1
|
Wang H, Wang X, Wang H, Shao S, Zhu J. Chronic Corticosterone Administration-Induced Mood Disorders in Laboratory Rodents: Features, Mechanisms, and Research Perspectives. Int J Mol Sci 2024; 25:11245. [PMID: 39457027 PMCID: PMC11508944 DOI: 10.3390/ijms252011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Mood disorders mainly affect the patient's daily life, lead to suffering and disability, increase the incidence rate of many medical illnesses, and even cause a trend of suicide. The glucocorticoid (GC)-mediated hypothalamus-pituitary-adrenal (HPA) negative feedback regulation plays a key role in neuropsychiatric disorders. The balance of the mineralocorticoid receptor (MR)/glucocorticoid receptor (GR) level contributes to maintaining the homeostasis of the neuroendocrine system. Consistently, a chronic excess of GC can also lead to HPA axis dysfunction, triggering anxiety, depression, memory loss, and cognitive impairment. The animal model induced by chronic corticosterone (CORT) administration has been widely adopted because of its simple replication and strong stability. This review summarizes the behavioral changes and underlying mechanisms of chronic CORT administration-induced animal models, including neuroinflammatory response, pyroptosis, oxidative stress, neuroplasticity, and apoptosis. Notably, CORT administration at different doses and cycles can destroy the balance of the MR/GR ratio to make dose-dependent effects of CORT on the central nervous system (CNS). This work aims to offer an overview of the topic and recommendations for future cognitive function research.
Collapse
Affiliation(s)
- Hao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Huan Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Shuijin Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Jing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| |
Collapse
|
2
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
3
|
TRPA1 participation in behavioral impairment induced by chronic corticosterone administration. Psychopharmacology (Berl) 2023; 240:157-169. [PMID: 36520197 DOI: 10.1007/s00213-022-06290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is one of the most diagnosed mental disorders. Despite this, its pathophysiology remains poorly understood. In this context, basic research aims to unravel the pathophysiological mechanisms of MDD as well as investigate new targets and substances with therapeutic potential. Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane channel considered a sensor for inflammation and oxidative stress. Importantly, both inflammation and oxidative stress have been suggested as participants in the pathophysiology of MDD. However, the potential participation of TRPA1 in depressive disorder remains poorly investigated. OBJECTIVE To investigate the involvement of the TRPA1 channel in the behavioral changes induced by chronic corticosterone administration (CCA) in male mice. METHODS Swiss male mice were exposed to 21 days of CCA protocol and then treated with HC-030031 or A-967079, TRPA1 antagonists. Behavioral tests, analyzes of oxidative parameters and TRPA1 immunocontent were performed in the prefrontal cortex (PFC) and hippocampus (HIP). RESULTS CCA induced despair-like behavior in mice accompanied by an increase in the levels of hydrogen peroxide (H2O2), a TRPA1 agonist, which was reversed by TRPA1 antagonists and ketamine (positive control). In addition, CCA protocol reduced the immunocontent of this channel in the HIP and showed a tendency to increase the TRPA1 protein expression in the PFC. CONCLUSION Our work suggests that TRPA1 channel appears crucial to mediate the behavioral impairment induced by CCA in male Swiss mice.
Collapse
|
4
|
Anxiolytic Effect of Carvedilol in Chronic Unpredictable Stress Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6906722. [PMID: 36035219 PMCID: PMC9417788 DOI: 10.1155/2022/6906722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders being also a comorbid state of other diseases. We aimed to evaluate the anxiolytic-like effects of carvedilol (CVD), a drug used to treat high blood pressure and heart failure with potent antioxidant effects, in animals exposed to chronic unpredictable stress (CUS). To do this, female Swiss mice were exposed to different stressors for 21 days. Between days 15 and 21, the animals received oral CVD (5 or 10 mg/kg) or the antidepressant desvenlafaxine (DVS 10 mg/kg). On the 22nd day, behavioral tests were conducted to evaluate locomotor activity (open field) and anxiety-like alterations (elevated plus-maze—EPM and hole board—HB tests). After behavioral determinations, the animals were euthanized, and the adrenal gland, blood and brain areas, prefrontal cortex (PFC), and hippocampus were removed for biochemical analysis. CUS reduced the crossings while increased rearing and grooming, an effect reversed by both doses of CVD and DVS. CUS decreased the number of entries and permanence time in the open arms of the EPM, while all treatments reversed this effect. CUS reduced the number of head dips in the HB, an effect reversed by CVD. The CUS reduced weight gain, while only CVD5 reversed this effect. A reduction in the cortical layer size of the adrenal gland was observed in stressed animals, which CVD reversed. Increased myeloperoxidase activity (MPO) and interferon-γ (IFN-γ), as well as reduction of interleukin-4 (IL-4) induced by CUS, were reversed by CVD. DVS and CVD increased IL-6 in both brain areas. In the hippocampus, DVS caused an increase in IFN-γ. Our data show that CVD presents an anxiolytic effect partially associated with immune-inflammatory mechanism regulation.
Collapse
|
5
|
Maia Oliveira IC, Vasconcelos Mallmann AS, Adelvane de Paula Rodrigues F, Teodorio Vidal LM, Lopes Sales IS, Rodrigues GC, Ferreira de Oliveira N, de Castro Chaves R, Cavalcanti Capibaribe VC, Rodrigues de Carvalho AM, Maria de França Fonteles M, Chavez Gutierrez SJ, Barbosa-Filho JM, Florenço de Sousa FC. Neuroprotective and Antioxidant Effects of Riparin I in a Model of Depression Induced by Corticosterone in Female Mice. Neuropsychobiology 2022; 81:28-38. [PMID: 33915549 DOI: 10.1159/000515929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depression is a common, chronic, and often recurrent serious mood disorder. Conventional antidepressants present limitations that stimulate the search for new drugs. Antioxidant and neuroprotective substances are potential antidepressant agents. In this context, riparin I (RIP I) has presented promising results, emerging as a potential source of a new therapeutic drug. In this study, the antidepressant effect of RIP I was evaluated in an animal model of depression induced by corticosterone (CORT). The involvement of neuroprotective and antioxidant mechanisms in the generation of this effect was also assessed. METHODS Female mice were submitted to CORT for 21 days and treated with RIP I in the last 7 days. Behavioral and neurochemical analyses were performed. RESULTS The administration of RIP I reversed the depressive and psychotic-like behavior, as well as the cognitive impairment caused by CORT, in addition to regulating oxidative stress parameters and BDNF levels in depression-related brain areas. CONCLUSION These findings suggest that RIP I can be a strong candidate for drugs in the treatment of depression.
Collapse
Affiliation(s)
- Iris Cristina Maia Oliveira
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Auriana Serra Vasconcelos Mallmann
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco Adelvane de Paula Rodrigues
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Laura Maria Teodorio Vidal
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Iardja Stéfane Lopes Sales
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil,
| | - Gabriel Carvalho Rodrigues
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Natalia Ferreira de Oliveira
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Raquell de Castro Chaves
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Victor Celso Cavalcanti Capibaribe
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Alyne Mara Rodrigues de Carvalho
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - José Maria Barbosa-Filho
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, Federal University of Paraiba, João Pessoa, Brazil
| | - Francisca Cléa Florenço de Sousa
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Suda K, Matsuda K. How Microbes Affect Depression: Underlying Mechanisms via the Gut-Brain Axis and the Modulating Role of Probiotics. Int J Mol Sci 2022; 23:ijms23031172. [PMID: 35163104 PMCID: PMC8835211 DOI: 10.3390/ijms23031172] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that the gut microbiome influences the brain functions and psychological state of its host via the gut-brain axis, and gut dysbiosis has been linked to several mental illnesses, including major depressive disorder (MDD). Animal experiments have shown that a depletion of the gut microbiota leads to behavioral changes, and is associated with pathological changes, including abnormal stress response and impaired adult neurogenesis. Short-chain fatty acids such as butyrate are known to contribute to the up-regulation of brain-derived neurotrophic factor (BDNF), and gut dysbiosis causes decreased levels of BDNF, which could affect neuronal development and synaptic plasticity. Increased gut permeability causes an influx of gut microbial components such as lipopolysaccharides, and the resultant systemic inflammation may lead to neuroinflammation in the central nervous system. In light of the fact that gut microbial factors contribute to the initiation and exacerbation of depressive symptoms, this review summarizes the current understanding of the molecular mechanisms involved in MDD onset, and discusses the therapeutic potential of probiotics, including butyrate-producing bacteria, which can mediate the microbiota-gut-brain axis.
Collapse
|
7
|
Chen L, Li R, Chen F, Zhang H, Zhu Z, Xu S, Cheng Y, Zhao Y. A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ. J Ginseng Res 2021; 46:666-674. [PMID: 36090685 PMCID: PMC9459030 DOI: 10.1016/j.jgr.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREB–BDNF signaling pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Cheng
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
8
|
Song L, Wu X, Wang J, Guan Y, Zhang Y, Gong M, Wang Y, Li B. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2. Brain Res Bull 2021; 177:81-91. [PMID: 34500039 DOI: 10.1016/j.brainresbull.2021.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the antidepressant effect and mechanism of catalpol on corticosterone (CORT)-induced depressive-like behavior in mice for the first time. As a result, CORT injection induced depressive-like behaviors of mice in behavioral tests, aggravated the serum CORT, adrenocorticotropic hormone, and corticotropin-releasing hormone levels, and conspicuously elevated the phosphorylations of nuclear factor kappa-B (NF-κB) in the hippocampus and frontal cortex, and down-regulated the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2). Furthermore, CORT exposure dramatically augmented the levels of inflammatory factors (interleukin-1β, tumor necrosis factor-α, nitric oxide synthase, and nitric oxide) and lipid peroxidation product malondialdehyde, and attenuated the levels of antioxidants including reduced glutathione, glutathione S-transferase, total superoxide dismutase, and heme oxygenase-1 in the mouse hippocampus and frontal cortex. On the contrary, catalpol administration markedly suppressed the abnormalities of the above indicators. From the overall results, this study displayed that catalpol exerted a beneficial effect on CORT-induced depressive-like behavior in mice possibly via the inhibition of hypothalamus-pituitary-adrenal (HPA) axis hyperactivity, central inflammation and oxidative damage at least partially through dual regulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yuechen Guan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
9
|
Dos Santos Guilherme M, Tsoutsouli T, Todorov H, Teifel S, Nguyen VTT, Gerber S, Endres K. N 6 -Methyladenosine Modification in Chronic Stress Response Due to Social Hierarchy Positioning of Mice. Front Cell Dev Biol 2021; 9:705986. [PMID: 34490254 PMCID: PMC8417747 DOI: 10.3389/fcell.2021.705986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Appropriately responding to stressful events is essential for maintaining health and well-being of any organism. Concerning social stress, the response is not always as straightforward as reacting to physical stressors, e.g., extreme heat, and thus has to be balanced subtly. Particularly, regulatory mechanisms contributing to gaining resilience in the face of mild social stress are not fully deciphered yet. We employed an intrinsic social hierarchy stress paradigm in mice of both sexes to identify critical factors for potential coping strategies. While global transcriptomic changes could not be observed in male mice, several genes previously reported to be involved in synaptic plasticity, learning, and anxiety-like behavior were differentially regulated in female mice. Moreover, changes in N6-methyladenosine (m6A)-modification of mRNA occurred associated with corticosterone level in both sexes with, e.g., increased global amount in submissive female mice. In accordance with this, METTL14 and WTAP, subunits of the methyltransferase complex, showed elevated levels in submissive female mice. N6-adenosyl-methylation is the most prominent type of mRNA methylation and plays a crucial role in processes such as metabolism, but also response to physical stress. Our findings underpin its essential role by also providing a link to social stress evoked by hierarchy building within same-sex groups. As recently, search for small molecule modifiers for the respective class of RNA modifying enzymes has started, this might even lead to new therapeutic approaches against stress disorders.
Collapse
Affiliation(s)
- Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Theodora Tsoutsouli
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sina Teifel
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Wang P, Liang Y, Chen K, Yau SY, Sun X, Cheng KKY, Xu A, So KF, Li A. Potential Involvement of Adiponectin Signaling in Regulating Physical Exercise-Elicited Hippocampal Neurogenesis and Dendritic Morphology in Stressed Mice. Front Cell Neurosci 2020; 14:189. [PMID: 32774242 PMCID: PMC7381385 DOI: 10.3389/fncel.2020.00189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Adiponectin, a cytokine secreted by mature adipocytes, proves to be neuroprotective. We have previously reported that running triggers adiponectin up-regulation which subsequently promotes generation of hippocampal neurons and thereby alleviates depression-like behaviors in non-stressed mice. However, under the stressing condition, whether adiponectin could still exert antidepressant-like effects following exercise remained unexplored. In this study, by means of repeated corticosterone injections to mimic stress insult and voluntary wheel running as physical exercise intervention, we examined whether exercise-elicited antidepressive effects might involve adiponectin's regulation on hippocampal neurogenesis and dendritic plasticity in stressed mice. Here we show that repeated injections of corticosterone inhibited hippocampal neurogenesis and impaired dendritic morphology of neurons in the dentate gyrus of both wild-type and adiponectin-knockout mice comparably, which subsequently evoked depression-like behaviors. Voluntary wheel running attenuated corticosterone-suppressed neurogenesis and enhanced dendritic plasticity in the hippocampus, ultimately reducing depression-like behaviors in wild-type, but not adiponectin-knockout mice. We further demonstrate that such proneurogenic effects were potentially achieved through activation of the AMP-dependent kinase (AMPK) pathway. Our study provides the first evidence that adiponectin signaling is essential for physical exercise-triggered effects on stress-elicited depression by retaining the normal proliferation of neural progenitors and dendritic morphology of neurons in the hippocampal dentate gyrus, which may depend on activation of the AMPK pathway.
Collapse
Affiliation(s)
- Pingjie Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Yiyao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kai Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xin Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
11
|
Identification of genes related to effects of stress on immune function in the spleen in a chicken stress model using transcriptome analysis. Mol Immunol 2020; 124:180-189. [PMID: 32592984 DOI: 10.1016/j.molimm.2020.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
Abstract
Stress is a physiological manifestation of the body's defense against adverse effects of external environment, but the molecular regulatory mechanism of stress effects on immune function of poultry has not been fully clarified. In this study, 7-day-old Chinese local breed Gushi cocks were used as model animal, and the stress model was successfully constructed by adding corticosterone (CORT) 30 mg/kg basic diet for 7 days. The spleen transcriptomes of the control group (B_S group) and the stress model group (C_S group) was determined by high-throughput mRNA sequencing (RNA-Seq) technology, and a total of 269 significantly differentially expressed genes (SDEGs) were obtained (Padj < 0.05, |FC| ≥ 2 and FPKM > 1). Compared with B_S group, there were 140 significantly up-regulated genes and 129 significantly down-regulated genes in C_S group. The immune/stress-related Gene Ontology (GO) terms included positive regulation of T cell mediated immunity, chemokine-mediated signaling pathway, T cell mediated immunity and so on. The SDEGs such as IL8L1, HSPA8, HSPA2, RSAD2, CCR8L and DMB1 were involved in these GO terms. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the SDEGs participated in many immune-related signaling pathways. The immune-related genes HSPA2, HSPA8, HSP90AA1, HSPH1 and HERPUD1 were enriched in Protein processing in endoplasmic reticulum pathway, IL8L1, CXCL13L2, CCR6, LEPR, CCR9 and CCR8L were enriched in Cytokine-cytokine receptor interaction pathway. The protein-protein interactions (PPI) analysis showed HSPA8, HSPA2 and IL8L1 as key core nodes had 7 interactions and may play important roles in the regulation of CORT-induced stress effects on immune function. The data onto this study enriched the genomic study of stress effects on immune function, and provided unique insights into the molecular mechanism of stress effects on immune function, and the genes identified in this study can be candidates for future research on stress response.
Collapse
|
12
|
Pereira GC, Piton E, dos Santos BM, da Silva RM, de Almeida AS, Dalenogare DP, Schiefelbein NS, Fialho MFP, Moresco RN, dos Santos GT, Marchesan S, Bochi GV. Apocynin as an antidepressant agent: in vivo behavior and oxidative parameters modulation. Behav Brain Res 2020; 388:112643. [DOI: 10.1016/j.bbr.2020.112643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
|
13
|
Chaves RDC, Mallmann ASV, de Oliveira NF, Capibaribe VCC, da Silva DMA, Lopes IS, Valentim JT, Barbosa GR, de Carvalho AMR, Fonteles MMDF, Gutierrez SJC, Barbosa Filho JM, de Sousa FCF. The neuroprotective effect of Riparin IV on oxidative stress and neuroinflammation related to chronic stress-induced cognitive impairment. Horm Behav 2020; 122:104758. [PMID: 32304685 DOI: 10.1016/j.yhbeh.2020.104758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Cognitive impairment is identified as one of the diagnostic criteria for major depressive disorder and can extensively affect the quality of life of patients. Based on these findings, this study aimed to investigate the possible effects of Riparin IV (Rip IV) on cognitive impairment induced by chronic administration of corticosterone in mice. METHODS Female Swiss mice were divided into four groups: control (Control), corticosterone (Cort), Riparin IV (Cort + Rip IV), and Fluvoxamine (Cort + Flu). Three groups were administered corticosterone (20 mg/kg) subcutaneously during the 22-day study, while the control group received only vehicle. After the 14th day, the groups were administered medications: Riparin IV (Rip IV), fluvoxamine (Flu), or distilled water, by gavage, 1 h after the subcutaneous injections. After treatment, mice underwent behavioral testing, and brain areas were removed for oxidative stress and cytokine content assays. RESULTS The results revealed that Cort-treated mice developed a cognitive impairment and exhibited a neuroinflammatory profile with an oxidative load and Th1/Th2 cytokine imbalance. Rip IV treatment significantly ameliorated the cognitive deficit induced by Cort and displayed a neuroprotective effect. CONCLUSION The antidepressant-like ability of Rip IV treatment against chronic Cort-induced stress may be due to its potential to mitigate inflammatory damage and oxidative stress. The antioxidant and anti-inflammatory effect observed indicates Rip IV as a possible drug for antidepressant treatment of non-responsive patients with severe and cognitive symptoms.
Collapse
Affiliation(s)
- Raquell de Castro Chaves
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Auriana Serra Vasconcelos Mallmann
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Natália Ferreira de Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Victor Celso Cavalcanti Capibaribe
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Daniel Moreira Alves da Silva
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Iardja Stéfane Lopes
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Tiago Valentim
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Giovanna Riello Barbosa
- Multi-User Facility, Drug Research and Development Center, Federal University of Ceará, Brazil
| | - Alyne Mara Rodrigues de Carvalho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Stanley Juan Chavez Gutierrez
- Laboratory of Pharmaceutical Chemistry, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - José Maria Barbosa Filho
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Francisca Cléa Florenço de Sousa
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
14
|
Nelumbo nucifera Gaertn Stems (Hegeng) Improved Depression Behavior in CUMS Mice by Regulating NCAM and GAP-43 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3056954. [PMID: 32308703 PMCID: PMC7149381 DOI: 10.1155/2020/3056954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
Background Nelumbo nucifera Gaertn stem (Hegeng [HG]) is a traditional Chinese medicine that is used to treat mental symptoms in East Asia. However, scientific evidence is generally lacking to support this traditional claim. Aim of the Study. This study's aim is to investigate the antidepression effect of HG and to further explore the possible molecular mechanisms that are involved in its actions. Materials and Methods. HG aqueous extract was administered intragastrically for 21 days after the chronic unpredictable mild stress (CUMS) procedure, and its effect on memory, learning, and emotion was assessed using animal behavioral tests. HG aqueous extract was characterized using HPLC. Immunofluorescence was used to measure the neural cell-adhesion molecule (NCAM) and growth-associated protein-43 (GAP-43) expression. Results Depression-like behaviors increased in the CUMS group compared with the control (CON) group, while they were reduced in the high-dose HG (H-HG) and fluoxetine (FLU) groups (p < 0.05). Additionally, NCAM and GAP-43 expression was reduced in the CUMS group compared with the CON group, but it increased in the H-HG and FLU groups (p < 0.05). Conclusions These findings show the potential antidepressant effects of HG through mechanisms involving regulation of NCAM and GAP-43. This provides a new theoretical basis for its potential application as an antidepressant-like agent.
Collapse
|
15
|
Badr AM, Attia HA, Al-Rasheed N. Oleuropein Reverses Repeated Corticosterone-Induced Depressive-Like Behavior in mice: Evidence of Modulating Effect on Biogenic Amines. Sci Rep 2020; 10:3336. [PMID: 32094406 PMCID: PMC7040186 DOI: 10.1038/s41598-020-60026-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Depression is still one of challenging, and widely encountered disorders with complex etiology. The role of healthy diet and olive oil in ameliorating depression has been claimed. This study was designed to explore the effects of oleuropein; the main constituent of olive oil; on depression-like behaviors that are induced by repeated administration of corticosterone (40 mg/kg, i.p.), once a day for 21 days, in mice. Oleuropein (8, 16, and 32 mg/kg, i.p.) or fluoxetine (20 mg/kg, positive control, i.p.1) was administered 30 minutes prior to corticosterone injection. Sucrose consumption test, open-field test (OFT), tail suspension test (TST), and forced swimming test (FST) were performed. Reduced Glutathione (GSH), lipid peroxidation, and biogenic amines; serotonin, dopamine, and nor-epinephrine; levels were also analyzed in brain homogenates. Corticosterone treatment induced depression-like behaviors, it increased immobility time in the TST, OFT, and FST, decreased the number of movements in OFT, and decreased sucrose consumption. Corticosterone effect was associated with depletion of reduced glutathione and increase of lipid peroxidation, in addition to modification of biogenic amines; decreased serotonin and dopamine. Oleuropein or fluoxetine administration counteracted corticosterone-induced changes. In conclusion, oleuropein showed a promising antidepressant activity, that is evident by improving corticosterone-induced depression-like behaviors, and normalizing levels of biogenic amines.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Sartori DP, Oliveira NF, Valentim JT, Silva DMA, Mallman ASV, Oliveira ICM, Chaves RC, Capibaribe VC, Carvalho AMR, Rebouças MO, Macedo DS, Chaves Filho AJM, Fonteles MMF, Gutierrez SJC, Barbosa-Filho JM, Mottin M, Andrade CH, Sousa FCF. Involvement of monoaminergic targets in the antidepressant- and anxiolytic-like effects of the synthetic alkamide riparin IV: Elucidation of further mechanisms through pharmacological, neurochemistry and computational approaches. Behav Brain Res 2020; 383:112487. [PMID: 31987932 DOI: 10.1016/j.bbr.2020.112487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/16/2023]
Abstract
Despite recent advances, current antidepressants have considerable limitations: late onset of action and the high profile of refractoriness. Biomedical research with natural products has gained growing interest in the last years, and had provide useful candidates for new antidepressants. Riparins are a group of natural alkamides obtained from Aniba riparia, which had marked neuroactive effects, mainly as antidepressant and antinociceptive agents. We made modifications of the basic structure of riparins, originating a synthetic alkamide, also known as riparin IV (RipIV). RipIV demonstrated a superior analgesic effect than its congeners and a marked antidepressant-like effect. However, the basic mechanism for the central effects of RipIV remains unknown. Here, we aimed to investigate the participation of monoaminergic neurotransmission targets in the antidepressant-like effects of RipIV. To do this, we applied a combined approach of experimental (classical pharmacology and neurochemistry) and computer-aided techniques. Our results demonstrated that RipIV presented antidepressant- and anxiolytic-like effects without modifying locomotion and motor coordination of mice. Also, RipIV increased brain monoamines and their metabolite levels. At the higher dose (100 mg/kg), RipIV increased serotonin concentrations in all studied brain areas, while at the lower one (50 mg/kg), it increased mainly dopamine and noradrenaline levels. When tested with selective receptor antagonists, RipIV antidepressant effect showed dependence of the activation of multiple targets, including D1 and D2 dopamine receptors, 5-HT2A/2, 5-HT3 receptors and α2 adrenergic receptors. Molecular docking demonstrated favorable binding conformation and affinity of RipIV to monoamine oxidase B (MAO-B), serotonin transporter (SERT), α1 receptor, D2 receptor, dopamine transporter (DAT) and at some extent GABA-A receptor. RipIV also presented a computationally predicted favorable pharmacokinetic profile. Therefore, this study demonstrated the involvement of monoaminergic targets in the mechanism of RipIV antidepressant-like action, and provide evidence of it as a promising new antidepressant.
Collapse
Affiliation(s)
- Danusio Pinheiro Sartori
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - N F Oliveira
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Tiago Valentim
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - D M A Silva
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A S V Mallman
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - I C M Oliveira
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R C Chaves
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - V C Capibaribe
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A M R Carvalho
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - M O Rebouças
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Danielle Silveira Macedo
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Adriano José Maia Chaves Filho
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; LabMol - Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiais, Brazil
| | - M M F Fonteles
- Department of Pharmacy, Faculty of Pharmacy, Odontology and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - S J C Gutierrez
- Laboratory Chemistry of Bioactive Natural and Synthetic Products, Federal University of Piauí, Teresina, Piauí, Brazil
| | - José Maria Barbosa-Filho
- Pharmaceutical Technology Laboratory, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Melina Mottin
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiais, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiais, Brazil
| | - F C F Sousa
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
17
|
Dal-Pont GC, Jório MTS, Resende WR, Gava FF, Aguiar-Geraldo JM, Possamai-Della T, Peper-Nascimento J, Quevedo J, Valvassori SS. Effects of lithium and valproate on behavioral parameters and neurotrophic factor levels in an animal model of mania induced by paradoxical sleep deprivation. J Psychiatr Res 2019; 119:76-83. [PMID: 31574363 DOI: 10.1016/j.jpsychires.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
The present study aimed to evaluate the effects of treatment with lithium (Li) and valproate (VPA) on behaviors and brain BDNF, NGF, NT-3, NT-4 and GDNF levels in mice submitted to paradoxical sleep deprivation (PSD), which induces an animal model of mania. Male C57BL/6J mice received an intraperitoneal (i.p.) injection of saline solution (NaCl 0.09%, 1 ml/kg), Li (47.3 mg/kg, 1 ml/kg) or VPA (200 mg/kg, 1 ml/kg) once a day for seven days. Animals were randomly distributed into six groups (n = 10 per group): (1) Control + Sal; (2) Control + Li; (3) Control + VPA; (4) PSD + Sal; (5) PSD + Li; or (6) PSD + VPA. Animals were submitted to 36 h of PSD, and then, they were submitted to the open field test. The frontal cortex and hippocampus were dissected from the brain. The manic-like behaviors in the mice were analyzed. Treatment with Li and VPA reversed the behavioral alterations induced by PSD. PSD decreased BDNF, NGF, and GDNF levels in the frontal cortex and hippocampus of mice. The administration of Li and VPA protected the brain against the damage induced by PSD. However, PSD and the administration of Li and VPA did not affect the levels of NT-3 and NT-4 in either brain structure evaluated. In conclusion, the PSD protocol induced manic-like behavior in rats and induced alterations in neurotrophic factor levels. It seems that neurotrophic factors and sleep are essential targets to treat BD.
Collapse
Affiliation(s)
- Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Marco T S Jório
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
18
|
Capibaribe VCC, Vasconcelos Mallmann AS, Lopes IS, Oliveira ICM, de Oliveira NF, Chaves RDC, Fernandes ML, de Araujo MA, da Silva DMA, Valentim JT, Maia Chaves Filho AJ, Macêdo DS, de Vasconcelos SMM, de Carvalho AMR, de Sousa FCF. Thymol reverses depression-like behaviour and upregulates hippocampal BDNF levels in chronic corticosterone-induced depression model in female mice. J Pharm Pharmacol 2019; 71:1774-1783. [DOI: 10.1111/jphp.13162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Objectives
Based on this, the central therapeutic effects of thymol were verified in the neurotrophic pathway.
Methods
Female swiss mice were divided into four groups: control, corticosterone (Cort), thymol (Cort + thymol) and fluvoxamine (Cort + Flu). The administration of corticosterone was used to induce depressive symptoms for 23 days. After the treatment, the animals were exposed the behavioural tests, such as forced swimming test, tail suspension test, sucrose preference test, light/dark test, social interaction test, Y-maze test, plus-maze test and hole-board test. The hippocampus was also removed, and BDNF was measured by ELISA and Western blot.
Key findings
As a result, thymol and fluvoxamine were able to reverse the depressive symptoms, as well as to improve the anxious frame. The anhedonic and short-term memory was restored with the treatment. In the neurochemical tests, both thymol and fluvoxamine restored BDNF levels, improving the depressive condition.
Conclusions
This work opens up new investigations aiming at the use of this molecule as a therapeutic alternative for treating depression disorders.
Collapse
Affiliation(s)
| | | | - Iardja Stéfane Lopes
- Drug Research and Development Center—NPDM, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | - Mariana Lima Fernandes
- Drug Research and Development Center—NPDM, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - José Tiago Valentim
- Drug Research and Development Center—NPDM, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Li B, Ge Y, Xu Y, Lu Y, Yang Y, Han L, Jiang Y, Shi Y, Le G. Spatial Learning and Memory Impairment in Growing Mice Induced by Major Oxidized Tyrosine Product Dityrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9039-9049. [PMID: 31353898 DOI: 10.1021/acs.jafc.9b04253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study focused on the effects of oxidized tyrosine products (OTPs) and major component dityrosine (DT) on the brain and behavior of growing mice. Male and female mice were treated with daily intragastric administration of either tyrosine (Tyr; 420 μg/kg body weight), DT (420 μg/kg body weight), or OTPs (1909 μg/kg body weight) for 35 days. We found that pure DT and OTPs caused redox state imbalance, elevated levels of inflammatory factors, hippocampal oxidative damage, and neurotransmitter disorders while activating the mitochondrial apoptosis pathway in the hippocampus and downregulating the genes associated with learning and memory. These events eventually led to growing mice learning and memory impairment, lagging responses, and anxiety-like behaviors. Furthermore, the male mice exhibited slightly more oxidative damage than the females. These findings imply that contemporary diets and food-processing strategies of the modern world should be modified to reduce oxidized protein intake.
Collapse
Affiliation(s)
- Bowen Li
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuncong Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yipin Lu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuhui Yang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
- College of Grain and Food Science , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Le Han
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yonghui Shi
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Guowei Le
- The State Key Laboratory of Food Science and Technology , Jiangnan University , Li Hu Avenue 1800 , Wuxi 214122 , P. R. China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| |
Collapse
|