1
|
Xie LQ, Hu B, Lu RB, Cheng YL, Chen X, Wen J, Xiao Y, An YZ, Peng N, Dai Y, Xie G, Guo Q, Peng H, Luo XH. Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity. Cell Res 2025; 35:165-185. [PMID: 39875551 PMCID: PMC11909135 DOI: 10.1038/s41422-025-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.
Collapse
Affiliation(s)
- Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ren-Bin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya-Lun Cheng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Dai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Genqing Xie
- Department of Endocrinology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
2
|
Altshuler RD, Burke MAM, Garcia KT, Class K, Cimbro R, Li X. Profiling gene alterations in striatonigral neurons associated with incubation of methamphetamine craving by cholera toxin subunit B-based fluorescence-activated cell sorting. Front Cell Neurosci 2025; 19:1542508. [PMID: 40012565 PMCID: PMC11860961 DOI: 10.3389/fncel.2025.1542508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction In both rats and humans, methamphetamine (Meth) seeking progressively increases during abstinence, a behavioral phenomenon termed "incubation of Meth craving". We previously demonstrated a critical role of dorsal striatum (DS) in this incubation in rats. However, circuit-specific molecular mechanisms in DS underlying this incubation are largely unknown. Here we combined a newly developed fluorescence-activated sorting (FACS) protocol with fluorescence-conjugated cholera toxin subunit B-647 (CTb-647, a retrograde tracer) to examine gene alterations in the direct-pathway (striatonigral) medium spiny neurons (MSNs) associated with incubation of Meth craving. Methods We injected CTb-647 bilaterally into substantia nigra before or after training rats to self-administer Meth or saline (control condition) for 10 days (6 h/d). On abstinence day 1 or day 28, we collected the DS tissue from both groups for subsequent FACS and examined gene expressions in CTb-positive (striatonigral MSNs) and CTb-negative (primarily non-striatonigral MSNs). Finally, we examined gene expressions in DS homogenates, to demonstrate cell-type specificity of gene alterations observed on abstinence day 28. Results On abstinence day 1, we found mRNA expression of Gabrb3 decreased only in CTb-positive (but not CTb-negative) neurons of Meth rats compared with saline rats, while mRNA expression of Usp7 decreased in all sorted DS neurons. On abstinence day 28, we found increased mRNA expression for Grm3, Opcml, and Usp9x in all sorted DS neurons, but not DS homogenate. Discussion Together, these data demonstrated that incubation of Meth craving was associated with time-dependent, circuit-specific, and cell type-specific gene alterations in DS involved in glutamatergic, GABAergic, opioidergic, and protein degradation signaling.
Collapse
Affiliation(s)
- Rachel D. Altshuler
- Department of Psychology, University of Maryland College Park, College Park, MD, United States
| | - Megan A. M. Burke
- Department of Psychology, University of Maryland College Park, College Park, MD, United States
| | - Kristine T. Garcia
- Department of Psychology, University of Maryland College Park, College Park, MD, United States
| | - Kenneth Class
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD, United States
| | - Raffaello Cimbro
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, MD, United States
- Program in Neuroscience and Cognitive Science, University of Maryland College Park, College Park, MD, United States
| |
Collapse
|
3
|
Yang MY, Kim SK, Goddard WA. Metabotropic GABA B Receptor Activation Induced by G Protein Coupling. J Am Chem Soc 2025; 147:1911-1919. [PMID: 39760394 DOI: 10.1021/jacs.4c14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
G protein-coupled receptors (GPCRs) play central roles in regulating cellular responses through heterotrimeric G proteins (GP). Extensive studies have elucidated the complex cellular signaling mediated by GPCRs that accompany dynamic conformational changes upon activation. However, there has been less focus on the role of the GP on the activation process, particularly for class C GPCRs that function as obligate dimers. Herein, we report the pivotal role of GP coupling on the dynamic activation process for the metabotropic γ-aminobutyric acid receptor (GABABR) based on extensive atomistic simulations. We find that GP coupling triggers drastic conformational changes in the GABABR transmembrane domain (TMD), while an agonist alone is insufficient to shift the equilibrium state from the inactive to the active states. These conformational changes induced by GP coupling destabilize the inactive TM5/TM5 interface, shifting the equilibrium toward the activated TM6/TM6 interface. This active role of the GP in activation provides fresh insights into the activation mechanism of GABABR and perhaps other class C GPCRs. These insights should aid in the development of more potent and selective drugs.
Collapse
Affiliation(s)
- Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Dogra S, Aguayo C, Xiang Z, Putnam J, Smith J, Johnston C, Foster DJ, Lindsley CW, Niswender CM, Conn PJ. Activation of Metabotropic Glutamate Receptor 3 Modulates Thalamo-accumbal Transmission and Rescues Schizophrenia-Like Physiological and Behavioral Deficits. Biol Psychiatry 2024; 96:230-242. [PMID: 38061467 PMCID: PMC11150332 DOI: 10.1016/j.biopsych.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Polymorphisms in the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are associated with an increased likelihood of schizophrenia diagnosis and can predict improvements in negative symptoms following treatment with antipsychotics. However, the mechanisms by which mGlu3 can regulate brain circuits involved in schizophrenia pathophysiology are not clear. METHODS We employed selective pharmacological tools and a variety of approaches including whole-cell patch-clamp electrophysiology, slice optogenetics, and fiber photometry to investigate the effects of mGlu3 activation on phencyclidine (PCP)-induced impairments in thalamo-accumbal transmission and sociability deficits. A chemogenetic approach was used to evaluate the role of thalamo-accumbal transmission in PCP-induced sociability deficits. RESULTS We first established that PCP treatment augmented excitatory transmission onto dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) in the nucleus accumbens (NAc) and induced sociability deficits. Our studies revealed a selective increase in glutamatergic synaptic transmission from thalamic afferents to D1-MSNs in the NAc shell. Chemogenetic silencing of thalamo-accumbal inputs rescued PCP-induced sociability deficits. Pharmacological activation of mGlu3 normalized PCP-induced impairments in thalamo-accumbal transmission and sociability deficits. Mechanistic studies revealed that mGlu3 activation induced robust long-term depression at synapses from the thalamic projections onto D1-MSNs in the NAc shell. CONCLUSIONS These data demonstrate that activation of mGlu3 decreases thalamo-accumbal transmission and thereby rescues sociability deficits in mouse modeling schizophrenia-like symptoms. These findings provide novel insights into the NAc-specific mechanisms and suggest that agents modulating glutamatergic signaling in the NAc may provide a promising approach for treating negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Shalini Dogra
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee.
| | - Caleb Aguayo
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Jason Putnam
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Joshua Smith
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Curran Johnston
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Daniel J Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
5
|
Zhang Y, Tong L, Ma L, Ye H, Zeng S, Zhang S, Ding Y, Wang W, Bao T. Progress in The Research of Lactate Metabolism Disruption And Astrocyte-Neuron Lactate Shuttle Impairment in Schizophrenia: A Comprehensive Review. Adv Biol (Weinh) 2024; 8:e2300409. [PMID: 38596839 DOI: 10.1002/adbi.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Yingying Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Liang Tong
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Li Ma
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Hong Ye
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shue Zeng
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shaochuan Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Yu Ding
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Weiwei Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Tianhao Bao
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| |
Collapse
|
6
|
Kraft J, Braun A, Awasthi S, Panagiotaropoulou G, Schipper M, Bell N, Posthuma D, Pardiñas AF, Ripke S, Heilbron K. Identifying drug targets for schizophrenia through gene prioritization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307423. [PMID: 38798390 PMCID: PMC11118622 DOI: 10.1101/2024.05.15.24307423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Schizophrenia genome-wide association studies (GWASes) have identified >250 significant loci and prioritized >100 disease-related genes. However, gene prioritization efforts have mostly been restricted to locus-based methods that ignore information from the rest of the genome. Methods To more accurately characterize genes involved in schizophrenia etiology, we applied a combination of highly-predictive tools to a published GWAS of 67,390 schizophrenia cases and 94,015 controls. We combined both locus-based methods (fine-mapped coding variants, distance to GWAS signals) and genome-wide methods (PoPS, MAGMA, ultra-rare coding variant burden tests). To validate our findings, we compared them with previous prioritization efforts, known neurodevelopmental genes, and results from the PsyOPS tool. Results We prioritized 62 schizophrenia genes, 41 of which were also highlighted by our validation methods. In addition to DRD2, the principal target of antipsychotics, we prioritized 9 genes that are targeted by approved or investigational drugs. These included drugs targeting glutamatergic receptors (GRIN2A and GRM3), calcium channels (CACNA1C and CACNB2), and GABAB receptor (GABBR2). These also included genes in loci that are shared with an addiction GWAS (e.g. PDE4B and VRK2). Conclusions We curated a high-quality list of 62 genes that likely play a role in the development of schizophrenia. Developing or repurposing drugs that target these genes may lead to a new generation of schizophrenia therapies. Rodent models of addiction more closely resemble the human disorder than rodent models of schizophrenia. As such, genes prioritized for both disorders could be explored in rodent addiction models, potentially facilitating drug development.
Collapse
Affiliation(s)
- Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | | | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Antonio F. Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
7
|
Fultz EK, Nei AYT, Chi JC, Lichter JN, Szumlinski KK. Effects of systemic pretreatment with the NAALADase inhibitor 2-PMPA on oral methamphetamine reinforcement in C57BL/6J mice. Front Psychiatry 2024; 15:1297275. [PMID: 38638417 PMCID: PMC11024460 DOI: 10.3389/fpsyt.2024.1297275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/21/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Repeated exposure to methamphetamine (MA) in laboratory rodents induces a sensitization of glutamate release within the corticoaccumbens pathway that drives both the rewarding and reinforcing properties of this highly addictive drug. Such findings argue the potential for pharmaceutical agents inhibiting glutamate release or its postsynaptic actions at glutamate receptors as treatment strategies for MA use disorder. One compound that may accomplish both of these pharmacological actions is the N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA). 2-PMPA elevates brain levels of the endogenous agonist of glutamate mGluR3 autoreceptors, N-acetyl-aspartatylglutamate (NAAG), while potentially acting as an NMDA glutamate receptor antagonist. Of relevance to treating psychomotor stimulant use disorders, 2-PMPA is reported to reduce indices of both cocaine and synthetic cathinone reward, as well as cocaine reinforcement in preclinical rodent studies. Method Herein, we conducted three experiments to pilot the effects of systemic pretreatment with 2-PMPA (0-100 mg/kg, IP) on oral MA self-administration in C57BL/6J mice. The first experiment employed female mice with a prolonged history of MA exposure, while the mice in the second (females) and third (males and females) experiment were MA-naïve prior to study. In all experiments, mice were trained daily to nose-poke for delivery of unadulterated MA solutions until responding stabilized. Then, mice were pretreated with 2-PMPA prior to operant-conditioning sessions in which nose-poking behavior was reinforced by delivery of 120 mg/L or 200 mg/L MA (respectively, in Experiments 1 and 2/3). Results Contrary to our expectations, 30 mg/kg 2-PMPA pretreatment altered neither appetitive nor consummatory measures related to MA self-administration. In Experiment 3, 100 mg/kg 2-PMPA reduced responding in the MA-reinforced hole, as well as the number of reinforcers earned, but did not significantly lower drug intake. Discussion These results provide mixed evidenced related to the efficacy of this NAALADase inhibitor for reducing oral MA reinforcement in female mice.
Collapse
Affiliation(s)
- Elissa K. Fultz
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Andrea Y. T. Nei
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Joyce C. Chi
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline N. Lichter
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
8
|
Pilc A, Chaki S. Role of mGlu receptors in psychiatric disorders - Recent advances. Pharmacol Biochem Behav 2023; 232:173639. [PMID: 37734493 DOI: 10.1016/j.pbb.2023.173639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Affiliation(s)
- Andrzej Pilc
- Maj Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Japan.
| |
Collapse
|
9
|
Ankul SS, Chandran L, Anuragh S, Kaliappan I, Rushendran R, Vellapandian C. A systematic review of the neuropathology and memory decline induced by monosodium glutamate in the Alzheimer's disease-like animal model. Front Pharmacol 2023; 14:1283440. [PMID: 37942488 PMCID: PMC10627830 DOI: 10.3389/fphar.2023.1283440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
This systematic review analyzes monosodium glutamate (MSG) in the Alzheimer's disease-like condition to enhance translational research. Our review seeks to understand how MSG affects the brain and causes degenerative disorders. Due to significant preclinical data linking glutamate toxicity to Alzheimer's disease and the lack of a comprehensive review or meta-analysis, we initiated a study on MSG's potential link. We searched PubMed, ScienceDirect, ProQuest, DOAJ, and Scopus for animal research and English language papers without time constraints. This study used the PRISMA-P framework and PICO technique to collect population, intervention or exposure, comparison, and result data. It was registered in PROSPERO as CRD42022371502. MSG affected mice's exploratory behaviors and short-term working memory. The brain, hippocampus, and cerebellar tissue demonstrated neuronal injury-related histological and histomorphometric changes. A total of 70% of MSG-treated mice had poor nesting behavior. The treated mice also had more hyperphosphorylated tau protein in their cortical and hippocampus neurons. Glutamate and glutamine levels in the brain increased with MSG, and dose-dependent mixed horizontal locomotor, grooming, and anxiety responses reduced. MSG treatment significantly decreased phospho-CREB protein levels, supporting the idea that neurons were harmed, despite the increased CREB mRNA expression. High MSG doses drastically lower brain tissue and serum serotonin levels. In conclusion, MSG showed AD-like pathology, neuronal atrophy, and short-term memory impairment. Further research with a longer time span and deeper behavioral characterization is needed. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier [CRD42022371502].
Collapse
Affiliation(s)
- Singh S. Ankul
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Lakshmi Chandran
- Department of Pharmacy Practice, SRM College of Pharmacy, SRMIST, Tamil Nadu, India
| | - Singh Anuragh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Ilango Kaliappan
- Department of Pharmaceutical Chemistry, School of Pharmacy, Hindustan Institute of Technology and Science, Tamil Nadu, India
| | - Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| |
Collapse
|
10
|
Nicoletti F, Di Menna L, Iacovelli L, Orlando R, Zuena AR, Conn PJ, Dogra S, Joffe ME. GPCR interactions involving metabotropic glutamate receptors and their relevance to the pathophysiology and treatment of CNS disorders. Neuropharmacology 2023; 235:109569. [PMID: 37142158 DOI: 10.1016/j.neuropharm.2023.109569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the βγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or β1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - P Jeffrey Conn
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shalini Dogra
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|