1
|
Koutrouli I, Mazochová K, Horsley RR. The antidepressant potential of (2R,6R)-hydroxynorketamine: A detailed review of pre-clinical findings. Eur J Pharmacol 2025; 999:177604. [PMID: 40209847 DOI: 10.1016/j.ejphar.2025.177604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Depression affects hundreds of millions globally, and in 2019, esketamine, an S-enantiomer of ketamine, was approved for treatment-resistant depression (TRD). While effective, esketamine carries risks, including abuse potential and adverse effects even at low doses. As a result, ketamine's metabolite, (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), has garnered attention for its potential antidepressant effects without these drawbacks. This selective review evaluates preclinical behavioral evidence for (2R,6R)-HNK's antidepressant properties, focusing on rodent studies that used established depression models. Results showed that (2R,6R)-HNK reduced behavioral despair, anhedonia, anxiety, and social avoidance in both stressed and non-stressed rodents. Antidepressant effects were observed at doses between 5 and 125 mg/kg, with rapid onset (30 min) and long-lasting effects (up to 21 days). However, some studies failed to demonstrate significant antidepressant effects at doses below 40 mg/kg, often in models with pre-induced depression. No significant adverse effects were reported, but data on side effects were limited. In conclusion, (2R,6R)-HNK shows promise as a next-generation antidepressant. However, further research is needed to fully understand its long-term safety and mechanisms, and to determine its advantages over existing treatments like esketamine, particularly for TRD patients.
Collapse
Affiliation(s)
- Isis Koutrouli
- Psychedelic Research Center, National Institute of Mental Health, Topolová 748, Klecany, Czech Republic; 3rd Faculty of Medicine (3.LF) Charles University, Czech Republic.
| | - Kristýna Mazochová
- Psychedelic Research Center, National Institute of Mental Health, Topolová 748, Klecany, Czech Republic
| | - Rachel R Horsley
- Psychedelic Research Center, National Institute of Mental Health, Topolová 748, Klecany, Czech Republic
| |
Collapse
|
2
|
Masaud SM, Nadeem H, Murtaza B, Shamim A. Discovery of a Novel Orally Active Ketamine Derivative with Dual Analgesic and Antidepressant Activities, Lacking Psychomimetic Effects. ACS Chem Neurosci 2025; 16:932-944. [PMID: 39934972 DOI: 10.1021/acschemneuro.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
This study investigated the synthesis, characterization, and in silico analysis of novel N-acetamide ketamine derivatives aimed at evaluating their analgesic, anesthetic, and antidepressant properties. The synthesis commenced with the preparation of chloroacetylamide derivatives, which were subsequently reacted with ketamine hydrochloride, yielding 16 derivatives k1 to k16. These compounds were characterized through H1 NMR, C13 NMR, mass spectroscopy (EIMS), and elemental analysis, followed by an assessment of their physicochemical properties. The analgesic efficacy of all of the synthesized derivatives was evaluated using the acetic acid-induced writhing test via intraperitoneal administration. The best-performing molecule was further evaluated for analgesic (acetic acid-induced writhing test, tail suspension test (TST), and hot plate test) and anti-inflammatory (carrageenan-induced paw edema) activities. For antidepressant effects, all derivatives were compared with ketamine in a lipopolysaccharide-induced model of depression in mice through the forced swimming test, open field test (OFT), sucrose preference test (SPT), and TST. It was observed that among all the derivatives, molecule k1 demonstrated comparable analgesic activity to ketamine. Further, compound k1 also exhibited the highest antidepressant potential during the forced swimming test, OFT, SPT, and TST. k1 was further compared with ketamine for their activities intraperitoneally and orally where k1 exhibited comparable antidepressant effects to ketamine. Henceforth, the psychomimetic potential of k1 was evaluated through loss of righting reflex and Y-maze tests. Very interestingly, these tests indicated approximately no psychomimetic activity of k1 compared to ketamine intraperitoneally and orally. Finally, molecular docking studies were conducted targeting the NMDA receptor at the JC09 ketamine binding pocket (PDB ID: 7EU7), where all synthesized derivatives exhibited significant binding affinities relative to ketamine. These findings suggest that the newly synthesized N-acetamide ketamine derivative k1 possesses promising pharmacological profiles, warranting further exploration.
Collapse
Affiliation(s)
- Syed Muzzammil Masaud
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Babar Murtaza
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Abida Shamim
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
3
|
Drinkuth CR, Lehane MJ, Sartor GC. The effects of (2R,6R)-hydroxynorketamine on oxycodone withdrawal and reinstatement. Drug Alcohol Depend 2023; 253:110987. [PMID: 37864957 PMCID: PMC10842506 DOI: 10.1016/j.drugalcdep.2023.110987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/23/2023]
Abstract
Despite the thousands of lives lost during the ongoing opioid crisis, a scarcity of new and effective clinical treatments for opioid use disorder (OUD) remains. To address this unmet need, some researchers have turned to dissociative and psychedelic drugs to treat multiple psychiatric conditions. In particular, low doses of ketamine have been shown to attenuate opioid withdrawal and drug use in clinical and preclinical studies. However, ketamine has misuse liability and dissociative side effects that may limit its widespread application as a treatment for OUD. More recently, (2R,6R)-hydroxynorketamine (HNK), a ketamine metabolite that lacks misuse potential, has gained attention for its effectiveness in depression and stress models. To uncover its role in OUD, we tested the time-dependent effects of (2R,6R)-HNK on oxycodone withdrawal and reinstatement of oxycodone conditioned place preference (CPP). In male and female oxycodone-dependent mice, we found that 24h pretreatment with (2R,6R)-HNK (10 or 30mg/kg, s.c.) reduced the frequency of withdrawal-like behaviors and global withdrawal scores during naloxone-precipitated withdrawal, whereas 1h pretreatment with (2R,6R)-HNK only reduced paw tremors and the sum of global withdrawal scores but not GWS Z-scores. In other experiments, both 1h and 24h pretreatment with (2R,6R)-HNK (30mg/kg, s.c.) blocked drug-induced reinstatement of oxycodone CPP. Finally, we found (2R,6R)-HNK (30mg/kg, sc) had no effect on locomotor activity and thigmotaxis. Together, these results indicate that acute (2R,6R)-HNK has efficacy in some preclinical models of OUD without producing locomotor or anxiety-like side effects.
Collapse
Affiliation(s)
- Caryssa R Drinkuth
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States
| | - Michael J Lehane
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States
| | - Gregory C Sartor
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
4
|
Garcia GP, Perez GM, Gasperi RD, Sosa MAG, Otero-Pagan A, Abutarboush R, Kawoos U, Statz JK, Patterson J, Zhu CW, Hof PR, Cook DG, Ahlers ST, Elder GA. (2R,6R)-Hydroxynorketamine Treatment of Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2023; 4:197-217. [PMID: 37020715 PMCID: PMC10068674 DOI: 10.1089/neur.2022.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Male rats subjected to repetitive low-level blast exposure develop chronic cognitive and PTSD-related traits that develop in a delayed manner. Ketamine has received attention as a treatment for refractory depression and PTSD. (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a ketamine metabolite that exerts rapid antidepressant actions. (2R,6R)-HNK has become of clinical interest because of its favorable side-effect profile, low abuse potential, and oral route of administration. We treated three cohorts of blast-exposed rats with (2R,6R)-HNK, beginning 7-11 months after blast exposure, a time when the behavioral phenotype is established. Each cohort consisted of groups (n = 10-13/group) as follows: 1) Sham-exposed treated with saline, 2) blast-exposed treated with saline, and 3) blast-exposed treated with a single dose of 20 mg/kg of (2R,6R)-HNK. (2R,6R)-HNK rescued blast-induced deficits in novel object recognition (NOR) and anxiety-related features in the elevated zero maze (EZM) in all three cohorts. Exaggerated acoustic startle was reversed in cohort 1, but not in cohort 3. (2R,6R)-HNK effects were still present in the EZM 12 days after administration in cohort 1 and 27 days after administration in NOR testing of cohorts 2 and 3. (2R,6R)-HNK may be beneficial for the neurobehavioral syndromes that follow blast exposure in military veterans. Additional studies will be needed to determine whether higher doses or more extended treatment regimens may be more effective.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Carolyn W. Zhu
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
5
|
Onisiforou A, Georgiou P, Zanos P. Role of group II metabotropic glutamate receptors in ketamine's antidepressant actions. Pharmacol Biochem Behav 2023; 223:173531. [PMID: 36841543 DOI: 10.1016/j.pbb.2023.173531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Major Depressive Disorder (MDD) is a serious neuropsychiatric disorder afflicting around 16-17 % of the global population and is accompanied by recurrent episodes of low mood, hopelessness and suicidal thoughts. Current pharmacological interventions take several weeks to even months for an improvement in depressive symptoms to emerge, with a significant percentage of individuals not responding to these medications at all, thus highlighting the need for rapid and effective next-generation treatments for MDD. Pre-clinical studies in animals have demonstrated that antagonists of the metabotropic glutamate receptor subtype 2/3 (mGlu2/3 receptor) exert rapid antidepressant-like effects, comparable to the actions of ketamine. Therefore, it is possible that mGlu2 or mGlu3 receptors to have a regulatory role on the unique antidepressant properties of ketamine, or that convergent intracellular mechanisms exist between mGlu2/3 receptor signaling and ketamine's effects. Here, we provide a comprehensive and critical evaluation of the literature on these convergent processes underlying the antidepressant action of mGlu2/3 receptor inhibitors and ketamine. Importantly, combining sub-threshold doses of mGlu2/3 receptor inhibitors with sub-antidepressant ketamine doses induce synergistic antidepressant-relevant behavioral effects. We review the evidence supporting these combinatorial effects since sub-effective dosages of mGlu2/3 receptor antagonists and ketamine could reduce the risk for the emergence of significant adverse events compared with taking normal dosages. Overall, deconvolution of ketamine's pharmacological targets will give critical insights to influence the development of next-generation antidepressant treatments with rapid actions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; Department of Psychology, University of Wisconsin Milwaukee, WI 53211, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
6
|
Dissecting early life stress-induced adolescent depression through epigenomic approach. Mol Psychiatry 2023; 28:141-153. [PMID: 36517640 PMCID: PMC9812796 DOI: 10.1038/s41380-022-01907-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Early life stress (ELS), such as abuse and neglect during childhood, can lead to psychiatric disorders in later life. Previous studies have suggested that ELS can cause profound changes in gene expression through epigenetic mechanisms, which can lead to psychiatric disorders in adulthood; however, studies on epigenetic modifications associated with ELS and psychiatric disorders in adolescents are limited. Moreover, how these epigenetic modifications can lead to psychiatric disorders in adolescents is not fully understood. Commonly, DNA methylation, histone modification, and the regulation of noncoding RNAs have been attributed to the reprogramming of epigenetic profiling associated with ELS. Although only a few studies have attempted to examine epigenetic modifications in adolescents with ELS, existing evidence suggests that there are commonalities and differences in epigenetic profiling between adolescents and adults. In addition, epigenetic modifications are sex-dependent and are influenced by the type of ELS. In this review, we have critically evaluated the current evidence on epigenetic modifications in adolescents with ELS, particularly DNA methylation and the expression of microRNAs in both preclinical models and humans. We have also clarified the impact of ELS on psychiatric disorders in adolescents to predict the development of neuropsychiatric disorders and to prevent and recover these disorders through personalized medicine.
Collapse
|
7
|
Bonaventura J, Gomez JL, Carlton ML, Lam S, Sanchez-Soto M, Morris PJ, Moaddel R, Kang HJ, Zanos P, Gould TD, Thomas CJ, Sibley DR, Zarate CA, Michaelides M. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry 2022; 27:4144-4156. [PMID: 35768639 PMCID: PMC10013843 DOI: 10.1038/s41380-022-01673-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK's mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Catalonia, Spain
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Meghan L Carlton
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Marta Sanchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Hye Jin Kang
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, 27599, NC, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Intramural Research Program, Bethesda, 20892, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA.
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
| |
Collapse
|
8
|
Riggs LM, Thompson SM, Gould TD. (2R,6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology 2022; 214:109153. [PMID: 35661657 PMCID: PMC9904284 DOI: 10.1016/j.neuropharm.2022.109153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
(2R,6R)-hydroxynorketamine (HNK) is a metabolite of ketamine that exerts rapid and sustained antidepressant-like effects in preclinical studies. We hypothesize that the rapid antidepressant actions of (2R,6R)-HNK involve an acute increase in glutamate release at Schaffer collateral synapses. Here, we used an optogenetic approach to assess whether (2R,6R)-HNK promotes glutamate release at CA1-projecting Schaffer collateral terminals in response to select optical excitation of CA3 afferents. The red-shifted channelrhodopsin, ChrimsonR, was expressed in dorsal CA3 neurons of adult male Sprague Dawley rats. Transverse slices were collected four weeks later to determine ChrimsonR expression and to assess the acute synaptic effects of an antidepressant-relevant concentration of (2R,6R)-HNK (10 μM). (2R,6R)-HNK led to a rapid potentiation of CA1 field excitatory postsynaptic potentials evoked by recurrent optical stimulation of ChrimsonR-expressing CA3 afferents. This potentiation is mediated in part by an increase in glutamate release probability, as (2R,6R)-HNK suppressed paired-pulse facilitation at CA3 projections, an effect that correlated with the magnitude of the (2R,6R)-HNK-induced potentiation of CA1 activity. These results demonstrate that (2R,6R)-HNK increases the probability of glutamate release at CA1-projecting Schaffer collateral afferents, which may be involved in the antidepressant-relevant behavioral adaptations conferred by (2R,6R)-HNK in vivo. The current study also establishes proof-of-principle that genetically-encoded light-sensitive proteins can be used to investigate the synaptic plasticity induced by novel antidepressant compounds in neuronal subcircuits.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Highland JN, Morris PJ, Konrath KM, Riggs LM, Hagen NR, Zanos P, Powels CF, Moaddel R, Thomas CJ, Wang AQ, Gould TD. Hydroxynorketamine Pharmacokinetics and Antidepressant Behavioral Effects of (2 ,6)- and (5 R)-Methyl-(2 R,6 R)-hydroxynorketamines. ACS Chem Neurosci 2022; 13:510-523. [PMID: 35113535 PMCID: PMC9926475 DOI: 10.1021/acschemneuro.1c00761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
(R,S)-Ketamine is rapidly metabolized to form a range of metabolites in vivo, including 12 unique hydroxynorketamines (HNKs) that are distinguished by a cyclohexyl ring hydroxylation at the 4, 5, or 6 position. While both (2R,6R)- and (2S,6S)-HNK readily penetrate the brain and exert rapid antidepressant-like actions in preclinical tests following peripheral administration, the pharmacokinetic profiles and pharmacodynamic actions of 10 other HNKs have not been examined. We assessed the pharmacokinetic profiles of all 12 HNKs in the plasma and brains of male and female mice and compared the relative potencies of four (2,6)-HNKs to induce antidepressant-relevant behavioral effects in the forced swim test in male mice. While all HNKs were readily brain-penetrable following intraperitoneal injection, there were robust differences in peak plasma and brain concentrations and exposures. Forced swim test immobility rank order of potency, from most to least potent, was (2R,6S)-, (2S,6R)-, (2R,6R)-, and (2S,6S)-HNK. We hypothesized that distinct structure-activity relationships and the resulting potency of each metabolite are linked to unique substitution patterns and resultant conformation of the six-membered cyclohexanone ring system. To explore this, we synthesized (5R)-methyl-(2R,6R)-HNK, which incorporates a methyl substitution on the cyclohexanone ring. (5R)-Methyl-(2R,6R)-HNK exhibited similar antidepressant-like potency to (2R,6S)-HNK. These results suggest that conformation of the cyclohexanone ring system in the (2,6)-HNKs is an important factor underlying potency and that additional engineering of this structural feature may improve the development of a new generation of HNKs. Such HNKs may represent novel drug candidates for the treatment of depression.
Collapse
Affiliation(s)
- Jaclyn N. Highland
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Program in Toxicology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Patrick J. Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville MD 20850, USA
| | - Kylie M. Konrath
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Lace M. Riggs
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Natalie R. Hagen
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Current address: Department of Psychology, University of Cyprus, Nicosia 1678, Cyprus
| | - Chris F. Powels
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore MD 21224, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville MD 20850, USA
| | - Amy Q. Wang
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Veterans Affairs Maryland Health Care System, Baltimore MD 21201, USA
| |
Collapse
|
10
|
Highland JN, Farmer CA, Zanos P, Lovett J, Zarate CA, Moaddel R, Gould TD. Sex-dependent metabolism of ketamine and ( 2R,6R)-hydroxynorketamine in mice and humans. J Psychopharmacol 2022; 36:170-182. [PMID: 34971525 PMCID: PMC9904319 DOI: 10.1177/02698811211064922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ketamine is rapidly metabolized to norketamine and hydroxynorketamine (HNK) metabolites. In female mice, when compared to males, higher levels of (2R,6R;2S,6S)-HNK have been observed following ketamine treatment, and higher levels of (2R,6R)-HNK following the direct administration of (2R,6R)-HNK. AIM The objective of this study was to evaluate the impact of sex in humans and mice, and gonadal hormones in mice on the metabolism of ketamine to form norketamine and HNKs and in the metabolism/elimination of (2R,6R)-HNK. METHODS In CD-1 mice, we utilized gonadectomy to evaluate the role of circulating gonadal hormones in mediating sex-dependent differences in ketamine and (2R,6R)-HNK metabolism. In humans (34 with treatment-resistant depression and 23 healthy controls) receiving an antidepressant dose of ketamine (0.5 mg/kg i.v. infusion over 40 min), we evaluated plasma levels of ketamine, norketamine, and HNKs. RESULTS In humans, plasma levels of ketamine and norketamine were higher in males than females, while (2R,6R;2S,6S)-HNK levels were not different. Following ketamine administration to mice (10 mg/kg i.p.), Cmax and total plasma concentrations of ketamine and norketamine were higher, and those of (2R,6R;2S,6S)-HNK were lower, in intact males compared to females. Direct (2R,6R)-HNK administration (10 mg/kg i.p.) resulted in higher levels of (2R,6R)-HNK in female mice. Ovariectomy did not alter ketamine metabolism in female mice, whereas orchidectomy recapitulated female pharmacokinetic differences in male mice, which was reversed with testosterone replacement. CONCLUSION Sex is an important biological variable that influences the metabolism of ketamine and the HNKs, which may contribute to sex differences in therapeutic antidepressant efficacy or side effects.
Collapse
Affiliation(s)
- Jaclyn N. Highland
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD, USA.,Program in Toxicology, University of Maryland School of Medicine, Baltimore MD, USA
| | - Cristan A. Farmer
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda MD, USA
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD, USA.,Pharmacology, University of Maryland School of Medicine, Baltimore MD, USA.,Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore MD, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore MD, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD, USA.,Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda MD, USA.,Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore MD, USA.,Veterans Affairs Maryland Health Care System, Baltimore MD, USA.,Reprint requests: Todd D. Gould, Rm. 936 MSTF 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Highland JN, Zanos P, Riggs LM, Georgiou P, Clark SM, Morris PJ, Moaddel R, Thomas CJ, Zarate CA, Pereira EFR, Gould TD. Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacol Rev 2021; 73:763-791. [PMID: 33674359 PMCID: PMC7938660 DOI: 10.1124/pharmrev.120.000149] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaclyn N Highland
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Panos Zanos
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Sarah M Clark
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
12
|
Lamanna J, Isotti F, Ferro M, Racchetti G, Anchora L, Rucco D, Malgaroli A. Facilitation of dopamine-dependent long-term potentiation in the medial prefrontal cortex of male rats follows the behavioral effects of stress. J Neurosci Res 2020; 99:662-678. [PMID: 32954528 DOI: 10.1002/jnr.24732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
The effect of stress on animal behavior and brain activity has been attracting growing attention in the last decades. Stress dramatically affects several aspects of animal behavior, including motivation and cognitive functioning, and has been used to model human pathologies such as post-traumatic stress disorder. A key question is whether stress alters the plastic potential of synaptic circuits. In this work, we evaluated if stress affects dopamine (DA)-dependent synaptic plasticity in the medial prefrontal cortex (mPFC). On male adolescent rats, we characterized anxiety- and depressive-like behaviors using behavioral testing before and after exposure to a mild stress (elevated platform, EP). After the behavioral protocols, we investigated DA-dependent long-term potentiation (DA-LTP) and depression (DA-LTD) on acute slices of mPFC and evaluated the activation of DA-producing brain regions by western and dot blot analysis. We show that exposure to the EP stress enhances DA-LTP and that desipramine (DMI) treatment abolishes this effect. We also found that DA-LTD is not affected by EP stress unless when this is followed by DMI treatment. In addition, EP stress reduces anxiety, an effect abolished by both DMI and ketamine, while motivation is promoted by previous exposure to EP stress independently of pharmacological treatments. Finally, this form of stress reduces the expression of the early gene cFOS in the ventral tegmental area. These findings support the idea that mild stressors can promote synaptic plasticity in PFC through a dopaminergic mechanism, an effect that might increase the sensitivity of mPFC to subsequent stressful experiences.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Isotti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Gabriella Racchetti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Lavinia Anchora
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Rucco
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Recent advances in the antidepressant actions of ketamine and agents having ketamine-like antidepressant profiles. Pharmacol Biochem Behav 2020; 196:172995. [PMID: 32652088 DOI: 10.1016/j.pbb.2020.172995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|