandão
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ivan José Magayewski Bonet
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriel Gerardini Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Nam Pho
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
20
|
Eremeeva N, Makarova N, Zhidkova E, Maximova V, Lesova E. Ultrasonic and microwave activation of raspberry extract: antioxidant and anti-carcinogenic properties. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-2-264-273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Safe and healthy nutrition has a beneficial effect on human well-being. Various foods, such as berries, are known to inhibit cancer-promoting pre-proliferative signals. Among European fruit and berry crops, raspberries demonstrate one with the widest ranges of biologically active substances. Extraction remains a reliable method of obtaining biologically active substances from plant materials. The research objective was to obtain a semi-finished raspberry product by using microwave and ultrasonic processing and to study its antioxidant, anti-carcinogenic, sensory, physico-chemical, and microbiological properties. The raspberry extracts were obtained by maceration, ultrasound treatment, and microwave processing. After that, the samples underwent a comparative analysis of their antioxidant properties. The ultrasonic method gave the best results. A set of experiments made it possible to define the optimal technological modes for the extraction process: ethanol = 50%, ultrasonic radiation = 35 kHz, temperature = 40 ± 5°C, time = 120 min, water ratio = 1:10. A set of experiments on cell cultures demonstrated that the raspberry extract was able to reduce the expression of the anti-inflammatory COX-2, iNOS, and IL-8 genes. Hense, we recommend further studies of the effect of the raspberry extract on the induced expression of COX-2, iNOS, and IL-8. In addition, its anticarcinogenic properties have to be studied in vivo.
Collapse
|
21
|
Ostrow KL, Donaldson KJ, Caterina MJ, Belzberg A, Hoke A. The Secretomes of Painful Versus Nonpainful Human Schwannomatosis Tumor Cells Differentially Influence Sensory Neuron Gene Expression and Sensitivity. Sci Rep 2019; 9:13098. [PMID: 31511601 PMCID: PMC6739480 DOI: 10.1038/s41598-019-49705-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
Schwannomatosis is a multiple tumor syndrome in which patients develop benign tumors along peripheral nerves throughout the body. The first symptom with which schwannomatosis patients often present, prior to discovery of tumors, is pain. This pain can be debilitating and is often inadequately alleviated by pharmacological approaches. Schwannomatosis-associated pain can be localized to the area of a tumor, or widespread. Moreover, not all tumors are painful, and the occurrence of pain is often unrelated to tumor size or location. We speculate that some individual tumors, but not others, secrete factors that act on nearby nerves to augment nociception by producing neuronal sensitization or spontaneous neuronal firing. We created cell lines from human SWN tumors with varying degrees of pain. We have found that conditioned medium (CM) collected from painful SWN tumors, but not that from nonpainful SWN tumors, sensitized DRG neurons, causing increased sensitivity to depolarization by KCl, increased response to noxious TRPV1 and TRPA1 agonists and also upregulated the expression of pain-associated genes in DRG cultures. Multiple cytokines were also detected at higher levels in CM from painful tumors. Taken together our data demonstrate a differential ability of painful versus non-painful human schwannomatosis tumor cells to secrete factors that augment sensory neuron responsiveness, and thus identify a potential determinant of pain heterogeneity in schwannomatosis.
Collapse
Affiliation(s)
- Kimberly Laskie Ostrow
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Neurosurgery Pain Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Katelyn J Donaldson
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Caterina
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Neurosurgery Pain Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Allan Belzberg
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Neurosurgery Pain Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ahmet Hoke
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
22
|
Singh G, Singh A, Singh P, Bhatti R. Bergapten Ameliorates Vincristine-Induced Peripheral Neuropathy by Inhibition of Inflammatory Cytokines and NFκB Signaling. ACS Chem Neurosci 2019; 10:3008-3017. [PMID: 31064179 DOI: 10.1021/acschemneuro.9b00206] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bergapten, a furanocoumarin derivative found in a variety of medicinal plants, is documented to possess anti-inflammatory activity. However, whether bergapten is useful in alleviating the symptoms as well as the progress of peripheral neuropathy is not yet studied. The current investigation has been designed to explore the effect of bergapten on vincristine-induced neuropathic pain. Rats were grouped as normal, neuropathic control (vincristine), gabapentin, and bergapten treated groups with five animals in each group. Vincristine (100 μg/kg, i.p.) was administered for 10 days with 2 days break. Gabapentin (60 mg/kg, i.p.) and bergapten (10 mg/kg i.p.) treatments were given once daily for 14 days. The animals were assessed for hyperalgesia and allodynia. After 14 days, animals were sacrificed to detect plasma pro-inflammatory cytokines (TNF α, IL-1β), spinal cord, and sciatic nerve oxidative stress and expression of iNOS, COX-2, and NFkB in the spinal cord. There was a marked reduction in pain behaviors in the bergapten group as compared to the vincristine group. Bergapten also attenuated pro-inflammatory cytokines (TNFα and IL-1β), oxidative stress, and expression of NFkB, COX-2, and iNOS. Overall the current study concludes that bergapten could serve as a potential lead to drug development for the treatment of neuropathic pain.
Collapse
|
23
|
Cao S, Li Q, Hou J, Li Z, Cao X, Liu X, Qin B. Intrathecal TRPM8 blocking attenuates cold hyperalgesia via PKC and NF-κB signaling in the dorsal root ganglion of rats with neuropathic pain. J Pain Res 2019; 12:1287-1296. [PMID: 31114308 PMCID: PMC6497852 DOI: 10.2147/jpr.s197168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background: TRPM8 channel plays central roles in the sensitization of nociceptive transduction and is thought as one of the potential targets for the treatment of neuropathic pain. However, the specific molecular mechanisms are still less clear. Methods: Sciatic chronic constriction injury (CCI) rats were intrathecally administered with AMTB (TRPM8-selective antagonist) or PDTC (nuclear factor-kappa B (NF-κB) inhibitor). Cold-, thermal- and mechanical-pain thresholds were examined in CCI and sham-operated rats before and after intrathecal administration of AMTB or PDTC. Protein expression levels of TRPM8 and NF-κB p65, p-PKC/PKC value and p-PKA/PKA value in the CCI ipsilateral L4-6 dorsal root ganglions (DRGs) were analyzed. In addition, the co-expression of TRPM8 and NF-κB was evaluated in DRG. Results: Intrathecal injection of AMTB decreased the cold hypersensitivity and aggravated the thermal-hyperalgesia in the next 2 weeks after CCI surgery. The protein expression of TRPM8 and NF-κB p65 in the ipsilateral DRGs significantly increased after CCI surgery, which can be reversed by intrathecal administration of AMTB. The PKC, PKA, p-PKC/PKC and p-PKA/PKA values showed significantly increase after CCI surgery, while intrathecal AMTB administration offset the expression increase of PKC, p-PKC and p-PKC/PKC but PKA or p-PKA/PKA in the DRG. NF-κB inhibitor not only efficiently increased the cold-, thermal-pain threshold of CCI rats, but also enhanced AMTB’s anti-cold pain effect although exerted no anti-thermal hyperalgesia effect compared with TRPM8 blockade group. Immunofluorescence results showed co-expression of TRPM8 and NF-κB in DRG neurons. Conclusion: TRPM8 channels in DRGs participate in the pathogenesis of cold and thermal hyperalgesia (not mechanical allodynia) in rats with neuropathic pain, which could be regulated by PKC (not PKA) and NF-κB signaling. TRPM8 channel, PKC and NF-κB are potential targets for cold hyperalgesia treatment in neuropathic pain patients.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Qingmei Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jingfeng Hou
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Zhourui Li
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Xinya Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Bangyong Qin
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| |
Collapse
|
24
|
Bussmann AJC, Borghi SM, Zaninelli TH, Dos Santos TS, Guazelli CFS, Fattori V, Domiciano TP, Pinho-Ribeiro FA, Ruiz-Miyazawa KW, Casella AMB, Vignoli JA, Camilios-Neto D, Casagrande R, Verri WA. The citrus flavanone naringenin attenuates zymosan-induced mouse joint inflammation: induction of Nrf2 expression in recruited CD45 + hematopoietic cells. Inflammopharmacology 2019; 27:1229-1242. [PMID: 30612217 DOI: 10.1007/s10787-018-00561-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Naringenin is a biologically active analgesic, anti-inflammatory, and antioxidant flavonoid. Naringenin targets in inflammation-induced articular pain remain poorly explored. METHODS The present study investigated the cellular and molecular mechanisms involved in the analgesic/anti-inflammatory effects of naringenin in zymosan-induced arthritis. Mice were pre-treated orally with naringenin (16.7-150 mg/kg), followed by intra-articular injection of zymosan. Articular mechanical hyperalgesia and oedema, leucocyte recruitment to synovial cavity, histopathology, expression/production of pro- and anti-inflammatory mediators and NFκB activation, inflammasome component expression, and oxidative stress were evaluated. RESULTS Naringenin inhibited articular pain and oedema in a dose-dependent manner. The dose of 50 mg/kg inhibited leucocyte recruitment, histopathological alterations, NFκB activation, and NFκB-dependent pro-inflammatory cytokines (TNF-α, IL-1β, and IL-33), and preproET-1 mRNA expression, but increased anti-inflammatory IL-10. Naringenin also inhibited inflammasome upregulation (reduced Nlrp3, ASC, caspase-1, and pro-IL-1β mRNA expression) and oxidative stress (reduced gp91phox mRNA expression and superoxide anion production, increased GSH levels, induced Nrf2 protein in CD45+ hematopoietic recruited cells, and induced Nrf2 and HO-1 mRNA expression). CONCLUSIONS Naringenin presents analgesic and anti-inflammatory effects in zymosan-induced arthritis by targeting its main physiopathological mechanisms. These data highlight this flavonoid as an interesting therapeutic compound to treat joint inflammation, deserving additional pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Allan J C Bussmann
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Sergio M Borghi
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Tiago H Zaninelli
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Telma S Dos Santos
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Carla F S Guazelli
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Victor Fattori
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Talita P Domiciano
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Kenji W Ruiz-Miyazawa
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Antonio M B Casella
- Department of Clinical Medicine, Health Science Center, Londrina State University, University Hospital, 86039-440, Londrina, Paraná State, Brazil
| | - Josiane A Vignoli
- Department of Biochemistry and Biotechnology, Exact Sciences Center, Londrina State University, Londrina, 86057-970, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, Londrina State University, Londrina, 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Science Center, Londrina State University, University Hospital, Londrina, Paraná State, 86039-440, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil.
| |
Collapse
|
25
|
Zhang X, Zhao W, Liu X, Huang Z, Shan R, Huang C. Celastrol ameliorates inflammatory pain and modulates HMGB1/NF-κB signaling pathway in dorsal root ganglion. Neurosci Lett 2019; 692:83-89. [DOI: 10.1016/j.neulet.2018.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/03/2023]
|
26
|
Wen J, Jones M, Tanaka M, Selvaraj P, Symes AJ, Cox B, Zhang Y. WWL70 protects against chronic constriction injury-induced neuropathic pain in mice by cannabinoid receptor-independent mechanisms. J Neuroinflammation 2018; 15:9. [PMID: 29310667 PMCID: PMC5759843 DOI: 10.1186/s12974-017-1045-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Targeting the endocannabinoid system has emerged as an effective strategy for the treatment of inflammatory and neurological diseases. Unlike the inhibition of the principal 2-arachidonyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase (MAGL), which leads to 2-AG overload and cannabinoid receptor desensitization, selective inhibition of the minor 2-AG hydrolytic enzyme alpha, beta-hydrolase domain 6 (ABHD6) can provide therapeutic benefits without producing cannabimimetic side effects. We have shown that inhibition of ABHD6 significantly reduces neuroinflammation and exerts neuroprotection in animal models of traumatic brain injury and multiple sclerosis. However, the role of ABHD6 inhibition on neuropathic pain has not been explored. METHODS Neuropathic pain was induced by chronic constriction injury (CCI) of the mouse sciatic nerve and examined by Hargreaves and Von Frey tests. Activation of inflammatory cells and the production of cytokines and chemokines in the spinal cord dorsal horn, dorsal root ganglion (DRG), and sciatic nerve were assessed by qRT-PCR, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry. The levels of 2-AG and arachidonic acid (AA) in sciatic nerve were quantified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). RESULTS Treatment with the selective ABHD6 inhibitor WWL70 significantly alleviated CCI-induced thermal hyperalgesia and mechanical allodynia. Microglia activation, macrophage infiltration, and the production of nociceptive mediators were reduced in the ipsilateral lumbar spinal cord dorsal horn, DRG, and sciatic nerve of WWL70-treated animals. The diminished cytokine and chemokine production is likely due to the inhibitory effect of WWL70 on NF-κB phosphorylation. Surprisingly, the anti-nociceptive and anti-inflammatory effects of WWL70 were not reversed by addition of the cannabinoid receptor antagonists. Treatment with WWL70 did not alter the levels of 2-AG, AA, and the phosphorylation of cytosolic phospholipase A2 (cPLA2), but significantly reduced the production of prostaglandin E2 (PGE2) and the expression of cyclooxygenase-2 (COX-2) and prostaglandin E synthase-2 (PGES2) in the injured sciatic nerve. CONCLUSIONS This study reveals a novel mechanism for the antinociceptive effect of the 2-AG catabolic enzyme ABHD6 inhibitor WWL70. Understanding the interaction between endocannabinoid and eicosanoid pathways might provide a new avenue for the treatment of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Melissa Jones
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Brian Cox
- Department of Pharmacology and Molecular Therapeutics, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
27
|
Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats. Anesthesiology 2017; 127:862-877. [DOI: 10.1097/aln.0000000000001809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Background
Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear.
Methods
Male Sprague–Dawley rats received hind paw injections of complete Freund’s adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel.
Results
The intraplantar complete Freund’s adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4–expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund’s adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7–mediated currents were enhanced in neurons of the complete Freund’s adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4–targeted antisense small interfering RNA to the complete Freund’s adjuvant–treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons).
Conclusions
Complete Freund’s adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is likely mediated by the enhanced expression of voltage-gated sodium channel 1.7.
Collapse
|
28
|
The Vicious Cycle of Chronic Pain in Aging Requires Multidisciplinary Non-pharmacological Approach to Treatment. Curr Behav Neurosci Rep 2017. [DOI: 10.1007/s40473-017-0126-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol 2016; 38:5-19. [PMID: 27793571 DOI: 10.1016/j.it.2016.10.001] [Citation(s) in RCA: 682] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Nociceptor sensory neurons protect organisms from danger by eliciting pain and driving avoidance. Pain also accompanies many types of inflammation and injury. It is increasingly clear that active crosstalk occurs between nociceptor neurons and the immune system to regulate pain, host defense, and inflammatory diseases. Immune cells at peripheral nerve terminals and within the spinal cord release mediators that modulate mechanical and thermal sensitivity. In turn, nociceptor neurons release neuropeptides and neurotransmitters from nerve terminals that regulate vascular, innate, and adaptive immune cell responses. Therefore, the dialog between nociceptor neurons and the immune system is a fundamental aspect of inflammation, both acute and chronic. A better understanding of these interactions could produce approaches to treat chronic pain and inflammatory diseases.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA; Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Wong DVT, Lima-Júnior RCP, Carvalho CBM, Borges VF, Wanderley CWS, Bem AXC, Leite CAVG, Teixeira MA, Batista GLP, Silva RL, Cunha TM, Brito GAC, Almeida PRC, Cunha FQ, Ribeiro RA. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis. PLoS One 2015; 10:e0139985. [PMID: 26440613 PMCID: PMC4595146 DOI: 10.1371/journal.pone.0139985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/21/2015] [Indexed: 01/03/2023] Open
Abstract
Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.
Collapse
Affiliation(s)
- Deysi V. T. Wong
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
- Laboratory of Molecular Biology, Department of Pathology, Cancer Institute of Ceará, Fortaleza, Brazil
| | - Roberto C. P. Lima-Júnior
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Cibele B. M. Carvalho
- Department of Pathology and Forensic Medicine, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Vanessa F. Borges
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Carlos W. S. Wanderley
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Amanda X. C. Bem
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Caio A. V. G. Leite
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Maraiza A. Teixeira
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Gabriela L. P. Batista
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Rangel L. Silva
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Gerly A. C. Brito
- Department of Morphology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Paulo R. C. Almeida
- Department of Pathology and Forensic Medicine, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ronaldo A. Ribeiro
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Oncology, Cancer Institute of Ceará, Fortaleza, Brazil
- * E-mail: ;
| |
Collapse
|