1
|
Freels TG, Westbrook SR, Zamberletti E, Kuyat JR, Wright HR, Malena AN, Melville MW, Brown AM, Glodosky NC, Ginder DE, Klappenbach CM, Delevich KM, Rubino T, McLaughlin RJ. Sex Differences in Response-Contingent Cannabis Vapor Administration During Adolescence Mediate Enduring Effects on Behavioral Flexibility and Prefrontal Microglia Activation in Rats. Cannabis Cannabinoid Res 2024; 9:e1184-e1196. [PMID: 38190273 PMCID: PMC11392456 DOI: 10.1089/can.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Introduction: Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood. Materials and Methods: We used a response-contingent vapor administration model to investigate long-term effects of cannabis use during adolescence on the medial prefrontal cortex (mPFC) and mPFC-dependent behaviors in male and female rats. Results: Adolescent (35- to 55-day-old) female rats had significantly higher rates of responding for vaporized Δ9-tetrahydrocannabinol (THC)-dominant cannabis extract (CANTHC) compared with adolescent males. In adulthood (70-110 days old), female, but not male, CANTHC rats also took more trials to reach criterion and made more regressive errors in an automated attentional set-shifting task compared with vehicle rats, thereby indicating sex differences in behavioral flexibility impairments. Notably, sex-treatment interactions were not observed when rats of each sex were exposed to a noncontingent CANTHC vapor dosing regimen that approximated CANTHC vapor deliveries earned by females. No differences were observed in effort-based decision making in either sex. In the mPFC, female (but not male) CANTHC rats displayed more reactive microglia with no changes in myelin basic protein expression or dendritic spine density. Conclusion: Altogether, these data reveal important sex differences in rates of responding for CANTHC vapor in adolescence that may confer enduring alterations to mPFC structure and function and suggest that there may be subtle differences in the effects of response-contingent versus noncontingent cannabis exposure that should be systematically examined in future studies.
Collapse
Affiliation(s)
- Timothy G. Freels
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Sara R. Westbrook
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Jacqulyn R. Kuyat
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Hayden R. Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Alexandra N. Malena
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Max W. Melville
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Amanda M. Brown
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | | | - Darren E. Ginder
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Courtney M. Klappenbach
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Kristen M. Delevich
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Ryan J. McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
- Department of Psychology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Gutierrez A, Nguyen JD, Creehan KM, Grant Y, Taffe MA. Adult Consequences of Repeated Nicotine Vapor Inhalation in Adolescent Rats. Nicotine Tob Res 2024; 26:715-723. [PMID: 37946372 PMCID: PMC11109496 DOI: 10.1093/ntr/ntad211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION There has been a resurgence in nicotine inhalation in adolescents due to the popularity and availability of Electronic Nicotine Delivery Systems (ENDS). Almost five times as many US high-school seniors inhale nicotine vapor daily compared with those who smoke tobacco. This study was conducted to determine the impact of repeated adolescent vapor inhalation of nicotine on behavior in adulthood. METHODS Male and female Sprague-Dawley rats were exposed to 30-minute sessions of ENDS vapor inhalation, twice daily, from post-natal day (PND) 31-40. Conditions included vapor from the propylene glycol (PG) vehicle or nicotine (30 mg/mL in the PG). Animals were assessed for effects of nicotine on open field (PND 74-105) and wheel activity (PND 126-180) and for volitional exposure to nicotine vapor (PND 285-395). Plasma nicotine and cotinine were assessed in separate groups of male and female Wistar and Sprague-Dawley rats after a single nicotine inhalation session. RESULTS Group mean plasma nicotine ranged from 39 to 59 ng/mL post-session with minimal strain differences detected. Adolescent nicotine exposure enhanced sensitivity to the locomotor stimulating effects of nicotine (0.1-0.8 mg/kg, s.c.) in an open field in female rats, but didn't change the effects of nicotine on wheel activity. Female rats exposed to nicotine (30 mg/mL) vapor as adolescents responded more vigorously than PG-exposed females to nicotine vapor in a fixed ratio 5 challenge. CONCLUSIONS Repeated adolescent nicotine vapor inhalation leads to enhanced liability for volitional exposure to nicotine vapor in adulthood in female rats, but minimal change in spontaneous locomotor behavior. IMPLICATIONS These results show that adolescent vaping of nicotine can lead to lasting sensitization to the effects of nicotine in adulthood, including volitional responding for nicotine vapor. Demonstration of this in a controlled animal model establishes causality in a manner not possible from longitudinal evidence in human populations. These findings further highlight the importance of decreasing adolescent nicotine exposure to e-cigarettes to reduce consumption in adulthood.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Neuroscience; The Scripps Research Institute; La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Jacques D Nguyen
- Department of Neuroscience; The Scripps Research Institute;La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
- Department of Psychology and Neuroscience, Baylor University;Waco, TX, USA
| | - Kevin M Creehan
- Department of Neuroscience; The Scripps Research Institute;La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Yanabel Grant
- Department of Neuroscience; The Scripps Research Institute;La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Michael A Taffe
- Department of Neuroscience; The Scripps Research Institute; La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| |
Collapse
|
3
|
Gutierrez A, Taffe MA. Persistent effects of repeated adolescent and adult heroin vapor inhalation in female Wistar rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592492. [PMID: 38765990 PMCID: PMC11100616 DOI: 10.1101/2024.05.06.592492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adolescent drug exposure has been associated with more severe mental health outcomes related to substance abuse and anxiety disorders. The aim of the present study was to contrast the long-term effects of repeated heroin vapor inhalation during adolescence with similar heroin exposure in adulthood. Groups of female Wistar rats underwent twice daily 30-minute sessions of heroin or propylene glycol (control) vapor inhalation from postnatal days (PND) 36-45 or PND 85-94, respectively. Nociception was assessed after vapor inhalation sessions and forty days later, for the Adolescent-Exposed and Adult-Exposed groups. Anxiety-like behavior was assessed with an elevated plus-maze (EPM) and spatial learning was assessed with a Barnes maze. Acute effects of naloxone (0.3 mg/kg, i.p.) and heroin (0.5 and 1.0 mg/kg, s.c.) on thermal nociception were determined on PND 140/189 and PND 149/198, respectively. Repeated heroin vapor inhalation produced anti-nociceptive tolerance across sessions in both adolescent and adult rats, with the adolescents exhibiting more complete tolerance. Heroin vapor inhalation produced anxiolytic effects, regardless of age of exposure. There were no effects of heroin on spatial learning. Naloxone produced acute hyperalgesia in all but the Adolescent-Exposed heroin group, and heroin anti-nociception was blunted in both heroin-exposed groups at the highest heroin dose. Repeated heroin vapor inhalation can produce lasting effects on nociception and anxiety-like behavior that persist for months after the exposure. Importantly, these findings suggest that adolescent exposure to heroin vapor produces specific effects on nociception that are not observed when exposure occurs in adulthood.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| |
Collapse
|
4
|
Gutierrez A, Taffe MA. Rats chasing the dragon: A new heroin inhalation method. J Neurosci Methods 2024; 402:110013. [PMID: 37989452 DOI: 10.1016/j.jneumeth.2023.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Despite extensive human use of inhalation for ingesting opioids, models in rodents have mostly been limited to parenteral injection and oral dosing. Methods using electronic drug delivery systems (EDDS; "e-cigarettes") have shown efficacy in rodent models but these do not faithfully mimic the most popular human inhalation method of heating heroin to the point of vaporization. NEW METHOD Middle aged rats were exposed to vapor created by direct heating of heroin HCl powder in a ceramic e-cigarette type atomizer. Efficacy was determined with a warm water tail withdrawal nociception assay, rectal temperature and self-administration. RESULTS Ten minutes of inhalation of vaporized heroin slowed response latency in a warm water tail withdrawal assay and increased rectal temperature in male rats, in a dose-dependent manner. Similar antinociceptive effects in female rats were attenuated by the opioid antagonist naloxone (1.0 mg/kg, s.c.). Female rats made operant responses for heroin vapor in 15-minute sessions, increased their response rate when the reinforcement ratio increased from FR1 to FR5, and further increased their responding when vapor delivery was omitted. Anti-nociceptive effects of self-administered volatilized heroin were of a similar magnitude as those produced by the 10-minute non-contingent exposure. COMPARISON WITH EXISTING METHODS Inhalation of directly volatilized heroin successfully produces heroin-typical effects, comparable to EDDS inhalation delivery. CONCLUSIONS This study shows that "chasing the dragon" methods of inhalation of heroin can be modeled successfully in the rat. Inhalation techniques may be particularly useful for longer term studies deep into the middle age of rats.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, San Diego, CA, USA.
| |
Collapse
|
5
|
Gutierrez A, Taffe MA. Rats Chasing the Dragon: A new heroin inhalation method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552712. [PMID: 37786688 PMCID: PMC10541576 DOI: 10.1101/2023.08.09.552712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Rationale Despite extensive human use of the inhalation route for ingesting opioids, models in rodents have mostly been limited to parenteral injection and oral dosing. Methods using electronic drug delivery systems (EDDS; "e-cigarettes") have shown efficacy in rodent models but these do not faithfully mimic the most popular human inhalation method of heating heroin to the point of vaporization. Objective This study was designed to determine if direct volatilization of heroin hydrochloride delivers effective heroin doses to rodents. Methods Middle aged rats were exposed to vapor created by direct heating of heroin HCl powder in a ceramic e-cigarette type atomizer. Efficacy was determined with a warm water tail withdrawal nociception assay, rectal temperature and self-administration. Results Ten minutes of inhalation of vaporized heroin slowed response latency in a warm water tail withdrawal assay and increased rectal temperature in male rats, in a dose-dependent manner. Similar antinociceptive effects in female rats were attenuated by the opioid antagonist naloxone (1.0 mg/kg, s.c.). Female rats made operant responses for heroin vapor in 15-minute sessions, increased their response rate when the reinforcement ratio increased from FR1 to FR5, and further increased their responding when vapor delivery was omitted. Anti-nociceptive effects of self-administered volatilized heroin were of a similar magnitude as those produced by the 10-minute non-contingent exposure. Conclusions This study shows that "chasing the dragon" methods of inhalation of heroin can be modeled successfully in the rat. Inhalation techniques may be particularly useful for longer term studies deep into middle age of rat species.
Collapse
|
6
|
Extended access to fentanyl vapor self-administration leads to addiction-like behaviors in mice: Blood chemokine/cytokine levels as potential biomarkers. ADDICTION NEUROSCIENCE 2023; 5:100057. [PMID: 36683829 PMCID: PMC9851134 DOI: 10.1016/j.addicn.2022.100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rodent models are useful for understanding the mechanisms that underlie opioid addiction, but most preclinical studies have focused on rewarding and consummatory aspects of opioids without components of dependence-induced escalation of drug taking or seeking. We characterized several opioid-related behaviors in mice using a model of vaporized fentanyl self-administration. Male and female C57BL/6J mice were assigned to short-access (ShA; 1 h, nondependent) or long-access (LgA; 6 h, dependent) fentanyl vapor self-administration and subsequently tested in a battery of behavioral tests, followed by blood collection during withdrawal. Compared with mice in the ShA group, mice in the LgA group escalated their fentanyl intake, were more motivated to work to obtain the drug, exhibited greater hyperalgesia, and exhibited greater signs of naloxone-precipitated withdrawal. Principal component analysis indicated the emergence of two independent behavioral constructs: "intake/motivation" and "hyperalgesia/punished seeking." In mice in the LgA condition only, "hyperalgesia/punished seeking" was associated with plasma levels of proinflammatory interleukin-17 (IL-17), chemokine (C-C motif) ligand 4 (CCL-4), and tumor necrosis factor α (TNF-α). Overall, the results suggest that extended access to opioids leads to addiction-like behavior, and some constructs that are associated with addiction-like behavior may be associated with levels of the proinflammatory cytokines/chemokines IL-17, TNF-α, and CCL-4 in blood.
Collapse
|
7
|
Slivicki RA, Earnest T, Chang YH, Pareta R, Casey E, Li JN, Tooley J, Abiraman K, Vachez YM, Wolf DK, Sackey JT, Pitchai DK, Moore T, Gereau RW, Copits BA, Kravitz AV, Creed MC. Oral oxycodone self-administration leads to features of opioid misuse in male and female mice. Addict Biol 2023; 28:e13253. [PMID: 36577735 PMCID: PMC11824864 DOI: 10.1111/adb.13253] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Use of prescription opioids, particularly oxycodone, is an initiating factor driving the current opioid epidemic. There are several challenges with modelling oxycodone abuse. First, prescription opioids including oxycodone are orally self-administered and have different pharmacokinetics and dynamics than morphine or fentanyl, which have been more commonly used in rodent research. This oral route of administration determines the pharmacokinetic profile, which then influences the establishment of drug-reinforcement associations in animals. Moreover, the pattern of intake and the environment in which addictive drugs are self-administered are critical determinants of the levels of drug intake, of behavioural sensitization and of propensity to relapse behaviour. These are all important considerations when modelling prescription opioid use, which is characterized by continuous drug access in familiar environments. Thus, to model features of prescription opioid use and the transition to abuse, we designed an oral, homecage-based oxycodone self-administration paradigm. Mice voluntarily self-administer oxycodone in this paradigm without any taste modification such as sweeteners, and the majority exhibit preference for oxycodone, escalation of intake, physical signs of dependence and reinstatement of seeking after withdrawal. In addition, a subset of animals demonstrate drug taking that is resistant to aversive consequences. This model is therefore translationally relevant and useful for studying the neurobiological substrates of prescription opioid abuse.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Tom Earnest
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Yu-Hsuan Chang
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Rajesh Pareta
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Eric Casey
- Department of Psychiatry, Washington University in St. Louis
| | - Jun-Nan Li
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Jessica Tooley
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Kavitha Abiraman
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Yvan M. Vachez
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Drew K. Wolf
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Jason T. Sackey
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | | | | | - Robert W. Gereau
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| | - Bryan A. Copits
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
| | - Alexxai V. Kravitz
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| | - Meaghan C. Creed
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| |
Collapse
|
8
|
Gutierrez A, Harvey EL, Creehan KM, Taffe MA. The long-term effects of repeated heroin vapor inhalation during adolescence on measures of nociception and anxiety-like behavior in adult Wistar rats. Psychopharmacology (Berl) 2022; 239:3939-3952. [PMID: 36287213 PMCID: PMC9672020 DOI: 10.1007/s00213-022-06267-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE Adolescents represent a vulnerable group due to increased experimentation with illicit substances that is often associated with the adolescent period, and because adolescent drug use can result in long-term effects that differ from those caused by drug use initiated during adulthood. OBJECTIVES The purpose of the present study was to determine the effects of repeated heroin vapor inhalation during adolescence on measures of nociception, and anxiety-like behavior during adulthood in female and male Wistar rats. METHODS Rats were exposed twice daily to 30 min of heroin vapor from post-natal day (PND) 36 to PND 45. At 12 weeks of age, baseline thermal nociception was assessed across a range of temperatures with a warm-water tail-withdrawal assay. Anxiety-like behavior was assessed in an elevated plus-maze (EPM) and activity was measured in an open-field arena. Starting at 23 weeks of age, baseline thermal nociception was re-assessed, nociception was determined after acute heroin or naloxone injection, and anxiety-like behavior was redetermined in the EPM. RESULTS Adolescent heroin inhalation altered baseline thermal nociception in female rats at 12 weeks of age and in both female and male rats at ~ 23 weeks. Heroin-treated animals exhibited anxiety-like behavior when tested in the elevated plus-maze, showed blunted heroin-induced analgesia, but exhibited no effect on naloxone-induced hyperalgesia. CONCLUSIONS The present study demonstrates that heroin vapor inhalation during adolescence produces behavioral and physiological consequences in rats that persist well into adulthood.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Eric L Harvey
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kevin M Creehan
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Shelton KL, Nicholson KL. Reinforcing effects of fentanyl and sufentanil aerosol puffs in rats. Psychopharmacology (Berl) 2022; 239:2491-2502. [PMID: 35426491 PMCID: PMC10878424 DOI: 10.1007/s00213-022-06129-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE Rapidly evolving e-cigarette technology developed for self-administering nicotine aerosol has the potential to be utilized to self-administer other aerosolized drugs of abuse. Rodent models which mirror characteristics of human e-cigarette use are necessary to explore the degree to which this may be a public health concern. OBJECTIVES Our goal was to develop a highly translational model of discrete nose-only aerosol puff drug delivery to explore the reinforcing effects of fentanyl and sufentanil aerosols in rats. METHODS Male and female Sprague-Dawley rats were trained to perform a multiple schedule FR1 lever-press, 4-s (second) nose hold operant during which the subject's orofacial areas were exposed to drug-free glycerol/propylene glycol aerosol produced by a commercial e-cigarette at a power setting of 18 watts. Each completed 4-s drug-free vehicle aerosol exposure resulted in a 3-s presentation of a 0.1-ml dipper of sweetened milk solution. After training, rats were then allowed to self-administer 4-s nose-only puffs of fentanyl (100-6000 µg/ml) or sufentanil (30-500 µg/ml) aerosol in the absence of paired milk dipper reinforcers. RESULTS All 31 rats learned the lever-press/nose-poke multiple schedule for milk dippers alone and 25 accepted exposure to 4 s of 18 watts of drug-free vehicle aerosol when paired with milk dipper presentations. In the absence of paired milk dipper presentations, fentanyl aerosol puffs at concentrations of 1000 and 3000 µg/ml as well as 100 µg/ml puffs of sufentanil served as reinforcers compared to both air puffs and drug-free vehicle aerosol puffs. There were no significant differences between males and females in number of fentanyl or sufentanil puffs self-administered. CONCLUSIONS Discrete nose-only puffs of two potent opioids under exposure conditions comparable to puff durations in human e-cigarette users serve as reinforcers in rats. This outcome suggests that under appropriate conditions e-cigarettes might be a potential alternative delivery mechanism for illicit opioids.
Collapse
Affiliation(s)
- Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, 410 North 12th Street, Room 746D, Richmond, VA, 23298-0613, USA.
| | - Katherine L Nicholson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, 410 North 12th Street, Room 746D, Richmond, VA, 23298-0613, USA
| |
Collapse
|
10
|
Gutierrez A, Nguyen JD, Creehan KM, Javadi-Paydar M, Grant Y, Taffe MA. Effects of combined THC and heroin vapor inhalation in rats. Psychopharmacology (Berl) 2022; 239:1321-1335. [PMID: 34160641 PMCID: PMC8219787 DOI: 10.1007/s00213-021-05904-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022]
Abstract
RATIONALE Opioids are effective medications, but they have several key limitations including the development of tolerance, establishment of dependence, diversion for non-medical use, and the development of addiction. Therefore, any drugs which act in an additive or synergistic fashion with opioids to address medical applications have the potential to reduce opioid-related harms. OBJECTIVES To determine if heroin and Δ9-tetrahydrocannabinol (THC) interact in an additive or independent manner to alter nociception, body temperature, and spontaneous locomotor activity when inhaled or injected. METHODS Groups of female and male rats, implanted with radiotelemetry transmitters, were exposed to vapor generated from heroin (50 mg/mL in propylene glycol vehicle; PG), THC (50 mg/mL), or the combination for assessment of effects on temperature and activity. Thermal nociception was assessed with a warm water tail-withdrawal assay. RESULTS Heroin inhalation increased temperature and activity whereas THC inhalation decreased temperature and activity in both female and male Sprague-Dawley rats. Effects of combined inhalation were in opposition, and additional experiments found the same outcome for the injection of heroin (0.5 mg/kg, s.c.) and THC (10 mg/kg, i.p.) alone and in combination. In contrast, the co-administration of heroin and THC by either inhalation or injection produced additive effects on thermal nociception in both male and female Sprague-Dawley and Wistar rats. CONCLUSIONS This study shows that additive effects of THC with an opioid on a medical endpoint such as analgesia may not generalize to other behavioral or physiological effects, which may be a positive outcome for unwanted side effects.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | - Jacques D Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | - Kevin M Creehan
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | | | - Yanabel Grant
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | - Michael A Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Psychiatry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Electronic Nicotine Vapor Exposure Produces Differential Changes in Central Amygdala Neuronal Activity, Thermoregulation and Locomotor Behavior in Male Mice. eNeuro 2021; 8:ENEURO.0189-21.2021. [PMID: 34321216 PMCID: PMC8362686 DOI: 10.1523/eneuro.0189-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Nicotine is an addictive substance historically consumed through smoking and more recently through the use of electronic vapor devices. The increasing prevalence and popularity of vaping prompts the need for preclinical rodent models of nicotine vapor exposure and an improved understanding of the impact of vaping on specific brain regions, bodily functions, and behaviors. We used a rodent model of electronic nicotine vapor exposure to examine the cellular and behavioral consequences of acute and repeated vapor exposure. Adult male C57BL/6J mice were exposed to a single 3-h session (acute exposure) or five daily sessions (repeated exposure) of intermittent vapes of 120 mg/ml nicotine in propylene glycol:vegetable glycerol (PG/VG) or PG/VG control. Acute and repeated nicotine vapor exposure did not alter body weight, and both exposure paradigms produced pharmacologically significant serum nicotine and cotinine levels in the 120 mg/ml nicotine group compared with PG/VG controls. Acute exposure to electronic nicotine vapor increased central amygdala (CeA) activity in individual neuronal firing and in expression of the molecular activity marker, cFos. The changes in neuronal activity following acute exposure were not observed following repeated exposure. Acute and repeated nicotine vapor exposure decreased core body temperature, however acute exposure decreased locomotion while repeated exposure increased locomotion. Collectively, these studies provide validation of a mouse model of nicotine vapor exposure and important evidence for how exposure to electronic nicotine vapor produces differential effects on CeA neuronal activity and on specific body functions and behaviors like thermoregulation and locomotion.
Collapse
|
12
|
McConnell SA, Brandner AJ, Blank BA, Kearns DN, Koob GF, Vendruscolo LF, Tunstall BJ. Demand for fentanyl becomes inelastic following extended access to fentanyl vapor self-administration. Neuropharmacology 2020; 182:108355. [PMID: 33091459 PMCID: PMC7747488 DOI: 10.1016/j.neuropharm.2020.108355] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
Opioid use disorder imposes great societal harm in the United States and in countries worldwide. Animal models that accurately capture motivational changes that occur in opioid dependence are critical to studying this disorder. The present study used a model of opioid vapor self-administration combined with a behavioral economics approach to determine whether rats would be more motivated to "work" to defend their baseline intake of fentanyl (i.e., more inelastic demand) following sufficiently frequent, intense, and chronic exposure to self-administered vaporized fentanyl. Male rats were allowed to respond for deliveries of 1.5-s of vaporized 10 mg/ml fentanyl solution. Following 15 sessions of short access (ShA; 1 h) vs. long access (LgA; 12 h) to self-administration, we conducted a between-sessions demand curve procedure, and observed significantly more inelastic demand for fentanyl (Essential Value; EV), and increased maximal response output (Omax) in LgA compared with ShA rats. In a subsequent phase, the unit-dose was doubled to 3 s of fentanyl vaporization. After seven ShA vs. LgA sessions, we assessed demand again and found that LgA rats, contrasted to ShA rats, demonstrated significantly higher baseline intake or "hedonic setpoint" (Q0), in addition to significantly increased EV and Omax. These results demonstrate that extended access to self-administration of a vaporized opioid causes changes in behavioral economic metrics consistent with development of an addiction-like state in rats. The combination of the vapor model with a translationally relevant behavioral economics framework opens new avenues to study dysregulated motivational processes in substance use disorders.
Collapse
Affiliation(s)
- Sam A McConnell
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Adam J Brandner
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Brandon A Blank
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - David N Kearns
- Psychology Department, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA
| | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|